Что такое Холодный ядерный синтез? Холодный термоядерный синтез признали официально

Александр Просвирнов, г. Москва, Юрий Л. Ратис, д.ф.м.н, профессор, г. Самара


Итак, семь независимых экспертов (пять из Швеции и два из Италии) провели испытания высокотемпературного аппарата E-Cat, созданного Андреа Росси, и подтвердили заявленные характеристики . Напомним, что первая демонстрация аппарата E-Cat, основанного на низкоэнергетической ядерной реакции (LENR) трансмутации Никеля в Медь, состоялась 2 года назад в ноябре 2011г.

Эта демонстрация вновь, как знаменитая конференция Флейшмана и Понса в 1989г, возбудила научное сообщество, и возобновило спор между приверженцами LENR и традиционалистами, яростно отрицающими возможность подобных реакций. Теперь независимая экспертиза подтвердила, низкоэнергетические ядерные реакции (не путать с холодным ядерным синтезом (ХЯС), под которым специалисты понимают реакцию слияния ядер в холодном водороде) существуют и позволяют генерировать тепловую энергию с удельной плотностью в 10,000 раз большей, чем нефтепродукты.

Было проведено 2 испытания: в декабре 2012 в течение 96 часов и в марте 2013 в течение 116 часов. На очереди шестимесячные испытания с подробным элементным анализом содержимого реактора. Аппарат E-Cat А.Росси вырабатывает тепловую энергию с удельной мощностью 440кВт/кг . Для сравнения, удельная мощность энерговыделения реактора ВВЭР-1000 составляет 111 кВт/л активной зоны или 34,8кВт/кг топлива UO 2 ., БН-800 – 430кВт/л или ~140кВт/кг топлива. Для газового реактора AGR Hinkley-Point B - 13,1 кВт/кг, HTGR-1160 - 76,5 кВт/кг, для THTR-300 - 115 кВт/кг. Сопоставление этих данных впечатляет – уже сейчас удельные характеристики прототипа LENR- реактора превосходят аналогичные параметры лучших существующих и проектируемых ядерных реакторов деления.

На секции холодного ядерного синтеза недели компании National Instruments, прошедшей в г. Austin, штат Texas с 5 по 8 августа 2013г, наибольшее впечатление произвели две золотые сферы, погруженные в слой серебряных бусинок (см. рис. 1).



Рис. 1. Золотые сферы, выделяющие тепло днями и месяцами без подвода внешней энергии (Образцовая сфера слева (84°C), контрольная сфера справа (79.6°C), алюминиевое ложе с серебряными бусинками (80,0°C).

Здесь не подводится никакого тепла, нет никаких потоков воды, но вся система остается горячей при 80 0 С днями и месяцами. Она содержит активированный уголь, в порах которого имеется некий сплав, магнитный порошок, некоторый материал, содержащий водород и газообразный дейтерий. Предполагается, что тепло происходит от синтеза D+D=4He+Y . Для поддержания сильного магнитного поля сфера содержит раздробленный магнит Sm 2 Co 7 , который сохраняет магнитные свойства при высоких температурах. В конце конференции на глазах у многочисленной толпы сферу разрезали, чтобы показать, что в ней нет никаких фокусов типа литиевой батареи или сжигаемого бензина .

Совсем недавно в НАСА создали маленький, дешевый и безопасный LENR- реактор. Принцип работы - насыщение никелевой решетки водородом и возбуждение колебаниями с частотами 5-30 терагерц. По мнению автора колебания ускоряют электроны, которые превращают водород в компактные нейтральные атомы, поглощаемые никелем. При последующем бета-распаде никель превращается в медь с выделением тепловой энергии. Ключевым моментом являются медленные нейтроны с энергией меньше 1эВ. Они не создают ионизирующего излучения и радиоактивных отходов .

Согласно данным НАСА, 1% разведанных земных запасов никелевой руды достаточно, чтобы покрыть все энергетические нужды планеты. Аналогичные исследования производились и в других лабораториях. Но были ли эти результаты первыми?

Немного истории

Еще в 50-х годах 20-го столетия Иван Степанович Филимоненко, работая в НПО «Красная звезда» в области космической техники, открыл эффект выделения тепла в электроде с добавками палладия при электролизе тяжелой воды. При разработке термоэмиссионных источников энергии для космических аппаратов боролись два направления: традиционный реактор на базе обогащенного урана и гидролизная установка И.С. Филимоненко. Победило традиционное направление, И.С.Филимоненко был уволен по политическим мотивам. В НПО «Красная звезда» сменилось не одно поколение и при беседе одного из авторов в 2012 году с Главным конструктором НПО выяснилось, что о И.С.Филимоненко уже никто и не знает в настоящее время.

Тема холодного ядерного синтеза снова всплыла после сенсационных опытов Флейшмана и Понса в 1989 году (Флейшман умер в 2012 году, Понс в настоящее время отошел от дел). Фонд, возглавляемый Раисой Горбачевой, в 1990-1991 годах заказал, но уже на опытном заводе «Луч» в г. Подольск, изготовление двух или трех термоэмиссионных гидролизных энергоустановок (ТЭГЭУ) И.С.Филимоненко. Под руководством И.С.Филимоненко, и с его непосредственным участием, разрабатывалась рабочая документация, по которой сразу шло изготовление узлов и сборка установки. Из бесед одного из авторов с Заместителем директора по производству и Главным технологом опытного завода (сейчас оба на пенсии) известно, что была изготовлена одна установка, прототипом которой стала известная установка ТОПАЗ, но в качестве источника энергии использовалась тяжеловодная схема И.С. Филимоненко с низкоэнергетической ядерной реакцией. В отличие от «Топазов», в ТЭГЭУ тепловыделяющий элемент представлял собой не ядерный реактор, а установку ядерного синтеза при низких температурах (Т = 1150°), сроком работы 5-10 лет без заправки топливом (тяжёлой водой). Реактор представлял собой металлическую трубу диаметром 41 мм и длиной 700 мм, изготовленную из сплава, содержавшего несколько граммов палладия. 17 января 1992 года подкомиссия Моссовета по экологическим вопросам промышленности, энергетики, транспорта изучала проблему ТЭГЭУ И.С. Филимоненко, посетила ФГУП НПО «Луч», где ей была продемонстрирована установка и документация на нее.

Был подготовлен жидкометаллический стенд для испытаний установки, однако испытаний проведено не было из-за финансовых проблем заказчика. Установка была отгружена без испытаний и хранилась у И.С.Филимоненко (см. рис. 2). «В 1992 году на свет появилось сообщение «Демонстрационная термоэмиссионная установка для ядерного синтеза». Похоже, что это была последняя попытка замечательного ученого и конструктора достучаться до разума властей.» . И.С. Филимоненко умер 26 августа 2013г. на 89 году жизни. Дальнейшая судьба его установки неизвестна. Все рабочие чертежи и рабочая документация были переданы почему-то в Моссовет, на заводе не осталось ничего. Утеряны знания, утеряна технология, а она была уникальна, так как основывалась на вполне реальном аппарате ТОПАЗ, который даже с обычным ядерным реактором опережал лет на 20 мировые разработки, так как в нем были применены передовые, даже по прошествии 20-ти лет, материалы и технологии. Печально, что так много прекрасных идей у нас не доводится до финала. Если отечество не ценит своих гениев, их открытия перекочевывают в другие страны.


Рис. 2 Реактор И.С.Филимоненко

Не менее интересная история произошла и с Анатолием Васильевичем Вачаевым. Экспериментатор от бога, он проводил исследования плазменного парогенератора и случайно получил большой выход порошка, в составе которого были элементы, чуть ли не всей таблицы Менделеева. Шесть лет исследований позволили создать плазменную установку, которая давала стабильный плазменный факел - плазмоид, при пропускании через который дистиллированной воды или раствора в большом количестве образовывалась суспензия металлических порошков.

Удалось получить стабильный пуск и непрерывную работу более двух суток, наработать сотни килограммов порошка различных элементов, получить плавки металлов с необычными свойствами. В 1997 г. в Магнитогорске последовательница А.В. Вачаева, Галина Анатольевна Павлова защитила кандидатскую диссертацию на тему «Разработка основ технологии получения металлов из плазменного состояния водно-минеральных систем». Интересная ситуация сложилась при защите. Комиссия сразу запротестовала, как только услышала, что все элементы получаются из воды. Тогда всю комиссию пригласили на установку и продемонстрировали весь процесс. После этого все проголосовали единогласно.

С 1994 года по 2000 г. была спроектирована, изготовлена и отлажена полупромышленная установка «Энергонива-2» (см. рис. 3), предназначенная для изготовления полиметаллических порошков. У одного из авторов настоящего обзора (Ю.Л.Ратиса) до сих пор хранятся образцы этих порошков. В лаборатории А.В.Вачаева была разработана оригинальная технология их переработки. В это же время целенаправленно изучались:

Трансмутация воды, и веществ в нее добавляемых (сотни экспериментов с различными растворами и суспензиями, которые подвергались плазменному воздействию)

Преобразование вредных веществ в ценное сырье (использовались сточные воды вредных производств, содержащие органические загрязнения, нефтепродукты и трудно разлагаемые органические соединения)

Изотопный состав трансмутированных веществ (всегда получали только стабильные изотопы)

Дезактивация радиоактивных отходов (радиоактивные изотопы превращались в стабильные)

Непосредственное преобразование энергии плазменного факела (плазмоида) в электричество (работа установки под нагрузкой без использования внешнего электропитания).


Рис. 3. Схема установки А.В. Вачаева «Энергонива-2»

Установка представляет собой 2 трубчатых электрода, соединенных трубчатым диэлектриком, внутри которых течет водный раствор и формируется плазмоид внутри трубчатого диэлектрика (см. рис. 4) с перетяжкой в центре. Запуск плазмоида осуществляется поперечными полнотелыми электродами. Из мерных емкостей определенные дозы исследуемого вещества (бак 1), воды (бак 2), специальных добавок (бак 3) поступают в смеситель 4. Здесь величина pH воды доводится до 6. Из смесителя после тщательного перемешивания с расходом, обеспечивающим скорость движения среды в пределах 0,5.. .0,55 м/с, рабочая среда вводится в реакторы 5.1, 5.2, 5.3, соединенные последовательно, но заключенные в единую катушку 6 (соленоид). Продукты обработки (водно-газовая среда) сливались в герметичный отстойник 7 и охлаждались до 20°С змеевиковым холодильником 11 и потоком холодной воды. Водно-газовая среда в отстойнике разделялась на газовую 8, жидкую 9 и твердую 10 фазы, собиралась в соответствующие контейнеры и передавалась на химический анализ. Мерным сосудом 12 определялась масса воды, прошедшая через холодильник 11, а ртутными термометрами 13 и 14 - температура. Также измерялась температура рабочей смеси перед ее поступлением в первый реактор, а расход смеси определялся объемным способом по скорости опорожнения смесителя 4 и показаниям водомера.

При переходе на переработку отходов и стоков производств, продуктов жизнедеятельности людей и т. п. было обнаружено, что новая технология получения металлов сохраняет свои преимущества, позволяя исключить из технологии получения металлов горнорудный, обогатительный, окислительно-восстановительный процессы. Следует отметить отсутствие радиоактивного излучения, как в ходе реализации процесса, так и в конце его. Отсутствуют также газовые выделения. Жидкий продукт реакции, вода, в конце процесса отвечает требованиям, предъявляемым к пожарно-питьевой. Но эту воду целесообразно использовать повторно, т.е. можно выполнить многокаскадный агрегат «Энергонива» (оптимально - 3) с получением из 1т воды порядка 600-700 кг металлических порошков. Проверка экспериментом показала устойчивую работу последовательной каскадной системы, состоящей из 12 ступеней с общим выходом черных металлов порядка 72%, цветных - 21% и неметаллов - до 7 %. Процентный химический состав порошка примерно соответствует распространению элементов в земной коре. Начальными исследованиями установлено, что выход определенного (целевого) элемента возможен при регулировании электрических параметров питания плазмоида. Стоит обратить внимание на использование двух режимов работы установки: металлургический и энергетический. Первый, с приоритетом получения металлического порошка, и второй, - получение электрической энергии.

При синтезе металлического порошка вырабатывается электрическая энергия, которая должна отводиться от установки. Количество электрической энергии оценивается примерно до 3МВт*ч на 1м/куб. воды и зависит от режима работы установки, диаметра реактора и количества наработанного порошка.

Данный вид горения плазмы достигается изменением формы потока разряда. При достижении формой симметричного гиперболоида вращения, в точке пережима плотность энергии максимальна, что способствует прохождению ядерных реакций (см. рис. 4).


Рис. 4. Плазмоид Вачаева

Переработка радиоактивных отходов (особенно жидких) в установках «Энергонива» может открыть новый этап в технологической цепочке атомной энергетики. Процесс "Энергонива" протекает практически бесшумно, с минимальным выделением теплоты и газовой фазы. Усиление шума (до треска и "рева"), а также резкое повышение температуры и давления рабочей среды в реакторах свидетельствуют о нарушении хода процесса, т.е. о возникновении вместо требуемого разряда обычной тепловой электрической дуги в одном или во всех реакторах.

Нормальным является процесс, когда в реакторе между трубчатыми электродами возникает электропроводящий разряд в виде плазменной пленки, образующей многомерную фигуру типа гиперболоида вращения с пережимом диаметром 0,1...0,2 мм. Пленка обладает повышенной электропроводностью, полупрозрачная, светящаяся, толщиной до 10-50 мкм. Визуально она наблюдается при изготовлении корпуса реактора из оргстекла или через торцы электродов, заглушенные пробками из оргстекла. Водный раствор «протекает» через «плазмоид» аналогично тому, как «шаровая молния» проходит через любые препятствия . А.В. Вачаев умер в 2000г. Установка была разобрана и «ноу-хау» утрачено. Инициативные группы последователей «Энергонивы» вот уже 13 лет безуспешно штурмуют результаты А.В. Вачаева, однако «воз и ныне там». Академическая российская наука объявила эти результаты «лже-наукой» без какой-либо проверки в своих лабораториях. Даже пробы порошков, полученных А.В.Вачаевым, не были исследованы и до сих пор хранятся в его лаборатории в Магнитогорске без движения.

Исторический экскурс

Вышеописанные события не произошли вдруг. На пути открытия LENR им предшествовали основные исторические вехи:

1922 году Вендт и Айрион изучали электровзрыв тонкой вольфрамовой проволочки – выделилось около одного кубического сантиметра гелия (при нормальных условиях) за один выстрел .

Вильсон в 1924 году выдвинул предположение о том, что в канале молнии могут образоваться условия, достаточные для начала термоядерной реакции с участием обычного дейтерия, содержащегося в парах воды и такая реакция идёт с образованием только He 3 и нейтрона .

В 1926 Ф.Панец и К.Петерс (Австрия) заявили о генерации Не в мелком порошке Pd, насыщенном водородом. Но из-за всеобщего скепсиса, они отозвали свой результат, признав, что Не мог быть из воздуха .

В 1927 швед J. Tandberg генерировал Не при электролизе с Pd электродами, даже заявил патент на получение Не. В 1932 после открытия дейтерия продолжал эксперименты с D 2 O. Патент был отвергнут, т.к. не была ясна физика процесса.

В 1937 году Л.У.Альварецом открыт электронный захват .

В 1948 году - отчет А.Д.Сахарова «Пассивные мезоны» по мюонному катализу .

В 1956 г лекция И.В. Курчатова: «Импульсы, вызываемые нейтронами и рентгеновскими квантами, могут быть точно сфазированы на осциллограммах. При этом оказывается, что они возникают одновременно. Энергия рентгеновских квантов, появляющихся при импульсных электрических процессах в водороде и дейтерии, достигает 300 - 400 кэВ. Следует отметить, что в тот момент, когда возникают кванты с такой большой энергией, напряжение, приложенное к разрядной трубке, составляет всего лишь 10 кВ. Оценивая перспективы различных направлений, которые могут привести к решению задачи получения термоядерных реакций большой интенсивности, мы не можем сейчас полностью исключить дальнейшие попытки достигнуть этой цели путем использования импульсных разрядов» .

В 1957 году в ядерном центре в Беркли под руководством Л.У.Альвареца было открыто явление мюонного катализа ядерных реакций синтеза в холодном водороде.

В 1960 году, представлен обзор Я.Б.Зельдовича (академик, трижды Герой социалистического труда) и С. С.Герштейна (академик) под названием «Ядерные реакции в холодном водороде» .

Теория бета- распада в связанное состояние была создана в 1961 г .

В лабораториях Филиппса и Эйндховена было замечено в 1961, что радиоактивность трития сильно уменьшается после поглощения титаном. А в случае палладия 1986 г. было замечено испускание нейтронов .

В 50-х-60-х годах в СССР в рамках выполнения Постановления Правительства № 715/296 от 23.07.1960 г. И.С.Филимоненко создал гидролизную энергетическую установку, предназначенную для получения энергии от реакций «теплого» ядерного синтеза, идущих при температуре всего 1150 °С .

В 1974 году белорусским ученым Сергеем Ушеренко экспериментально установлено,
что частицы-ударники размерами 10-100 микрон, разогнанные до скорости порядка 1 км/с, прошивали насквозь стальную мишень толщиной 200 мм, оставляя проплавленный канал, при этом выделялось энергии на порядок больше, чем кинетическая энергия частиц.

В 80-х Б.В.Болотов, находясь в заключении, создал реактор из обычного сварочного аппарата, где получил ценные металлы из серы .

В 1986 году академик Б.В.Дерягин с сотрудниками опубликовал статью, в которой были приведены результаты серии экспериментов по разрушению мишеней из тяжелого льда с помощью металлического бойка.

В 1985 году 12 июня June Steven Jones и Clinton Van Siclen опубликовали статью "Piezonuclear fusion in isotopic hydrogen molecules” в журнале «Journal of Phvsics».

Jones работал над пьезоядерным синтезом с 1985, но только к осени 1988 его группа смогла создать достаточно чувствительные детекторы для измерения слабого потока нейтронов .

Pons и Fleischmann, по их словам, начали работы за свой собственный счет в 1984. Но только с осени 1988, после того как привлекли студента Marvin Hawkins, они начали изучать явление с точки зрения ядерных реакций.

Кстати, Julian Schwinger поддержал холодный синтез осенью 1989 после многочисленных отрицательных публикаций. Он направил статью "Cold Fusion: A Hypothesis" в Physical Review Letters, но статья была так грубо отклонена рецензентом, что Швингер, почувствовав себя оскорбленным, в знак протеста покинул American Physical Society (publisher of PRL).

1994-2000гг - опыты А.В.Вачаева с установкой «Энергонива».

Адаменко в 90-х - 2000-ых годах провел тысячи экспериментов с когерентными электронными пучками. В течение 100 ns в процессе сжатия наблюдаются интенсивные X-ray и Y-лучи с энергиями от 2.3 keV до 10 MeV с максимумом 30 keV. Полная доза при энергиях 30.100 keV превосходила 50.100 krad на расстоянии 10 cm от центра. Наблюдался синтез легких изотопов1<А<240 и трансурановых элементов 250<А<500 вблизи зоны сжатия. Преобразование радиоактивных элементов в стабильные означает трансмутацию в стабильные изотопы 1018 нуклидов (e.g., 60Со) с помощью 1 кДж энергии .

В конце 90-х годов Л.И.Уруцкоевым (компания РЭКОМ, дочернее предприятие Курчатовского института) были получены необычные результаты электровзрыва титановой фольги в воде. Рабочий элемент экспериментальной установки Уруцкоева состоял из прочного стакана из полиэтилена, в который была залита дистиллированная вода, в воду погружалась тонкая титановая фольга, приваренная к титановым электродам. Через фольгу пропускался импульс тока от конденсаторной батареи. Энергия, которая разряжалась через установку, была около 50 кДж, напряжение разряда - 5 кВ. Первое, что привлекло внимание экспериментаторов, было странное светящееся плазменное образование, которое возникало над крышкой стакана. Время жизни этого плазменного образования было около 5 мс, что было значительно больше времени разряда (0,15 мс). Из анализа спектров следовало, что основу плазмы составляют Ti, Fe (наблюдаются даже самые слабые линии), Cu, Zn, Cr, Ni, Ca, Na .

В 90-х-2000-х Крымским В.В. проведены исследования воздействия наносекундных электромагнитных импульсов (НЭМИ) на физические и химические свойства веществ .

2003г - выход монографии «Взаимопревращения химических элементов» Крымского В.В. с соавторами под редакцией академика Балакирева В. Ф. с описанием процессов и установок трансмутации элементов.

В 2006-2007 Italian Ministry of Economic Development основал программу по исследованию получения энергии порядка 500%.

В 2008г. Арата на глазах у изумленной публики продемонстрировал выделение энергии и образование гелия, не предусмотренные известными законами физики .

В 2003-2010гг Шадриным Владимиром Николаевичем. (1948-2012) на Сибирском Химическом Комбинате осуществлена индуцированная трансмутация бета-активных изотопов, представляющих наибольшую опасность в радиоактивных отходах, содержащихся в отработанных твэлах. Получен эффект ускоренного уменьшения бета-активности исследуемых радиоактивных образцов.

В 2012-2013 годах группа Ю.Н.Бажутова получила 7-ми кратное превышение выходной мощности при плазменном электролизе.

В ноябре 2011г А.Росси продемонстрировал 10 кВт аппарат E-Cat, в 2012г - 1 МВт установку, в 2013г проведено тестирование его аппарата группой независимых экспертов.

Классификация LENR установок

Известные на сегодняшний день установки и эффекты с LENR можно классифицировать в соответствии с рис. 5.




Рис. 5 Классификация LENR установок


Кратко о ситуации с каждой установкой можно сказать следующее:

Установка E-Cat Росси - проведена демонстрация, изготовлен серийный экземпляр, проведена краткая независимая экспертиза установки с подтверждением характеристик, далее 6-месячный тест, существует проблема получения патента и сертификата.

Наводораживание титана осуществляется С.А.Цветковым в Германии (в стадии получения патента и поиска инвестора в Баварии) и А.П.Хрищановичем сначала в Запорожье, а в настоящее время в Москве в компании NEWINFLOW.

Насыщение кристаллической решётки палладия дейтерием (Арата)- новыми данными с 2008 года авторы не обладают.

Установка ТЭГЭУ И.С.Филимоненко - в разобранном виде (И.С. Филимоненко умер 26.08.2013г).

Установка Hyperion (Дефкалион) - совместный с университетом PURDUE (Индиана) доклад на ICCF-18 с описанием эксперимента и попыткой теоретического обоснования.

Установка Пиантелли - 18 апреля 2012 года на 10-м Международном семинаре по аномальному растворению водорода в металлах доложены результаты опыта с Никель-водородными реакциями. При затратах в 20W, было получено 71W на выходе.

Установка компании Brillion Energy Corporation в Беркли, Калифорния - Демонстрационная установка (ватты) изготовлена и продемонстрирована. Компания официально заявила, что разработала промышленный нагреватель на базе LENR и передала на испытания в один из университетов.

Установка Миллса на базе гидрино - израсходовано около $500 млн. от частных инвесторов, издана многотомная монография с теоретическим обоснованием, запатентовано изобретение нового источника энергии, основанного на превращении водорода в гидрино.

Установка «АТАНОР» (Италия) - открыт «open source» проект (свободных знаний) LENR "hydrobetatron.org" на базе установки Атанор (аналог проекта Мартина Флейшмана).

Установка Celani из Италии - демонстрация на всех последних конференциях.

Дейтериевый теплогенератор Киркинского - разобран (понадобилось помещение)

Насыщение дейтерием вольфрамовых бронз (К.А.Калиев) - получено официальное экспертное заключение о регистрации нейтронов при насыщении пленок из вольфрамовых бронз в Объединенном институте ядерных исследований в г. Дубна и патент в России. Сам автор умер несколько лет назад.

Тлеющий разряд А.Б.Карабута и И.Б.Савватимовой - эксперименты в НПО «Луч» остановлены, однако подобные исследования разворачиваются за рубежом. Пока опережение Российских ученых сохраняется, но наши исследователи перенацелены руководством на более приземленные задачи.

Колдамасов (г. Волгодонск) ослеп и отошел от дел. Исследования его кавитационного эффекта проводит в Киеве В.И.Высоцкий.

Группа Л.И.Уруцкоева перебралась в Абхазию.

По некоторым сведениям Крымский В.В. проводит исследования трансмутации РАО воздействием нано секундных высовокольтных импульсов.

Генератор искусственных плазмоидных образований (ИПО) В.Копейкина сгорел и средств на восстановление не предвидится. Трехконтурный генератор Теслы, собранный стараниями В.Копейкина для демонстрации искусственных шаровых молний, в работоспособном состоянии, но нет помещения с потребным энергообеспечением в 100 кВт.

Группа Ю.Н.Бажутова продолжает эксперименты на собственные ограниченные средства. Ф.М.Канарев уволен из Краснодарского Аграрного университета.

Высоковольтная электролизная установка А.Б.Карабута только в проекте.

Генератор Б.В. Болотова пытаются реализовать в Польше.

По некоторым данным группа Климова в NEWINFLOW (г. Москва) получила 6-ти кратное превышение выходной мощности над затратами на своей плазмо-вихревой установке.

Последние события (эксперименты, семинары, конференции)

Борьба комиссии по лже-науке с холодным ядерным синтезом дала свои плоды. Более 20-ти лет были под запретом официальные работы по теме LENR и ХЯС в лабораториях РАН, а реферируемые журналы не принимали статьи по этой теме. Однако, «лед тронулся, господа, присяжные заседатели»», и в реферируемых журналах появились статьи, описывающие результаты низкоэнергетических ядерных реакций.

В последнее время некоторым российским исследователям удалось получить интересные результаты, которые опубликованы в реферируемых журналах. Например, группа из ФИАНа провела эксперимент с высоковольтными разрядами в воздухе. В эксперименте достигалось напряжение 1 МВ, ток в воздухе 10-15 кА, энергия 60 кДж. Расстояние между электродами - 1 м. Измерялись тепловые, быстрые нейтроны и нейтроны с энергией > 10МэВ. Тепловые нейтроны измерялись по реакции 10 B + n = 7 Li (0.8 MeV)+ 4 He (2 MeV) и измерялись треки α-частиц диаметром 10-12 мкм. Нейтроны с энергией > 10МэВ измерялись по реакции 12 C + n = 3 α+n’ Одновременно нейтроны и рентген измерялись сцинтилляционным детектором 15 х15 cm 2 и толщиной 5.5 cm. Здесь нейтроны всегда фиксировались вместе с рентгеновским излучением (см. рис. 6).

В разрядах напряжением 1 МВ и током 10-15кА наблюдался значительный поток нейтронов от тепловых до быстрых. В настоящее время удовлетворительного объяснения происхождения нейтронов, особенно с энергиями больше 10 МэВ нет .


Рис. 6 Результаты исследования высоковольтных разрядов в воздухе. (а) поток нейтронов, (б) осциллограммы напряжения, силы тока, рентгеновского излучения и нейтронов.

В Объединенном институте ядерных исследований ОИЯИ (г. Дубна) прошел семинар по теме: «Правы ли те, кто считает науку о холодном ядерном синтезе лженаукой?»

Доклад представил Игнатович Владимир Казимирович, д.ф-м.н., г.н.с. Лаборатории Нейтронной Физики ОИЯИ. Доклад с обсуждениями длился около полутора часов. В основном докладчиком был сделан исторический обзор наиболее ярких работ на тему низкоэнергетических ядерных реакций (LENR) и даны результаты проверок установки А. Росси независимыми экспертами . Одной из целей доклада была попытка привлечь внимание научных сотрудников и коллег к проблеме LENR и показать, что необходимо начинать исследования по этой теме в Лаборатории Нейтронной Физики ОИЯИ.

В июле 2013 года в Миссури (США) прошла международная конференция по холодному синтезу ICCF-18. С презентациями 43-х докладов можно ознакомиться, они в свободном доступе, а ссылки выложены на сайте ассоциации Холодной Трансмутации Ядер и Шаровой Молнии (ХТЯ и ШМ) www. lenr . seplm.ru в разделе «Конференции». Основной лейтмотив выступающих: сомнений не осталось, LENR существует и требуется планомерное исследование открытых и неизвестных доселе науке физических явлений.

В октябре 2013 года в Лоо (Сочи) прошла Российская конференция Холодной Трансмутации Ядер и Шаровой Молнии (РКХТЯиШМ). Половина заявленных докладов не была представлена из-за отсутствия докладчиков по разным причинам: смерть, болезни, нехватка финансовых средств. Стремительное старение и отсутствие «свежей крови» (молодых исследователей) рано или поздно приведут к полному упадку исследований по этой теме в России.

«Странное» излучение

Практически все исследователи холодного ядерного синтеза получали на мишенях очень странные треки, которые нельзя идентифицировать ни с одной известной частицей. В то же время, эти треки (см. рис. 7) поразительно походят друг на друга в качественно различных экспериментах, из чего можно сделать вывод, что их природа может быть единой.




Рис. 7 Треки от «странного» излучения (С.В.Адаменко и Д.С.Баранов)

Каждый исследователь называет их по-разному:
«Странное» излучение;
Эрзион (Ю.Н.Бажутов);
Нейтроний и динейтроний (Ю.Л.Ратис);
Шаровые микро молнии (В.Т.Гринев);
Сверхтяжелые элементы с массовым числом более 1000 единиц (С.В.Адаменко);
Изомеры - кластеры атомов плотной упаковки (Д.С.Баранов);
Магнитные монополи;
Частицы темной материи в 100-1000 раз тяжелее протона (предсказаны академиком В.А.Рубаковым ),

Необходимо отметить, что неизвестен механизм воздействия этого «странного» излучения на биологические объекты. Никто этим не занимался, но фактов непонятных смертей много. И.С. Филимоненко считает, что его спасло только увольнение и прекращение опытов, все его коллеги по работе умерли гораздо раньше него. А.В. Вачаев сильно болел, к концу жизни практически не вставал и умер в возрасте 60 лет. Из 6 человек, занимающихся плазменным электролизом, умерло пять человек, а один остался инвалидом. Есть данные, что рабочие гальванических цехов не доживают и до 44 лет, но никто не исследовал отдельно, какую роль в этом играет химия, и есть ли воздействие от «странного» излучения в этом процессе. Процессы воздействия «странного» излучения на биообъекты пока не изучены и исследователи должны проявлять крайнюю осторожность при проведении экспериментов.

Теоретические разработки

Около ста теоретиков пытались описать процессы в LENR, но ни одна работа не получила всеобщего признания. В России известны теория Эрзиона Ю.Н.Бажутова, бессменного председателя ежегодных российских конференций по холодной трансмутации ядер и шаровой молнии, теория экзотических электрослабых процессов Ю.Л.Ратиса, теория Киркинского-Новикова, теория кристаллизации плазмы В.Т.Гринева и многих других.

В теории Ю.Л.Ратиса предположено, что существует некий «экзоатом «нейтроний», который представляет собой чрезвычайно узкий низколежащий резонанс в сечении упругого электрон-протонного рассеяния, обусловленный слабым взаимодействием, вызывающим переход начального состояния системы «электрон плюс протон» в виртуальную нейтрон-нейтринную пару. Из-за малой ширины и амплитуды этот резонанс невозможно обнаружить в прямом эксперименте по ep - рассеянию. Наличие третьей частицы при столкновении электрона с атомом водорода приводит к тому, что функция Грина атома водорода в возбужденном промежуточном состоянии входит в выражение для сечения рождения «нейтрония» под знаком интеграла. В результате ширина резонанса в сечении рождения нейтрония при столкновении электрона с атомом водорода на 14 порядков больше ширины аналогичного резонанса в упругом ep - рассеянии, и его свойства можно исследовать в эксперименте. Дана оценка размеров, времени жизни, энергетического порога и сечения рождения нейтрония. Показано, что порог рождения нейтрония лежит значительно ниже порога термоядерных реакций. Это означает, что нейтроноподобные ядерно-активные частицы могут рождаться в области сверхнизких энергий, и, следовательно, вызывать ядерные реакции, аналогичные реакциям, вызываемым нейтронами, именно тогда, когда ядерные реакции с заряженными частицами запрещены высоким кулоновским барьером» .

Место LENR установок в общем энергопроизводстве

В соответствии с концепцией в будущей энергосистеме основными источниками электрической и тепловой энергии будет множество распределенных по сети точек небольшой мощности, что в корне противоречит существующей парадигме в атомной отрасли наращивать единичную мощность энергоблока для снижения удельной стоимости капвложений. В этом отношении LENR установка очень гибка и это продемонстрировал А. Росси, когда в стандартный контейнер поместил более сотни своих 10 кВт установок для получения 1 МВт мощности. Успех А. Росси по сравнению с другими исследователями основывается на инженерном подходе создания коммерческого продукта 10 кВт масштаба, в то время, как другие исследователи продолжают «удивлять мир» эффектами на уровне нескольких Вт.

Исходя из концепции можно сформулировать следующие требования к новым технологиям и источникам энергии со стороны будущих потребителей:

Безопасность, отсутствие излучения;
Безотходность, отсутствие РАО;
Эффективность цикла;
Легкая утилизация;
Приближенность к потребителю;
Масштабируемость и встраиваемость в SMART-сети.

Сможет ли традиционная атомная энергетика на (U,Pu,Th) цикле удовлетворить этим требованиям? Нет, если учесть ее недостатки:

Требуемая безопасность недостижима или приводит к потере конкурентоспособности;

«Вериги» ОЯТ и РАО тянут в зону неконкурентоспособности, технология переработки ОЯТ и хранения РАО несовершенна и требует невосполнимых затрат на сегодня;

Эффективность использования топлива не более 1%, переход на быстрые реакторы увеличит этот коэффициент, но приведет к еще большему удорожанию цикла и потере конкурентоспособности;

Кпд термического цикла оставляет желать лучшего и почти в 2 раза ниже кпд парогазовых установок (ПГУ);

«сланцевая» революция может привести к снижению цен на газ на мировых рынках и надолго переместить АЭС в зону неконкурентоспособности;

Вывод АЭС из эксплуатации неоправданно дорог и требует длительной выдержки перед процессом демонтажа АЭС (необходимы дополнительные затраты на содержание объекта в процессе выдержки до демонтажа оборудования АЭС).

В то же время, учитывая вышесказанное, можно сделать вывод, что установки на базе LENR удовлетворяют современным требованиям практически по всем позициям и рано или поздно вытеснят с рынка традиционные АЭС, так как более конкурентоспособны и безопасны. В выигрыше будет тот, кто раньше выйдет на рынок с коммерческими LENR аппаратами.

Анатолий Чубайс вошел в состав совета директоров американской исследовательской компании «Tri Alpha Energy Inc.», пытающейся создать установку ядерного синтеза на базе реакции 11 В с протоном. Финансовые магнаты уже «чувствуют» будущие перспективы ядерного синтеза.

«Lockheed Martin вызвала настоящий переполох в атомной энергетике (правда не у нас в стране, так как отрасль остается в «святом неведении»), когда объявила о планах начать работу над термоядерным реактором. Выступая на конференции Google "Solve X” 7 февраля 2013 года, доктор Чарльз Чейз из Локхид "Skunk Works", сказал, что прототип 100-мегаваттного ядерного реактора синтеза будет испытан в 2017 году, и что в полном объеме установка должна быть включена в сеть через десять лет»
(http://americansecurityproject.org/blog/2013/lockheed-martin... on-reactor/). Очень оптимистичное заявление для инновационной технологии, можно сказать для нас фантастическое, если учесть, что у нас в стране за такой срок строится энергоблок проекта 1979 года. Однако существует общественное мнение, что Lockheed Martin, как правило, не делает публичных заявлений о «Skunk Works» проектах, если не имеется высокой степени уверенности в своих шансах на успех .

Пока еще никто не догадывается, какой «камень за пазухой» держат американцы, придумавшие технологию добычи сланцевого газа. Эта технология работоспособна только в геологических условиях Северной Америки и совершенно не подходит для Европы и территории России, так как грозит заражением вредными веществами водных пластов и полным уничтожением питьевых ресурсов. С помощью «сланцевой революции» американцы выигрывают главный ресурс современности - время. «Сланцевая революция» дает им передышку и время для постепенного перевода экономики на новые энергетические рельсы, где ядерный синтез будет играть определяющую роль, а все опоздавшие другие страны останутся на задворках цивилизации.

Ассоциация «Американский проект безопасности» (AMERICAN SECURITY PROJECT -ASP) (http://americansecurityproject.org/) выпустила документ «White paper» под многообещающим названием «Энергия синтеза - 10-летний план по энергетической безопасности» . В предисловии авторы пишут, что энергетическая безопасность Америки (США) основана на реакции синтеза: « Мы должны развивать энергетические технологии, которые позволят экономике продемонстрировать мощь Америки для технологий следующего поколения, которые также являются чистыми, безопасными, надежными и неограниченными. Одна технология открывает большие перспективы в удовлетворении наших потребностей - это энергия синтеза. Речь идет о национальной безопасности, когда в течение 10 лет необходимо продемонстрировать прототипы коммерческих установок на реакции синтеза. Это подготовит почву для полномасштабного коммерческого освоения мощностей, которые будут стимулировать Американское процветание в течение следующего столетия. Пока еще слишком рано говорить, какой подход является наиболее перспективным путем реализации энергии синтеза, но наличие нескольких подходов повышает вероятность успеха».

В процессе своих исследований Ассоциация «Американский проект безопасности» (ASP) обнаружила, что в США промышленность энергии синтеза поддерживают более 3600 предприятий и поставщиков, в дополнение к 93 научно-исследовательским учреждениям, которые расположены в 47 из 50 штатов. Авторы полагают, что для США достаточно $30 млрд. в ближайшие 10 лет для демонстрации практической применимости энергии ядерного синтеза в промышленности.

Для ускорения процесса разработки коммерческих установок ядерного синтеза авторы предлагают следующие мероприятия:

1. Назначить комиссара по энергии ядерного синтеза для упорядочивания руководства исследованиями.

2. Начать строительство экспериментальных установок исследования отдельных компонентов ("Component Test Facility"-CTF) для ускорения прогресса в материалах и научных знаниях.

3. Проводить исследования энергии синтеза несколькими параллельными путями.

4. Уделять больше ресурсов для существующих объектов исследования энергии синтеза.

5. Экспериментировать с новыми и инновационными проектами электростанций

6. В полной мере сотрудничать с частным сектором

Это некая стратегическая программа действий, сродни «манхэттенскому проекту», ведь по масштабам и сложности ее решения эти задачи сопоставимы. По их мнению, инерция государственных программ и несовершенство регулирующих норм в области ядерного синтеза может существенно отдалить дату промышленного внедрения энергии ядерного синтеза. Поэтому они предлагают наделить комиссара по энергии синтеза правом голоса на самых высоких уровнях власти и вменить в его функции координацию всех исследований и создание системы регулирования (норм и правил) ядерного синтеза.

Авторы констатируют, что технология международного термоядерного реактора ITER в Кадараше (Франция) не может гарантировать коммерциализацию ранее середины века, а инерциальный термоядерный синтез не ранее, чем через 10 лет. Из этого они делают вывод, что нынешняя ситуация является неприемлемой и существует угроза национальной безопасности со стороны развивающихся направлений чистой энергии. «Наша энергетическая зависимость от ископаемого топлива представляет риск для национальной безопасности, ограничивает нашу внешнюю политику, способствует угрозе изменения климата и подтачивает нашу экономику. Америка должна развивать энергию синтеза в ускоренные сроки.»

Они утверждают, что настало время повторить программу «Апполон», но в сфере ядерного синтеза. Как когда-то фантастическая задача высадки человека на Луну дала толчок тысячам инноваций и научных достижений, так и сейчас необходимо напрячь национальные силы для достижения цели коммерческого использования энергии ядерного синтеза.

Для коммерческого использования самоподдерживающейся ядерной реакции синтеза материалы должны выдерживать месяцы и годы, а не секунды и минуты, как в настоящее время предусмотрено в ITER.

Альтернативные направления авторы оценивают, как высоко рисковые, но тут же отмечают, что в них и возможны значительные технологические прорывы, и финансироваться они должны обязательно наравне с основными направлениями исследований.

В заключении они перечисляют, по меньшей мере, 10 монументальных выгод для США от программы «Апполон» в области энергии синтеза:

«1. Чистый источник энергии, который произведет революцию в энергетической системе в эпоху, когда запасы ископаемого топлива уменьшаются.
2. Новые источники для базовой энергетики, которая может решить климатический кризис в приемлемые сроки, чтобы избежать наихудших последствий изменения климата.
3. Создание высокотехнологичных отраслей, которые принесут огромные новые источники доходов для ведущих американских промышленных предприятий, тысячи новых рабочих мест.
4. Создание экспортируемых технологий, которые позволят Америке захватить часть из $ 37 трлн. инвестиций в энергетику в ближайшие десятилетия.
5. Побочные инновации в высокотехнологичных отраслях, таких как робототехника, суперкомпьютеры и сверхпроводящие материалы.
6. Американское лидерство в освоение новых научных и инженерных границ. В других странах (например, Китай, Россия и Южная Корея) имеются амбициозные планы по развитию термоядерной энергетики. Будучи первопроходцем в этой развивающейся области США повысят конкурентоспособность американской продукции.
7. Свобода от ископаемого топлива, что позволит США проводить внешнюю политику в соответствии со своими ценностями и интересами, а не в соответствии с ценами на сырьевые товары.
8. Стимул для молодых американцев к получению научного образования.
9. Новый источник энергии, который обеспечит экономическую жизнеспособность Америки и глобальное лидерство в 21-м веке, так же, как огромные ресурсы Америки помогли нам в 20-м.
10. Возможность, наконец, исключить зависимость экономического роста от источников энергии, что принесет экономическое процветание.»

В заключении авторы пишут, что в ближайшие десятилетия Америка столкнется с энергетическими проблемами, так как часть мощностей на АЭС будет выведена из эксплуатации и зависимость от ископаемого топлива только увеличится. Выход они видят только в полномасштабной программе исследований ядерного синтеза, аналогичной по масштабам целей и национальных усилий космической программе «Апполон».

Программа LENR исследований

В 2013 году в штате Миссури открыт Институт ядерного возрождения (Sidney Kimmel Institute for Nuclear Renaissance (SKINR)), нацеленный целиком на исследования низкоэнергетических ядерных реакций. Программа исследований института, представленная на последней июльской 2013г конференции по холодному синтезу ICCF-18:

Газовые реакторы:
-Celani репликации
-Высоко-температурный реактор / калориметр
Электрохимические ячейки:
Разработка катодов (много вариантов)
Самособирающиеся катоды из наночастиц Pd
Покрытые Pd катоды из углеродных нанотрубок
Искусственно-структурированные катоды из Pd
Новые составы сплавов
Легирующие добавки для нанопористых Pd электродов
Магнитные поля-
Локальная ультразвуковая поверхностная стимуляция
Тлеющий разряд
Кинетика проникновения Водорода
Детектирование радиации

Соответствующие исследования
Нейтронное рассеяние
МэВ и кэВ бомбардировки D на Pd
Тепловой удар TiD2
Термодинамика поглощения Водорода при высоком давлении / температуре
Детекторы излучения алмазные
Теория
Можно предложить следующие возможные предпочтения исследований низкоэнергетических ядерных реакций в России:
Возобновить через полвека исследования группы И.В.Курчатова по разрядам в водородной и дейтериевой среде, тем более, что уже проводятся исследования по высоковольтным разрядам в воздухе .
Восстановить установку И.С.Филимоненко и провести комплексные испытания.
Развернуть исследования установки «Энергонива» А.В.Вачаева.
Разгадать загадку А.Росси (наводораживание никеля и титана).
Исследовать процессы плазменного электролиза.
Исследовать процессы вихревого плазмоида Климова.
Изучить отдельные физические явления:
Поведение водорода и дейтерия в решетках металлов (Pd, Ni, Ti и т.д.);
Плазмоиды и долгоживущие искусственные плазменные образования (ИПО);
Зарядовые кластеры Шоулдерса;
Процессы в установке «Плазменный фокус»;
Ультразвуковая инициация кавитационных процессов, сонолюминисценция.
Развернуть теоретические исследования, поиск адекватной математической модели LENR.

В свое время в национальной лаборатории Айдахо в 1950-х и 1960-х годах 45 объектов малых тестовых установок заложили основу для полномасштабной коммерциализации ядерной энергетики. Без подобного подхода трудно рассчитывать на успех и в коммерциализации LENR установок. Необходимо создавать подобные Айдахо тестовые установки, как базис будущей энергетики на LENR. Американские аналитики предложили строительство малых экспериментальных установок CTF, исследующих ключевые материалы в экстремальных условиях. Исследования в CTF повысит понимание материаловедения и может привести к технологическим прорывам.

Неограниченность финансирования Минсредмаша в эпоху СССР создала завышенные людские и инфраструктурные ресурсы, целые моногорода, в результате имеется проблема их загрузки задачами и маневра людскими ресурсами в моногородах. Монстр Росатома не прокормит только сфера электричества (АЭС), необходима диверсификация деятельности, освоение новых рынков и технологий, в противном случае, последуют сокращения, безработица, а с ними социальная напряженность и неустойчивость.

Громадные инфраструктурные и интеллектуальные ресурсы атомной отрасли либо бездействуют - нет всепоглощающей идеи, либо выполняют частные мелкие задачи. Полноценная программа исследований LENR может стать стержнем будущих исследований отрасли и источником загрузки всех существующих ресурсов.

Заключение

Факты наличия низкоэнергетических ядерных реакций уже нельзя отметать, как раньше. Они требуют серьезной проверки, строгого научного доказательства, полномасштабной программы исследований и теоретического обоснования.

Невозможно точно предсказать, какое направление в исследованиях ядерного синтеза «выстрелит» первым или будет определяющим в будущей энергетике: низкоэнергетические ядерные реакции ,, установка Lockheed Martin , установка с обращенным полем компании Tri Alpha Energy Inc., плотный плазменный фокус компании Lawrenceville Plasma Physics Inc или электростатическое удержание плазмы компании Energy Matter Conversion Corporation (EMC 2). Но можно уверенно утверждать, что залогом успеха может быть только разнообразие направлений исследования ядерного синтеза и трансмутации ядер. Концентрация ресурсов только на одном направлении может привести в тупик. Мир в 21 веке изменился коренным образом, и если конец 20 века характеризуется бумом информационных и коммуникационных технологий, то 21 век будет веком революции в энергетической сфере, и с проектами ядерных реакторов прошлого века там делать нечего, если, конечно, не ассоциировать себя с отсталыми племенами третьего мира.

В стране нет национальной идеи в области научных исследований, нет стержня, на котором бы держались наука и исследования. Идея управляемого термоядерного синтеза на базе концепции Токамак при громадных финансовых вливаниях и нулевой отдаче дискредитировала не только себя, но и саму идею ядерного синтеза, поколебала веру в светлое энергетическое будущее и служит тормозом для альтернативных исследований. Многие аналитики в США предрекают революцию в этой области и задача лиц, определяющих стратегию развития отрасли, не «проморгать» эту революцию, как уже проморгали «сланцевую».

Стране нужен инновационный проект, аналогичный программе «Апполон», но в энергетической сфере, некий «Атомный проект-2» (не путать с проектом «Прорыв»), который позволит мобилизовать инновационный потенциал страны. Полноценная программа исследований в области низкоэнергетических ядерных реакций позволит решить проблемы традиционной ядерной энергетики, сойти с «нефтегазовой» иглы и обеспечить независимость от энергетики ископаемого топлива.

«Атомный проект - 2» позволит на основе научных и инженерных решений:
Разработать источники «чистой» и безопасной энергии;
Разработать технологию промышленного экономически выгодного получения требуемых элементов в форме нанопорошков из различного сырья, водных растворов, отходов промышленного производства и жизнедеятельности человека;
Разработать экономически выгодные и безопасные электрогенерирующие устройства прямого получения электроэнергии;
Разработать безопасные технологии трансмутации долгоживущих изотопов в стабильные элементы и решить проблему утилизации радиоактивных отходов, то есть решить проблемы существующей ядерной энергетики.

источник proatom.ru/modules.php?name=News&file=article&...

В Университете Осаки состоялся необычный публичный эксперимент. В присутствии 60 гостей, среди которых были журналисты шести японских газет и двух ведущих телеканалов, группа японских физиков под руководством профессора Ёсиаки Араты продемонстрировали реакцию холодного термоядерного синтеза.

Эксперимент был не из простых и мало чем напоминал сенсационную работу физиков Мартина Флейшмана и Стенли Понса 1989 года, в результате которой они с помощью почти обычного электролиза умудрились, по их заявлению, соединить атомы водорода и дейтерия (изотоп водорода с атомным числом 2) в один атом трития. Правду они сказали тогда или ошиблись, теперь уже выяснить невозможно, но многочисленные попытки получить холодный термояд таким же образом в других лабораториях не увенчались успехом, и эксперимент был дезавуирован.

Так началась в чем-то драматическая, а в чем-то и трагикомическая жизнь холодного термояда. С самого начала над ней дамокловым мечом висело одно из самых серьезных обвинений в науке – неповторяемость эксперимента. Это направление называли маргинальной наукой, даже «патологической», но, несмотря ни на что, оно не умирало. Все это время с риском для собственной научной карьеры холодный термояд пытались получить не только «маргиналы» – изобретатели вечных двигателей и прочие восторженные невежды, но и вполне серьезные ученые. Но – неповторяемость! Вот что-то там такое пошло, датчики зафиксировали эффект, но его никому не предъявишь, потому что уже в следующем эксперименте никакого эффекта нет. А даже если и есть, то в другой лаборатории он, в точности повторенный, не воспроизводится.

Скепсис научного сообщества сами колдфьюзионисты (производное от cold fusion – холодный синтез) объясняли, в частности, непониманием. Один из них рассказывал корреспонденту «НГ»: «Каждый ученый хорошо разбирается только в своей узкой области. Он следит за всеми публикациями по теме, знает цену каждому коллеге по направлению, а если он хочет определить свое отношение к тому, что находится за пределами этого направления, то идет к признанному эксперту и, не особо вникая, принимает его мнение за истину в последней инстанции. Ему ведь некогда разбираться в деталях, у него есть собственная работа. А сегодняшние признанные эксперты к холодному термояду относятся отрицательно».

Так это или не так, но факт оставался фактом – холодный термояд проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. Многие уставали и уходили, на их место приходили немногие – ни денег, ни славы, а взамен – перспектива стать отверженным, получить клеймо «маргинального ученого».

Потом, несколько лет спустя, кажется, поняли, в чем дело – в неустойчивости свойств образца палладия, применяемого в экспериментах. Одни образцы давали эффект, другие категорически отказывались, а те, что давали, в любой момент могли передумать.

Похоже, сейчас, после майского публичного эксперимента в Университете Осаки, период неповторяемости заканчивается. Японцы утверждают, что им удалось с этой напастью справиться.

«Они создали особые структуры, наночастицы, – объяснил корреспонденту «НГ» Андрей Липсон, ведущий научный сотрудник Институт химии и электрохимии РАН, – специально подготовленные кластеры, состоящие из нескольких сотен атомов палладия. Главная особенность этих нанокластеров состоит в том, что они имеют внутри пустоты, в которые можно закачивать атомы дейтерия до очень высокой концентрации. И когда эта концентрация превысит определенный предел, дейтоны сближаются друг с другом настолько, что могут сливаться, и начинается термоядерная реакция. Там совсем другая физика, чем, скажем, в ТОКАМАКах. Термоядерная реакция идет там сразу по нескольким каналам, основной из них – слияние двух дейтонов в атом лития-4 с выделением тепла».

Когда Ёсиака Арата стал добавлять дейтериевый газ к смеси, содержащей упомянутые наночастицы, ее температура поднялась до 70 градусов по Цельсию. После того как газ был отключен, температура в ячейке оставалась повышенной больше 50 часов, причем выделяемая энергия превысила затраченную. По мнению Араты, это можно объяснить только ядерным синтезом.

Конечно, с первой фазой жизни холодного термояда – неповторяемостью – эксперимент Араты далеко не покончил. Для того чтобы его результаты были признаны научным сообществом, необходимо, чтобы он с тем же успехом был повторен сразу в нескольких лабораториях. А поскольку тема очень специфическая, с намеком на маргинальность, похоже, что и этого будет мало. Возможно, что и после этого холодному термояду (если он все-таки существует) долго придется ждать полного признания, как это, например, происходит с историей вокруг так называемого пузырькового термояда, полученного Рузи Талейарханом из Окриджской национальной лаборатории.

«НГ-наука» уже рассказывала об этом скандале. Талейархан утверждал, что получил термояд, пропуская звуковые волны через сосуд с тяжелым ацетоном. При этом в жидкости образовывались и взрывались пузырьки, выделяя энергию, достаточную для осуществления термоядерного синтеза. Поначалу эксперимент независимо повторить не удалось, Талейархана обвинили в фальсификации. Он в ответ напал на оппонентов, обвиняя их в том, что у них плохие приборы. Но в конце концов в феврале прошлого года эксперимент, проведенный независимо в Университете Пердью, подтвердил результаты Талейархана и восстановил репутацию физика. С тех пор – полное молчание. Ни признаний, ни обвинений.

Холодным термоядом эффект Талейархана можно назвать только с очень большой натяжкой. «На самом деле это горячий термояд, – подчеркивает Андрей Липсон. – Там работают энергии в тысячи электронвольт, а в экспериментах с холодным термоядом эти энергии оцениваются долями электронвольта». Но, думается, эта энергетическая разница не очень-то повлияет на отношение научного сообщества, и даже если японский эксперимент будет успешно повторен в других лабораториях, колдфьюзионистам еще очень долго придется ожидать полного признания.

Впрочем, многие из тех, кто занимается холодным термоядом несмотря ни на что, полны оптимизма. Еще в 2003 году Митчелл Шварц, физик из Массачусетского технологического института, заявил на одной из конференций: «Мы занимаемся этими экспериментами так долго, что вопрос стоит уже не в том, можем ли мы получить с помощью холодного термояда дополнительное тепло, а в том, можем ли мы получать его киловаттами».

Действительно, киловаттами пока не получается, и конкуренции мощным термоядерным проектам, в частности многомиллиардному проекту международного реактора ИТЕР, холодный термояд пока даже в перспективе не представляет. По оценкам американцев, их исследователям понадобится от 50 до 100 млн. долл. и 20 лет на проверку жизнеспособности эффекта и возможностей его коммерческого использования.

В России о подобных суммах на такие исследования даже и мечтать не приходится. Да и мечтать-то, похоже, почти некому.

«Здесь никто этим не занимается, – говорит Липсон. – Для этих экспериментов требуется специальная аппаратура, специальное финансирование. Но официальных грантов мы на такие эксперименты не получаем, а если и занимаемся ими, то факультативно, параллельно с основной работой, за которую мы получаем зарплату. Так что в России идет только «повторение задов».

Условием для обычной термоядерной реакции являются очень высокаятемпература и давление.

В прошлом столетии было высказано желание осуществлять холодную термоядерную реакцию при комнатной температуре и обычном атмосферном давлении. Но всё же, несмотря на многочисленные исследования в данной отрасли, в реальности осуществить подобную реакцию до сих пор не получалось. Более того, многие учёные и эксперты саму идею признали ошибочной.

Методику осуществления так называемой реакции холодного термоядерного синтеза удалось разработать американским учёным. Об это говорится в немецком авторитетном журнале Naturwissenschaften, где была опубликована статья, в которой описывается способ осуществления ядерной реакции низкой энергии.

Исследования проводились под руководством Памелы Мосер-Босс и Александра Шпака из Центра космических и морских военных систем в штате Сан-Диего.

В ходе исследовний воздействию магнитных и электрических полей подвергался тонкий провод, покрытый тонким слоем палладия.

Для обнаружения заряжённых частиц, появлявшихся в результате подобного опыта, использовались детекторы из пластиковой плёнки.

В ближайшее время результаты исследований американских специалистов должны быть проверены независимыми экспертами.

Холодный термоядерный синтез известен как одна из крупнейших научных мистификаций XX века. Долгое время большинство физиков отказывались обсуждать даже саму возможность подобной реакции. Однако недавно два итальянских ученых представили публике установку, которая, по их словам, легко его осуществляет. Неужели этот синтез все-таки возможен?

В начале нынешнего года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H 2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия — это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен — уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным — на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Именно поэтому многие ученые на протяжении всего XX века пытались осуществить термоядерную реакцию синтеза при низких температурах и обычном давлении, то есть тот самый холодный термояд. Первое сообщение о том, что это возможно, появилось 23 марта 1989 года, когда профессор Мартин Флейшман и его коллега Стенли Понс провели в своем Университете штата Юта пресс-конференцию, где сообщили о том, как они путем почти обычного пропускания тока через электролит получили положительный энергетический выход в виде тепла и зафиксировали идущее от электролита гамма-излучение. То есть провели реакцию холодного термоядерного синтеза.

В июне того же года ученые послали статью с результатами эксперимента в Nature, однако вскоре вокруг их открытия разгорелся настоящий скандал. Дело в том, что исследователи из ведущих научных центров США, Калифорнийского и Массачусетского технологических институтов, в деталях повторили этот эксперимент и подобного не обнаружили. Правда потом последовали два подтверждения, сделанные учеными из Техасского университета "Эй энд Эм" и Института технологических исследований штата Джорджия. Однако и с ними тоже получился конфуз.

При постановке контрольных экспериментов выяснилось, что электрохимики из Техаса неправильно истолковали результаты опыта — в их эксперименте повышенное выделение тепла было вызвано электролизом воды, поскольку термометр служил в качестве второго электрода (катода)! В Джорджии же нейтронные счетчики оказались настолько чувствительными, что реагировали на тепло поднесенной руки. Именно так и был зарегистрирован "выброс нейтронов", который исследователи сочли результатом реакции термоядерного синтеза.

В результате всего этого многие физики преисполнились уверенностью в том, что никакого холодного термояда нет и не может быть, а Флейшман и Понс просто-напросто смошенничали. Тем не менее, другие (а их, к сожалению, явное меньшинство) не верят в мошенничество ученых и даже в то, что здесь была просто ошибка, и надеются, что чистый и практически неисчерпаемый источник энергии сможет быть сконструирован.

К числу последних относится и японский ученый Йосиаки Арата, который несколько лет исследовал проблему холодного термояда и в 2008 году провел в Университете Осака публичный эксперимент, показавший возможность протекания термоядерного синтеза при невысоких температурах. Он и его коллеги использовали особые структуры, состоящие из наночастиц.

Это были специально подготовленные кластеры, состоящие из нескольких сотен атомов палладия. Главная их особенность состояла в том, что они имели внутри обширные пустоты, в которые можно закачивать атомы дейтерия (изотоп водорода) до очень высокой концентрации. И когда эта концентрация превысила определенный предел, данные частицы сблизились друг с другом настолько, что начали сливаться, в результате чего запустилась настоящая термоядерная реакция. Она заключалась в слиянии двух атомов дейтерия в атом лития-4 с выделением тепла.

Доказательством этого служило то, что когда профессор Арата стал добавлять дейтериевый газ к смеси, содержащей упомянутые наночастицы, ее температура поднялась до 70 градусов по Цельсию. После того как газ был отключен, температура в ячейке оставалась повышенной больше 50 часов, причем выделяемая энергия превысила затраченную. По мнению ученого, это можно было объяснить только тем, что произошел ядерный синтез.

Правда, пока эксперимент Араты также не удалось повторить ни в одной лаборатории. Поэтому многие физики продолжают считать холодный термояд мистификацией и шарлатанством. Однако сам Арата отрицает подобные обвинения, упрекая оппонентов в том, что они не умеют работать с наночастицами, поэтому-то у них ничего и не получается.

Есть хорошая статья на эту тему в журнале "Химия и Жизнь" (№8, 2015)

АНДРЕЕВ С. Н.
ЗАПРЕТНЫЕ ПРЕВРАЩЕНИЯ ЭЛЕМЕНТОВ

В науке есть свои запретные темы, свои табу. Сегодня мало кто из ученых осмелится заниматься исследованием биополей, сверхмалых доз, структуры воды… Области сложные, мутные, трудно поддающиеся. Здесь легко потерять репутацию, прослыв лжеученым, а уж о получении гранта говорить не приходится. В науке нельзя и опасно выходить за рамки общепринятых представлений, покушаться на догмы. Но именно усилия смельчаков, готовых быть не такими, как все, порой прокладывают новые дороги в познании.
Мы не раз наблюдали, как по мере развития науки догмы начинают пошатываться и постепенно приобретают статус неполного, предварительного знания. Так, и не раз, было в биологии. Так было в физике. То же самое мы наблюдаем в химии. На наших глазах истина из учебника «состав и свойства вещества не зависят от способов его получения» рухнула под натиском нанотехнологий. Оказалось, что вещество в наноформе может кардинально изменить свойства - например, золото перестанет быть благородным металлом.
Сегодня мы можем констатировать, что есть изрядное число экспериментов, результаты которых невозможно объяснить с позиций общепринятых воззрений. И задача науки - не отмахи-ваться от них, а копать и пытаться добраться до истины. Позиция «этого не может быть, потому что не может быть никогда» удобная, конечно, но она ничего не может объяснить. Более того, непонятные, необъяснимые эксперименты могут стать предвестниками открытий в науке, как это уже случалось. Одна из таких горячих в прямом и переносном смысле тем - так называемые низкоэнергетические ядерные реакции, которые сегодня именуют LENR - Low-Energy Nuclear Reaction.
Мы попросили доктора физико-математических наук Степана Николаевича Андреева из Инсти-тута общей физики им. А. М. Прохорова РАН познакомить нас с существом проблемы и с неко-торыми научными экспериментами, выполненными в российских и западных лабораториях и опубликованными в научных журналах. Экспериментами, результаты которых мы пока объяснить не можем.

РЕАКТОР «E-СAT» АНДРЕА РОССИ

В середине октября 2014 года мировое научное сообщество было взбудоражено новостью - вышел отчет Джузеппе Леви, профессора физики Болонского университета, и соавторов о результатах тестирования реактора «E-Сat», созданного итальянским изобретателем Андреа Росси.
Напомним, что в 2011 году А. Росси представил на суд общественности установку, над которой он работал многие годы в сотрудничестве с физиком Серджо Фокарди. Реактор, названный «E-Сat» (сокращенно от английского Energy Catalizer), производил аномальное количество энергии. В течение последних четырех лет «E-Сat» тестировали разные группы исследователей, поскольку научное сообщество настаивало на независимой экспертизе.
Реактор представлял собой керамическую трубочку длиной 20 см и диаметром 2 см. Внутри реактора были расположены топливный заряд, нагревательные элементы и термопара, сигнал с которой подавался на блок управления нагревом. Питание к реактору подводили от электрической сети с напряжением 380 Вольт по трем жаропрочным проводам, которые разогревались докрасна во время работы реактора. Топливо состояло в основном из порошка никеля (90%) и алюмогидрида лития LiAlH4 (10%). При нагревании алюмогидрид лития разлагался и выделял водород, который мог поглощаться никелем и вступать с ним в экзотермическую реакцию.
Изобретатель не раскрывает, как устроен реактор. Однако известно, что внутри керамической трубки размещены топливный заряд, нагревательные элементы и термопара. Поверхность трубки ребристая, чтобы лучше отводилось тепло

В отчете сообщалось, что общее количество тепла, выделенное устройством за 32 дня непрерывной работы, составило около 6 ГДж. Элементарные оценки показывают, что энергоемкость порошка более чем в тысячу раз превышает энергоемкость, например, бензина!
В результате тщательных анализов элементного и изотопного состава эксперты надежно установили, что в отработанном топливе появились изменения в соотношениях изотопов лития и ни-келя. Если в исходном топливе содержание изотопов лития совпадало с природным: 6Li - 7,5%, 7Li - 92,5%, то в отработанном топливе содержание 6Li увеличилось до 92%, а содержание 7Li уменьшилось до 8%. Столь же сильными были искажения изотопного состава для никеля. Например, содержание изотопа никеля 62Ni в «золе» составило 99%, хотя в исходном топливе его было всего 4%. Обнаруженные изменения изотопного состава и аномально высокое тепло-выделение указывали на то, что в реакторе, возможно, протекали ядерные процессы. Однако никаких признаков повышенной радиоактивности, характерной для ядерных реакций, не было зафиксировано ни во время работы устройства, ни после его остановки.
Процессы, протекающие в реакторе, не могли быть ядерными реакциями деления, поскольку топливо состояло из стабильных веществ. Реакции синтеза ядер также исключаются, ведь с точ-ки зрения современной ядерной физики температура 1400оС ничтожно мала для преодоления сил кулоновского отталкивания ядер. Именно поэтому использование нашумевшего термина «холодный термояд» для подобного рода процессов - ошибка, которая вводит в заблуждение.
Вероятно, здесь мы сталкиваемся с проявлениями нового типа реакций, в которых происходят коллективные низкоэнергетические превращения ядер элементов, входящих в состав топлива. Оценка энергий таких реакций дает величину порядка 1-10 кэВ на нуклон, то есть они занимают промежуточное положение между «обычными» высокоэнергетическими ядерными реакциями (энергии более 1 МэВ на нуклон) и химическими реакциями (энергии порядка 1 эВ на атом).
Пока что никто не может удовлетворительно объяснить описанный феномен, а гипотезы, выдвигаемые множеством авторов, не выдерживают критики. Чтобы установить физические механизмы нового явления, необходимо тщательно изучить возможные проявления подобных низко-энергетических ядерных реакций в различных экспериментальных постановках и обобщить по-лученные данные. Тем более что подобных необъясненных фактов за многие годы накопилось весомое количество. Вот лишь некоторые из них.

ЭЛЕКТРОВЗРЫВ ВОЛЬФРАМОВОЙ ПРОВОЛОЧКИ – НАЧАЛО ХХ ВЕКА

В 1922 году сотрудники химической лаборатории Чикагского университета Кларенс Айрион и Джеральд Вендт опубликовали работу, посвященную исследованию электровзрыва вольфрамовой проволочки в вакууме (G.L.Wendt, C.E.Irion, Experimental Attempts to Decompose Tungsten at High Temperatures. «Journal of the American Chemical Society», 1922, 44, 1887-1894).
В электровзрыве нет ничего экзотического. Это явление было открыто ни много ни мало в конце XVIII века, а в быту мы его постоянно наблюдаем, когда при коротком замыкании перегорают электролампочки (лампочки накаливания, разумеется). Что же происходит при электровзрыве? Если сила тока, протекающего через металлическую проволоку, велика, то металл начинает плавиться и испаряться. Вблизи поверхности проволоки образуется плазма. Нагрев происходит неравномерно: в случайных местах проволоки появляются «горячие точки», в которых выделяется больше тепла, температура достигает пиковых значений, и происходит взрывное разрушение материала.
Самое поразительное в этой истории то, что ученые изначально рассчитывали эксперименталь-но обнаружить разложение вольфрама на более легкие химические элементы. В своем наме-рении Айрион и Вендт опирались на следующие уже известные в то время факты.
Во-первых, в видимом спектре излучения Солнца и других звезд отсутствуют характерные оптические линии, принадлежащие тяжелым химическим элементам. Во-вторых, температура по-верхности Солнца составляет около 6000оС. Следовательно, рассудили они, атомы тяжелых элементов не могут существовать при таких температурах. В-третьих, при разряде конденсатор-ной батареи на металлическую проволочку температура плазмы, образующейся при электро-взрыве, может достигать 20 000оС.
Исходя из этого, американские ученые предположили, что если через тонкую проволоку из тяжелого химического элемента, например, вольфрама, пропустить сильный электрический ток и нагреть ее до температур, сопоставимых с температурой Солнца, то ядра вольфрама окажутся в нестабильном состоянии и разложатся на более легкие элементы. Они тщательно подготовили и блестяще провели эксперимент, пользуясь при этом весьма простыми средствами.
Электровзрыв вольфрамовой проволочки проводили в стеклянной сферической колбе (рис. 2), замыкая на нее конденсатор емкостью 0,1 микрофарад, заряженный до напряжения 35 кило-вольт. Проволочка располагалась между двумя крепежными вольфрамовыми электродами, впаянными в колбу с двух противоположных сторон. Кроме того, в колбе имелся дополнительный «спектральный» электрод, который служил для зажигания плазменного разряда в газе, образовавшемся после электровзрыва.
Следует отметить некоторые важные технические детали эксперимента. При его подготовке колбу помещали в печь, где она непрерывно прогревалась при 300оС в течение 15 часов и все это время из нее откачивали газ. Вместе с прогревом колбы по вольфрамовой проволочке про-пускали электрический ток, нагревавший ее до температуры 2000оС. После дегазации стеклян-ный патрубок, соединяющий колбу с ртутным насосом, расплавляли с помощью горелки и запаивали. Авторы работы утверждали, что предпринятые меры позволяли сохранить чрезвычайно низкое давление остаточных газов в колбе в течение 12 часов. Поэтому при подаче высоковольтного напряжения 50 киловольт между «спектральным» и крепежным электродами пробоя не было.
Айрион и Вендт выполнили двадцать один эксперимент с электровзрывом. В результате каждого опыта в колбе образовывалось порядка 10^19 частиц неизвестного газа. Спектральный анализ показывал, что в нем присутствовала характерная линия гелия-4. Авторы предположили, что гелий образуется в результате альфа-распада вольфрама, индуцированного электровзрывом. Напомним, что альфа-частицы, появляющиеся в процессе альфа-распада, представляют собой ядра атома 4He.
Публикация Айриона и Вендта вызвала большой резонанс в научном сообществе того времени. Сам Резерфорд обратил внимание на эту работу. Он выразил глубокое сомнение в том, что использовавшееся в эксперименте напряжение (35 кВ) достаточно велико, чтобы электроны могли индуцировать ядерные реакции в металле. Желая проверить результаты американских ученых, Резерфорд выполнил свой эксперимент - облучил вольфрамовую мишень пучком электронов с энергией 100 килоэлектронвольт. Резерфорд не обнаружил никаких следов ядерных реакций в вольфраме, о чем в достаточно резкой форме сделал короткое сообщение в журнале «Nature». Научное сообщество приняло сторону Резерфорда, работу Айриона и Вендта признали ошибочной и забыли на долгие годы.

ЭЛЕКТРОВЗРЫВ ВОЛЬФРАМОВОЙ ПРОВОЛОЧКИ: 90 ЛЕТ СПУСТЯ
Только спустя 90 лет за повторение опытов Айриона и Вендта взялся российский научный коллектив под руководством доктора физико-математических наук Леонида Ирбековича Уруцкоева. Эксперименты, оснащенные современной экспериментальной и диагностической аппаратурой, проводили в легендарном Сухумском физико-техническом институте в Абхазии. Свою уста-новку физики назвали «ГЕЛИОС» в честь путеводной идеи Айриона и Вендта (рис. 3). Кварцевая взрывная камера расположена в верхней части установки и подключена к вакуумной системе - турбомолекулярному насосу (окрашен в голубой цвет). Четыре черных кабеля тянутся к взрыв-ной камере от разрядника конденсаторной батареи емкостью 0,1 микрофарад, которая стоит слева от установки. Для электровзрыва батарею заряжали до 35-40 киловольт. Диагностическая аппаратура, используемая в экспериментах (не показана на рисунке), позволяла исследовать спектральный состав свечения плазмы, которая образовывалась при электровзрыве проволочки, а также химический и элементный состав продуктов ее распада.

Рис. 3. Так выглядит установка «ГЕЛИОС», в которой группа Л. И. Уруцкоева исследовала взрыв вольфрамовой проволочки в вакууме (эксперимент 2012 года)
Эксперименты группы Уруцкоева подтвердили основной вывод работы девяностолетней давности. Действительно, в результате электровзрыва вольфрама образовывалось избыточное количество атомов гелия-4 (порядка 10^16 частиц). Если же вольфрамовую проволочку заменяли на железную, то гелий не образовывался. Заметим, что в экспериментах на установке «ГЕЛИОС» исследователи зафиксировали в тысячу раз меньше атомов гелия, чем в экспериментах Айриона и Вендта, хотя «энерговклад» в проволочку был приблизительно одинаков. С чем связано такое отличие - еще предстоит выяснить.
Во время электровзрыва материал проволочки распылялся на внутреннюю поверхность взрыв-ной камеры. Масс-спектрометрический анализ показал, что в этих твердых остатках наблюдался дефицит изотопа вольфрама-180, хотя в исходной проволочке его концентрация соответствовала природной. Этот факт также может свидетельствовать о возможном альфа-распаде вольфрама или другого ядерного процесса при электровзрыве проволочки (Л. И. Уруцкоев, А. А. Рухадзе, Д. В. Филиппов, А. О. Бирюков и др. Исследование спектрального состава оптического излучения при электрическом взрыве вольфрамовой проволочки. «Краткие сообщения по физике ФИАН», 2012, 7, 13-18).

Ускорение альфа-распада с помощью лазера
К низкоэнергетическим ядерным реакциям можно отнести и некоторые процессы, ускоряющие спонтанные ядерные превращения радиоактивных элементов. Интересные результаты в этой области получили в Институте общей физики им. А. М. Прохорова РАН в лаборатории, возглавляемой доктором физико-математических наук Георгием Айратовичем Шафеевым. Ученые открыли удивительный эффект: альфа-распад урана-238 ускорялся под действием лазерного излучения с относительно небольшой пиковой интенсивностью 10^12-10^13 Вт/см2 (А.В.Симакин, Г.А.Шафеев, Влияние лазерного облучения наночастиц в водных растворах соли урана на активность нуклидов. «Квантовая электроника», 2011, 41, 7, 614-618).
Вот как выглядел эксперимент. В кювету с водным раствором соли урана UO2Cl2 с концентрацией 5-35 мг/мл помещали мишень из золота, которую облучали лазерными импульсами с длиной волны 532 нанометра, длительностью 150 пикосекунд, частотой повторения 1 килогерц в течение одного часа. При таких условиях поверхность мишени частично расплавляется, а жид-кость, контактирующая с ней, мгновенно вскипает. Давление паров разбрызгивает наноразмерные капельки золота с поверхности мишени в окружающую жидкость, где они охлаждаются и превращаются в твердые наночастицы с характерным размером 10 нанометров. Такой процесс называют лазерной абляцией в жидкости и широко используют, когда требуется приготовить коллоидные растворы наночастиц различных металлов.
В экспериментах Шафеева за один час облучения золотой мишени образовывалось 10^15 нано-частиц золота в 1 см3 раствора. Оптические свойства таких наночастиц радикально отличаются от свойств массивной золотой пластинки: они не отражают свет, а поглощают его, причем электромагнитное поле световой волны вблизи наночастиц может усиливаться в 100-10 000 раз и достигать внутриатомных величин!
Ядра урана и продуктов его распада (торий, протактиний), оказавшиеся вблизи этих наночастиц, подвергались воздействию многократно усиленных лазерных электромагнитных полей. В ре-зультате заметно изменилась их радиоактивность. В частности, гамма-активность тория-234 увеличилась в два раза. (Гамма-активность образцов до и после лазерного облучения измеряли полупроводниковым гамма-спектрометром.) Поскольку торий-234 возникает в результате альфа-распада урана-238, увеличение его гамма-активности свидетельствует об ускорении альфа-распада этого изотопа урана. Отметим, что гамма-активность урана-235 не возросла.
Ученые из ИОФ РАН обнаружили, что лазерное излучение может ускорять не только альфа-распад, но и бета-распад радиоактивного изотопа 137Cs - одного из главных компонентов радиоактивных выбросов и отходов. В своих экспериментах они использовали зеленый лазер на парах меди, работающий в импульсно-периодическом режиме с длительностью импульса 15 наносекунд, частотой повторения импульсов 15 килогерц и пиковой интенсивностью 109 Вт/см2. Лазерное излучение воздействовало на золотую мишень, помещенную в кювету с водным раствором соли 137Cs, содержание которого в растворе объемом 2 мл составляло примерно 20 пикограмм.
Через два часа облучения мишени исследователи зафиксировали, что в кювете образовался коллоидный раствор с наночастицами золота размером 30 нм (рис. 4), а гамма-активность цезия-137 (и, следовательно, его концентрация в растворе) уменьшилась на 75%. Период полураспада цезия-137 составляет около 30 лет. Значит, такое уменьшение активности, какое было получено в двухчасовом эксперименте, должно происходить в естественных условиях примерно за 60 лет. Поделив 60 лет на два часа, получим, что в течение лазерного воздействия скорость распада увеличилась примерно в 260 000 раз. Такое гигантское возрастание скорости бета-распада должно было бы превратить кювету с раствором цезия в мощнейший источник гамма-излучения, сопровождающего обычный бета-распад цезия-137. Однако в действительности этого не происходит. Радиационные измерения показали, что гамма-активность раствора соли не увеличивается (E.V.Barmina, A. V. Simakin, G. A. Shafeev, Laser-induced caesium-137 decay. «Quantum Electronics», 2014, 44 , 8, 791-792).
Этот факт говорит о том, что при лазерном воздействии распад цезия-137 идет не по наиболее вероятному (94,6 %) в нормальных условиях сценарию с излучением гамма-кванта с энергией 662 кэВ, а по другому - безызлучательному. Это, предположительно, прямой бета-распад с образованием ядра стабильного изотопа 137Ва, который в нормальных условиях реализуется только в 5,4% случаев.
Почему происходит такое перераспределение вероятностей в реакции бета-распада цезия - пока неясно. Тем не менее имеются другие независимые исследования, подтверждающие, что ускоренная дезактивация цезия-137 возможна даже в живых системах.

Низкоэнергетические ядерные реакции в живых системах

Поиском низкоэнергетических ядерных реакций в биологических объектах уже более двадцати лет занимается доктор физико-математических наук Алла Александровна Корнилова на Физиче-ском факультете Московского государственного университета им. М. В. Ломоносова. Объектами первых опытов стали культуры бактерий Bacillus subtilis, Escherichia coli, Deinococcus radiodurans. Их помещали в питательную среду, обедненную железом, но содержащую соль марганца MnSO4 и тяжелую воду D2O. Эксперименты показали, что в этой системе вырабатывался дефицитный изотоп железа - 57Fe (Vysotskii V. I., Kornilova A. A., Samoylenko I. I., Experimental discovery of the phenomenon of low-energy nuclear transmutation of isotopes (Mn55 to Fe57) in growing bio-logical cultures, «Proceedings of 6th International Conference on Cold Fusion», 1996, Japan, 2, 687-693).
По мнению авторов исследования, изотоп 57Fe появлялся в растущих клетках бактерий в резуль-тате реакции 55Mn+ d = 57Fe (d - ядро атома дейтерия, состоящее из протона и нейтрона). Определенным аргументом в пользу предлагаемой гипотезы служит тот факт, что если тяжелую воду заменить на легкую или исключить соль марганца из состава питательной среды, то изотоп 57Fe бактерии не нарабатывали.
Убедившись, что ядерные превращения стабильных химических элементов возможны в микро-биологических культурах, А. А. Корнилова применила свой метод к дезактивации долгоживущих радиоактивных изотопов (Vysotskii V. I., Kornilova A. A., Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems. «Annals of Nuclear Energy», 2013, 62, 626-633). На сей раз Корнилова работала не с монокультурами бактерий, а со сверхассоциацией микроорганизмов различных типов, чтобы повысить их выживаемость в агрессивных средах. Каждая группа этого сообщества максимально адаптирована к совместной жизнедеятельности, коллективной взаимопомощи и взаимозащите. В результате сверхассоциация хорошо приспо-сабливается к самым разным условиям внешней среды, в том числе и к повышенной радиации. Типичная максимальная доза, которую выдерживают обычные микробиологические культуры, соответствует 30 килорад, а сверхассоциации выдерживают на несколько порядков больше, причем их метаболическая активность почти не ослабляется.
В стеклянные кюветы помещали равные количества концентрированной биомассы вышеупомя-нутых микроорганизмов и 10 мл раствора соли цезия-137 в дистиллированной воде. Начальная гамма-активность раствора была равна 20 000 беккерелей. В некоторые кюветы дополнительно добавляли соли жизненно важных микроэлементов Ca, K и Na. Закрытые кюветы выдерживали при 20оС и каждые семь дней измеряли их гамма-активность при помощи высокоточного детек-тора.
За сто дней эксперимента в контрольной кювете, не содержащей микроорганизмы, активность цезия-137 уменьшилась на 0,6%. В кювете, дополнительно содержащей соль калия, - на 1%. Быстрее всего активность падала в кювете, дополнительно содержащей соль кальция. Здесь гамма-активность уменьшилась на 24%, что эквивалентно сокращению периода полураспада цезия в 12 раз!
Авторы выдвинули гипотезу, что в результате жизнедеятельности микроорганизмов 137Cs пре-образуется в 138Ba - биохимический аналог калия. Если калия в питательной среде мало, то трансформация цезия в барий происходит ускоренно, если много, то процесс трансформации блокируется. Что касается роли кальция, то она проста. Благодаря его присутствию в питатель-ной среде популяция микроорганизмов быстро растет и, следовательно, потребляет больше калия или его биохимического аналога - бария, то есть подталкивает трансформацию цезия в барий.
А что с воспроизводимостью?
Вопрос о воспроизводимости описанных выше экспериментов требует некоторых пояснений. Реактор «E-Cat», подкупающий своей простотой, пытаются воспроизвести сотни, если не тысячи изобретателей-энтузиастов по всему миру. Существуют даже специальные форумы в Интернете, на которых «репликаторы» обмениваются опытом и демонстрируют свои достижения (http://www.lenr-forum.com/). Определенных успехов в этом направлении добился российский изобретатель Александр Георгиевич Пархомов. Ему удалось сконструировать теплогенератор, работающий на смеси порошка никеля и алюмогидрида лития, который дает избыточное количество энергии (А.Г. Пархомов, Результаты испытаний нового варианта аналога высокотемпера-турного теплогенератора Росси. «Журнал формирующихся направлений науки», 2015, 8, 34-39). Однако в отличие от экспериментов Росси искажений изотопного состава в отработанном топливе обнаружить не удалось.
Эксперименты по электровзрыву вольфрамовых проволочек, как и по лазерному ускорению распада радиоактивных элементов, гораздо более сложны с технической точки зрения и могут быть воспроизведены только в серьезных научных лабораториях. В связи с этим на место вопроса о воспроизводимости эксперимента приходит вопрос о его повторяемости. Для экспериментов по низкоэнергетическим ядерным реакциям типична ситуация, когда в идентичных условиях проведения эксперимента эффект то присутствует, то нет. Дело в том, что не удается контролировать все параметры процесса, включая, по-видимому, и основной - пока не выявленный. Поиск нужных режимов идет практически вслепую и занимает многие месяцы и даже годы. Экспе-риментаторам не раз приходилось менять принципиальную схему установки в процессе поиска управляющего параметра - той «ручки», которую нужно «крутить», чтобы добиться удовлетворительной повторяемости. На данный момент повторяемость в описанных выше экспериментах составляет примерно 30%, то есть положительный результат получается в каждом третьем опыте. Много это или мало, судить читателю. Ясно одно: без создания адекватной теоретической модели исследуемых явлений вряд ли удастся кардинально улучшить этот параметр.

Попытка интерпретации

Несмотря на убедительные экспериментальные результаты, подтверждающие возможность ядерных превращений стабильных химических элементов, а также ускорения распада радиоак-тивных веществ, физические механизмы этих процессов пока неизвестны.
Основная загадка низкоэнергетических ядерных реакций - как положительно заряженные ядра при сближении преодолевают силы отталкивания, так называемый кулоновский барьер. Обычно для этого требуются температуры в миллионы градусов Цельсия. Очевидно, что в рассмотренных экспериментах такие температуры не достигаются. Тем не менее есть ненулевая вероятность того, что частица, не обладающая достаточной кинетической энергией для преодоления сил отталкивания, все же окажется вблизи ядра и вступит с ним в ядерную реакцию.
Этот эффект, получивший название туннельного, имеет чисто квантовую природу и тесно связан с принципом неопределенности Гейзенберга. Согласно этому принципу, квантовая частица (например, ядро атома) не может иметь точно заданные значения координаты и импульса одновременно. Произведение неопределенностей (неустранимых случайных отклонений от точ-ного значения) координаты и импульса ограничено снизу величиной, пропорциональной постоянной Планка h. Это же произведение определяет вероятность туннелирования через потенциальный барьер: чем больше произведение неопределенностей координаты и импульса частицы, тем выше эта вероятность.
В работах доктора физико-математических наук, профессора Владимира Ивановича Манько и соавторов показано, что в определенных состояниях квантовой частицы (так называемых когерентных коррелированных состояниях) произведение неопределенностей может на несколько порядков превышать постоянную Планка. Следовательно, для квантовых частиц в таких состояниях вероятность преодоления кулоновского барьера будет возрастать (В.В.Додонов, В.И.Манько, Инварианты и эволюция нестационарных квантовых систем. «Труды ФИАН. Москва: Наука, 1987, т. 183, с. 286)».
Если в когерентном коррелированном состоянии окажутся одновременно несколько ядер раз-личных химических элементов, то в этом случае может протекать некий коллективный процесс, приводящий к перераспределению протонов и нейтронов между ними. Вероятность такого процесса будет тем больше, чем меньше разница энергий начального и конечного состояний ансамбля ядер. Именно это обстоятельство, по-видимому, и определяет промежуточное положение низкоэнергетических ядерных реакций между химическими и «обычными» ядерными реакциями.
Как формируются когерентные коррелированные состояния? Что заставляет ядра объединяться в ансамбли и обмениваться нуклонами? Какие ядра могут, а какие не могут участвовать в этом процессе? На эти и на многие другие вопросы пока нет ответов. Теоретики делают только первые шаги на пути решения этой интереснейшей задачи.
Поэтому на данном этапе основная роль в исследованиях низкоэнергетических ядерных реакций должна принадлежать экспериментаторам и изобретателям. Необходимы системные экс-периментальные и теоретические исследования этого удивительного феномена, всесторонний анализ полученных данных, широкое экспертное обсуждение.
Понимание и освоение механизмов низкоэнергетических ядерных реакций помогут нам в решении самых разных прикладных задач - создании дешевых автономных энергетических установок, высокоэффективных технологий дезактивации ядерных отходов и преобразовании химических элементов.

в Избранное в Избранном из Избранного 0

Величайшее изобретение в новейшей истории человечества запущено в производство - при полном молчании средств массовой дезинформации .

Продана первая установка холодного термоядерного синтеза

Продана первая установка холодного термоядерного синтезаПервая сделка по продаже энергопроизводящей установки на основе реактора холодного термоядерного синтеза E-Cat выходной мощностью 1 мегаватт состоялась 28 октября 2011 года, после демонстрации покупателю успешных испытаний системы. Сейчас автор и производитель Андреа Росси принимает заказы на сборку от компетентных, серьезно настроенных, платежеспособных покупателей.Если вы читаете эту статью, скорее всего вас интересуют новейшие технологи производства энергии. В таком случае, как вам перспектива обладания одномегаватным реактором холодного термоядерного синтеза, который производит огромное количество постоянной тепловой энергии, используя мизерное количество никеля и водорода в качестве топлива, и работает в автономном режиме практически не потребляя электричество на входе?Речь идет о системе, описание которой балансирует на грани научной фантастики. Кроме того, реальное создание таковой может разом обесценить все ныне существующие методы генерации энергии вместе взятые. Идея о существовании такого неординарного, эффективного источника энергии, который, к тому же, должен иметь относительно невысокую стоимость, звучит восхитительно, не так ли?

Что ж, в свете последних событий в области разработки альтернативных высокотехнологичных источников энергии, есть одна реальная будоражащая сознание новость.

Андреа Росси принимает заказы на изготовление систем реакторов холодного термоядерного синтеза E-Cat (от англ. energy catalyzer – катализатор энергии) мощностью один мегаватт. И в виду имеется не эфемерное творение фантазии очередного «алхимика от науки», а действительно существующее, функционирующее и готовое для того, чтобы быть проданным в реальный момент времени, устройство. Более того, первые две установки уже обрели владельцев: одна даже доставлена покупателю, а воторая находится на стадии сборки. Прочитать об испытаниях и продаже первой можно здесь.

Эти воистину ломающие современную энергетическую парадигму системы могут быть сконфигурированы на производство до одного мегаватта энергии на выходе каждая. Установка включает в себя от 52 до 100 и более отдельных «модулей» E-Cat, каждый из которых состоит из 3 маленьких внутренних реакторов холодного термоядерного синтеза. Все модули собраны внутри обычного стального контейнера (размером 5м х 2,6м х 2,6м), который может быть установлен где угодно. Возможна доставка сухопутным, морским или воздушным транспортом. Важно, что в отличие от широко используемых ядерных реакторов деления, реактор холодного синтеза E-Cat не потребляет радиоактивные вещества, не выделяет радиоактивных излучений в окружающую среду, не вырабатывает ядерных отходов и не несет в себе потенциальных опасностей расплавления оболочки или ядра реактора – самой фатальной и, к сожалению, уже вполне обычной, аварии на традиционных ядерных установках. Худший сценарий для E-Cat: ядро реактора перегревается, он ломается и просто перестает работать. И все.

Как заявлено производителями, полные испытания установки проводятся под наблюдением гипотетического владельца до оформления финальной части сделки. Одновременно происходит обучение инженеров и технических работников, которые в дальнейшем будут обслуживать установку на территории покупателя. Если клиент чем-либо неудовлетворен, сделка отменяется. Следует заметить, что покупатель (или его представитель) полностью контролирует все аспекты испытаний: как проводятся тесты, какое измерительное оборудование используется, сколько длятся все процессы, режим тестирования – стандартный (на постоянной энергии) или автономный (с фактическим нулем на входе).

По утверждению Андреа Росси, технология работает вне всяких сомнений, и он настолько уверен в своем продукте, что предоставляет потенциальным покупателям все имеющиеся возможности самостоятельно убедиться в этом:

если они захотят провести контрольный запуск без водорода в ядрах реакторов (чтобы сравнить результаты) – это можно осуществить!
если хотят посмотреть на работу агрегата а постоянном автономном режиме в течение продолжительного периода времени, нужно просто заявить об этом!
если желают привезти любые собственные высокотехнологичные осциллографы и прочее измерительное оборудование, чтобы замерить каждый микроватт энергии, полученный в процессе работы – отлично!

На данный момент, подобная установка может быть продана только подходящему компетентному покупателю. Это означает, что клиент должен быть не просто индивидуальным заинтересованым лицом, но представителем бизнес-организации, компании, института или агентства. Однако, планируется создание установок меньшего размера для индивидуального домашнего использования. Примерный срок окончания разработки и запуска производства – год. Но тут могут возникнуть проблемы с сертификацией. Пока у Росси есть европейский сертификационный знак только для его промышленных установок.

Стоимость одномегаватной установки составляет 2.000 $ за киловатт. Итоговая цена (2.000.000 $) только кажется заоблачной. На самом деле, с учетом невероятной экономии на топливе, она вполне справедлива. Если сравнить себестоимость и количество топлива системы Росси, необходимого для выработки определенного количества энергии, с теми же показателями по топливу для прочих ныне доступных систем, величины окажутся попросту несопоставимы. Например, Росси утверждает, что доза водорода и никелевого порошка, необходимая для работы мегаватной установки в течение как минимум полугода, стоит не более пары сотен евро. Все потому, что нескольких грамм никеля, изначально помещаемых в ядро каждого реактора, хватает минимум на 6 месяцев, расход водорода в системе вцелом также очень низок. Фактически, при испытании первой проданной установки, менее 2 грамм водорода поддерживали работу всей системы в течение всего времени эксперимента (т.е. порядка 7 часов). Получается, необходимо действительно мизерное количество ресурсов.

Вот некоторые другие преимущества технологии E-Cat: компактные размеры или высокая «плотность энергии», бесшумный режим работы (50 децибел звука на расстоянии 5 метров от установки), отсутствие зависимости от погодных условий (в отличие от солнечных батарей или ветровых установок), и модульная конструкция устройства – если один из элементов системы по каким-либо причинам выйдет из строя, его можно быстро заменить.

Росси намеревается выпустить от 30 до 100 одномегаватных установок в течении первого года производства. Гипотетический покупатель может связаться с его компанией Leonardo Corporation и зарезервировать одно из планируемых к выпуску устройств.

Конечно, есть скептики, утверждающие, что такого попросту не может быть, что производители темнят, не допуская к испытаниям наблюдателей из основных энергоконтролирующих организаций, а также что, будь изобретение Росси действительно эффективным, воротилы существующей системы распределения энергетических (читайте финансовых) ресурсов не допустили бы выхода информации о нем в свет.
Кто-то находится в сомнениях. Как пример можно привести любопытную и весьма обстоятельную статью, появившуюся на сайте журнала Forbes.
Однако, по мнению некоторых обозревателей, 28 октября 2011 года был дан официальный фактический старт перехода человечества в новую эру холодного термоядерного синтеза: эру чистой, безопасной, дешевой и доступной энергии.

О сколько нам открытий чудных
Готовит просвещенья дух
И опыт, сын ошибок трудных,
И гений, парадоксов друг,
И случай, бог изобретатель…

А.С.Пушкин

Я не ученый ядерщик.Но осветил одно из величайших изобретений наших дней, по крайней мере я сам так считаю. Сначало написал об открытии холодного ядерного синтеза ХЯС итальянскими учеными Серджио Фокарди (Sergio Focardi) и Андреа Росси (Andrea A. Rossi) из университета Болоньи (Università di Bologna) в Декабре-2010. Потом написал тут текст об испытании этими учеными намного мощной установки 28-Октября-2011 для потенциального заказщика-производителя. И этот эксперимент закончился успешно. Господин Росси заключил с одним американским крупным производителем оборудования контракт.И теперь любой желающий, после подписания соот контрактов и соблюдения условий что не станут копировать установку, может заказать установку мощьностью до 1 Мегаватт с доставкой до клиента, установка, обучение персонала в течении 4 месяца.

Признавался раньше и сейчас скажу, я не физик,не ядерщик. Эта установка настолько значима для всего человечества, она может перевернуть обычный наш мир, сильно повлияет на геополитическом уровне - только по этой причине я пишу о ней.
Но я смог раскопать кое какую информацию для вас.
Например, я разузнал что установка России работает на основе именно ХЯС. Если коротко примерно так: атом Водород теряет свою усточивость под воздействием температуры, Никеля и какогото секретного катализатора примерно на на 10\-18 секунды.И это ядро Водорода взаимодействует с ядром Никеля преодолев Кулоновскую силу атомов.Еще в процессе есть связь с волнами Бройля, советую прочесть стстью тем кто кумекает в физике.
В результате происходит именно ХЯС - холодный ядерный синтез - рабочая температура установку только несколько сотен градусов Цельсия, образуется некоторое количество неустойчивого изотопа меди -
(Cu 59 - 64).Расход Никеля и Водорода очень малы, то есть Водород не горит и не дает простую химическую энергию.





Patent 1. (WO2009125444) METHOD AND APPARATUS FOR CARRYING OUT NICKEL AND HYDROGEN EXOTHERMAL REACTIONS

Весь рынок Северной Америки и Южной Америки на эти установки взяла в руки компания AmpEnergo . Эта новая компания и она тесно сотрудничает с другой компанией Leonardo Corporation , которая серьезно работает в энергетике и оборонном секторе.Она же принимает заказы на установки.

Thermal Output Power 1 MW
Electrical Input Power Peak 200 kW
Electrical input Power Average 167 kW
COP 6
Power Ranges 20 kW-1 MW
Modules 52
Power per Module 20kW
Water Pump brand Various
Water Pump Pressure 4 Bar
Water Pump Capacity 1500 kg/hr
Water Pump Ranges 30-1500 kg/hr
Water Input Temperature 4-85 C
Water Output Temperature 85-120 C
Control Box Brand National Instruments
Controlling Software National Instruments
Operation and Maintenance Cost $1/MWhr
Fuel Cost $1/MWhr
Recharge Cost Included in O&M
Recharge Frequency 2/year
Warranty 2 years
Estimated Lifespan 30 years
Price $2M
Dimension 2.4×2.6x6m

Это схема экспериментальной 1Мгвт установки которую сделали для эксперимента 28-10-2011.

Вот здесь Технические параметры установки мощностью 1 Мегаватт.
Стоимость одной установки 2 млн долларов.

Интересные моменты:
- очень дешевая стоимость вырабатываемой энергии.
- раз в 2 года надо заполнять изнашиваемые элементы - водород, никель, катализатор.
- срок службы установки 30 лет.
- малый размер
- экологическая чистота установка.
- безопасность, при любой аварии процесс ХЯС само как бы гаснет.
- нет никаких опасных элементов которые могли бы использоваться как грязная бомба

На данный момент установка вырабатывает горячий пар и может использоваться для отопления зданий. Еще не включены в состав установки турбина и электрогенератор для выработки электрической энергии.Но в процессе.

У вас может возникнуть вопросы: А не подорожает ли Никель при широком использовании таких установок?
Какие вообще запасы Никеля на нашей планете?
Не начнутся ли войны изза Никеля?

Никеля навалом.
Я дам несколько цифр для наглядности.
Если предположим что установками Росси заменят все энергоустановки которые сжигают нефть то всех запасов Никеля на Земле хватит примерно на 16 667 лет! То есть на ближайшие 16 тысяч лет у нас есть энергия.
В день на Земле мы сжигаем примерно 13 млн тонн нефти.Чтоб заменить эту дневную дозу нефти на установках Росси нужно будет всего лишь примерно 25 тонны Никеля! Примерно сегодняшние цены 10 000 долларов за тонну Никеля. 25 тонн будет стоить 250 000 долларов! То есть, четвертушки лимона баксов хватит чтоб заменить всю нефть за день на всей планете никельным ХЯС!
Я читал, господина Росси и Фокарди выдвигают на Нобелевскую премию 2012 года, сейчас оформляют документы. Думаю что они определенно заслуживают и Нобелевки, и других наград.Можно создать и дать им обоим звание - Почетные Граждане Планеты Земля.

Эта установка очень важна особенно и для России.Потому что огромная территория РФ находится в зоне холода, без энергоподачи, суровые условия жизни… А никеля в РФ завались.) Может быть мы или наши дети увидят целые города закрытые сверху колпаком-пленкой из прозрачного и прочного материала.Внутри этого колпака будет держатся микроклимат с теплым воздухом.С электромобилями, парниками где выращивают все небходимые овощи и фрукты, и т.д.

А в геополитике будут такие грандиозные изменения, которые коснутся все страны и народы. Даже финансовый мир, торговля, транспорт, миграцию людей, их социальное обеспечение и вообще жизненный уклад изменятся значительно. Любые грандиозные изменения, даже если они и в хорошую сторону, чреваты потрясениями, бунтами, может даже и войнами. Потому что это открытие принеся пользу огромному количеству людей, в то же время принесет убытки, потерю богатства, политической, финансовой силы определенным странам и группам. Ессно эти группы могут протестовать и делать все чтоб тормозить процесс. Но я надеюсь что заинтересованных в прогрессе будет гораздо больше и сильнее.
Может поэтому пока центральные СМИ не особо сильно пишут об установке Росси? Может поэтому не спешат широко афишировать это открытие века? Пусть пока эти группировки договорятся между собой по мирному?

Вот 5 киловатный блок. Можно поставить в квартире.

http://www.leonardo-ecat.com/fp/Products/5kW_Heater/index.html