Что такое нок и как его находить. Нод и нок чисел - наибольший общий делитель и наименьшее общее кратное нескольких чисел
Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют наибольшим общим делителем (НОД) этих чисел.
Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми
.
Определение. Натуральные числа называют взаимно простыми , если их наибольший общий делитель (НОД) равен 1.
Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.
Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа
(т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36.
Так же находят наибольший общий делитель трёх и более чисел.
Чтобы найти наибольший общий делитель
2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.
Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем
данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.
Наименьшее общее кратное (НОК)
Определение.
Наименьшим общим кратным (НОК)
натуральных чисел а и Ь называют наименьшее натуральное число,
которое кратно и a, и b.
Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на
простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения
второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.
Так же находят наименьшее общее кратное для трёх и более чисел.
Чтобы найти наименьшее общее кратное
нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.
Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных
чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.
Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа),
они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные
числа - 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое - 8128 - стало известно в I в. н. э.
Пятое - 33 550 336 - было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли
нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде
произведения простых чисел, т. е. простые числа - это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно - в одних частях ряда их больше,
в других - меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует
ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на
протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом
есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа
от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через
одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее
вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались
невычеркнутыми только простые числа.
Признаки делимости натуральных чисел.
Числа, делящиеся без остатка на 2, называются четными .
Числа, которые не делятся без остатка на 2, называются нечетными .
Признак делимости на 2
Если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если запись числа оканчивается нечетной цифрой, то это число не делится без остатка на 2.
Например, числа 6 0 , 30 8 , 8 4 делятся без остатка на 2, а числа 5 1 , 8 5 , 16 7 не делятся без остатка на 2.
Признак делимости на 3
Если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.
Например, выясним, делится ли на 3 число 2772825. Для этого подсчитаем сумму цифр этого числа: 2+7+7+2+8+2+5 = 33 - делится на 3. Значит, число 2772825 делится на 3.
Признак делимости на 5
Если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.
Например, числа 1 5 , 3 0 , 176 5 , 47530 0 делятся без остатка на 5, а числа 1 7 , 37 8 , 9 1 не делятся.
Признак делимости на 9
Если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.
Например, выясним, делится ли на 9 число 5402070. Для этого подсчитаем сумму цифр этого числа: 5+4+0+2+0+7+0 = 16 - не делится на 9. Значит, число 5402070 не делится на 9.
Признак делимости на 10
Если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10.
Например, числа 4 0 , 17 0 , 1409 0 делятся без остатка на 10, а числа 1 7 , 9 3 , 1430 7 - не делятся.
Правило нахождения наибольшего общего делителя (НОД).
Чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:
2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произведение оставшихся множителей.
Пример. Найдем НОД (48;36). Воспользуемся правилом.
1. Разложим числа 48 и 36 на простые множители.
48 = 2 · 2 · 2 · 2 · 3
36 = 2 · 2 · 3 · 3
2. Из множителей, входящих в разложение числа 48 вычеркнем те, которые не входят в разложение числа 36.
48 = 2 · 2 · 2 · 2 · 3
Остаются множители 2, 2 и 3.
3. Перемножим оставшиеся множители и получим 12. Это число и является наибольшим общим делителем чисел 48 и 36.
НОД (48;36) = 2 · 2 · 3 = 12.
Правило нахождения наименьшего общего кратного (НОК).
Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.
Пример. Найдем НОК (75;60). Воспользуемся правилом.
1. Разложим числа 75 и 60 на простые множители.
75 = 3 · 5 · 5
60 = 2 · 2 · 3 · 3
2. Выпишем множители, входящие в разложение числа 75: 3, 5, 5.
НОК (75;60) = 3 · 5 · 5 · …
3. Добавим к ним недостающие множители из разложения числа 60, т.е. 2, 2.
НОК (75;60) = 3 · 5 · 5 · 2 · 2
4. Найдем произведение получившихся множителей
НОК (75;60) = 3 · 5 · 5 · 2 · 2 = 300.
Школьникам задают немало заданий по математике. Среди них очень часто встречаются задачи с такой формулировкой: имеются два значения. Как найти наименьшее общее кратное для заданных чисел? Необходимо уметь выполнять такие задания, поскольку полученные навыки применяют для работы с дробями при разных знаменателях. В статье разберем, как найти НОК и основные понятия.
Прежде чем найти ответ на вопрос как находить НОК, нужно определиться с термином кратное . Чаще всего формулировка этого понятия звучит следующим образом: кратным некоторому значению А называют такое натуральное число, которое без остатка будет делиться на А. Так, для 4 кратными будут 8, 12, 16, 20 и так далее, до необходимого предела.
При этом количество делителей для конкретного значения может быть ограниченным, а кратных бесконечно много. Также есть такая же величина для натуральных значений. Это такой показатель, которое делится на них без остатка. Разобравшись с понятием самого меньшего значения для определенных показателей, перейдем к тому, как его находить.
Находим НОК
Наименьшее кратное двух или больше показателей является наименьшим натуральным числом, которое целиком делится на все указанные числа.
Существует несколько способов найти такое значение , рассмотрим следующие способы:
- Если числа небольшие, то выпишите в строчку все делящиеся на него. Продолжайте это делать, пока не найдется среди них общее. В записи их обозначают буквой К. Например, для 4 и 3 наименьшим кратным является 12.
- Если это большие или требуется найти кратное для 3 и более значений, то здесь следует воспользоваться другой методикой, предполагающей разложение чисел на простые множители. Сначала раскладываете наибольшее из указанных, затем все остальные. Каждое из них имеет свое количество множителей. В качестве примера разложим 20 (2*2*5) и 50 (5*5*2). У меньшего из них подчеркните множители и добавьте к наибольшему. В результате получится 100, которое и будет наименьшим общим кратным для вышеописанных чисел.
- При нахождении 3 чисел (16, 24 и 36) принципы такие же, как и для двух других. Разложим же каждое из них: 16 = 2*2*2*2, 24=2*2*2*3, 36=2*2*3*3. Не вошли в разложение наибольшего только две двойки из разложения числа 16. Добавляем их и получаем 144, которое и является наименьшим результатом для указанных ранее численных значений.
Теперь мы знаем, какова общая методика нахождения самого небольшого значения для двух, трех и более значений. Однако есть и частные методы , помогающие искать НОК, если предыдущие не помогают.
Как находить НОД и НОК.
Частные способы нахождения
Как и для любого математического раздела, имеются частные случаи нахождения НОК, которые помогают в специфических ситуациях:
- если одно из чисел делится на другие без остатка, то самое невысокое кратное этих чисел равно ему (НОК 60 и 15 равно 15);
- взаимно простые числа не имеют общих простых делителей. Их самое небольшое значение равно произведению этих чисел. Таким образом, для чисел 7 и 8 таковым будет 56;
- это же правило работает и для остальных случаев, включая специальные, о которых можно прочитать в специализированной литературе. Сюда же следует отнести и случаи разложения составных чисел, которые являются темой отдельных статей и даже кандидатских диссертаций.
Частные случаи встречаются реже, нежели стандартные примеры. Но благодаря им можно научиться работать с дробями различной степени сложности. Особенно это актуально для дробей , где имеются неодинаковые знаменатели.
Немного примеров
Разберем несколько примеров, благодаря которым можно понять принцип нахождения наименьшего кратного:
- Находим НОК (35; 40). Раскладываем сначала 35 = 5*7, затем 40 = 5*8. Добавляем к наименьшему цифру 8 и получаем НОК 280.
- НОК (45; 54). Раскладываем каждое из них: 45 = 3*3*5 и 54 = 3*3*6. Добавляем к 45 цифру 6. Получаем НОК, равный 270.
- Ну и последний пример. Есть 5 и 4. Простых кратных для них не имеется, поэтому наименьшее общее кратное в этом случае будет их произведение, равное 20.
Благодаря примерам можно понять, как находится НОК, какие есть нюансы и в чем заключается смысл таких манипуляций.
Находит НОК гораздо проще, чем может показаться изначально. Для этого применяется как простое разложение, так и умножение простых значений друг на друга . Умение работать с данным разделом математики помогает при дальнейшем изучении математических тем, в особенности дробей разной степени сложности.
Не забывайте периодически решать примеры различными методами, это развивает логический аппарат и позволяет запомнить многочисленные термины. Изучайте методы нахождения такого показателя и вы сможете хорошо работать с остальными математическими разделами. Удачного изучения математики!
Видео
Это видео поможет вам понять и запомнить, как находить наименьшее общее кратное.
Рассмотрим решение следующей задачи. Шаг мальчика составляет 75 см, а шаг девочки 60 см. Необходимо найти наименьшее расстояние, на котором они оба сделают по целому числу шагов.
Решение. Весь путь который пройдут ребята, должен делиться без остатка на 60 и на 70, так как они должны сделать каждый целое число шагов. Другими словами, в ответе должно быть число, кратное как 75 так и 60.
Сначала будем выписывать все кратные числа, для числа 75. Получаем:
- 75, 150, 225, 300, 375, 450, 525, 600, 675, … .
Теперь выпишем числа, которые будут кратны 60. Получаем:
- 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .
Теперь находим числа которые есть в обоих рядах.
- Общими кратными чисел будут числа, 300, 600, и т.д.
Самое наименьшее из них, это число 300. Оно в данном случае будет называться наименьшим общим кратным чисел 75 и 60.
Возвращаясь к условию задачи, наименьшее расстояние, на котором ребята сделают целое число шагов будет 300 см. Мальчик пройдет этот путь за 4 шага, а девочке потребуется сделать 5 шагов.
Определение наименьшего общего кратного
- Наименьшим общим кратным двух натуральных чисел a и b называется наименьшее натуральное число, которое кратно как a, так и b.
Для того, чтобы найти наименьшее общее кратное двух чисел, не обязательно выписывть подряд все кратные для этих чисел.
Можно воспользоваться следующим методом.
Как найти наименьшее общее кратное
Сначала необходимо разложить данные числа на простые множители.
- 60 = 2*2*3*5,
- 75=3*5*5.
Теперь выпишем все множители которые есть в разложении первого числа (2,2,3,5) и добавим к нему все недостающие множители из разложения второго числа (5).
Получим в итоге ряд простых чисел: 2,2,3,5,5. Произведение этих чисел и будет наименьшим общим сомножителем для данных чисел. 2*2*3*5*5 = 300.
Общая схема нахождения наименьшего общего кратного
- 1. Разложить числа на простые множители.
- 2. Выписать простые множители которые входят в состав одного из них.
- 3. Добавить к этим множителям все те, которые есть в разложении остальных, но нет в выбранном.
- 4. Найти произведение всех выписанных сомножителей.
Данный способ универсален. С его помощью можно найти наименьшее общее кратное любого количества натуральных чисел.
Кратное число – это число, которое делится на данное число без остатка. Наименьшее общее кратное (НОК) группы чисел – это наименьшее число, которое делится без остатка на каждое число группы. Чтобы найти наименьшее общее кратное, нужно найти простые множители данных чисел. Также НОК можно вычислить с помощью ряда других методов, которые применимы к группам из двух и более чисел.
Шаги
Ряд кратных чисел
- Например, найдите наименьшее общее кратное чисел 5 и 8. Это небольшие числа, поэтому можно использовать данный метод.
-
Кратное число – это число, которое делится на данное число без остатка. Кратные числа можно посмотреть в таблице умножения..
- Например, числами, которые кратны 5, являются: 5, 10, 15, 20, 25, 30, 35, 40.
-
Запишите ряд чисел, которые кратны первому числу. Сделайте это под кратными числами первого числа, чтобы сравнить два ряда чисел.
- Например, числами, которые кратны 8, являются: 8, 16, 24, 32, 40, 48, 56, и 64.
-
Найдите наименьшее число, которое присутствует в обоих рядах кратных чисел. Возможно, вам придется написать длинные ряды кратных чисел, чтобы найти общее число. Наименьшее число, которое присутствует в обоих рядах кратных чисел, является наименьшим общим кратным.
- Например, наименьшим числом, которое присутствует в рядах кратных чисел 5 и 8, является число 40. Поэтому 40 – это наименьшее общее кратное чисел 5 и 8.
Разложение на простые множители
-
Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых больше 10. Если даны меньшие числа, воспользуйтесь другим методом.
- Например, найдите наименьшее общее кратное чисел 20 и 84. Каждое из чисел больше 10, поэтому можно использовать данный метод.
-
Разложите на простые множители первое число. То есть нужно найти такие простые числа, при перемножении которых получится данное число. Найдя простые множители, запишите их в виде равенства.
- Например, 2 × 10 = 20 {\displaystyle {\mathbf {2} }\times 10=20} и 2 × 5 = 10 {\displaystyle {\mathbf {2} }\times {\mathbf {5} }=10} . Таким образом, простыми множителями числа 20 являются числа 2, 2 и 5. Запишите их в виде выражения: .
-
Разложите на простые множители второе число. Сделайте это так же, как вы раскладывали на множители первое число, то есть найдите такие простые числа, при перемножении которых получится данное число.
- Например, 2 × 42 = 84 {\displaystyle {\mathbf {2} }\times 42=84} , 7 × 6 = 42 {\displaystyle {\mathbf {7} }\times 6=42} и 3 × 2 = 6 {\displaystyle {\mathbf {3} }\times {\mathbf {2} }=6} . Таким образом, простыми множителями числа 84 являются числа 2, 7, 3 и 2. Запишите их в виде выражения: .
-
Запишите множители, общие для обоих чисел. Запишите такие множители в виде операции умножения. По мере записи каждого множителя зачеркивайте его в обоих выражениях (выражения, которые описывают разложения чисел на простые множители).
- Например, общим для обоих чисел является множитель 2, поэтому напишите 2 × {\displaystyle 2\times } и зачеркните 2 в обоих выражениях.
- Общим для обоих чисел является еще один множитель 2, поэтому напишите 2 × 2 {\displaystyle 2\times 2} и зачеркните вторую 2 в обоих выражениях.
-
К операции умножения добавьте оставшиеся множители. Это множители, которые не зачеркнуты в обоих выражениях, то есть множители, не являющиеся общими для обоих чисел.
- Например, в выражении 20 = 2 × 2 × 5 {\displaystyle 20=2\times 2\times 5} зачеркнуты обе двойки (2), потому что они являются общими множителями. Не зачеркнут множитель 5, поэтому операцию умножения запишите так: 2 × 2 × 5 {\displaystyle 2\times 2\times 5}
- В выражении 84 = 2 × 7 × 3 × 2 {\displaystyle 84=2\times 7\times 3\times 2} также зачеркнуты обе двойки (2). Не зачеркнуты множители 7 и 3, поэтому операцию умножения запишите так: 2 × 2 × 5 × 7 × 3 {\displaystyle 2\times 2\times 5\times 7\times 3} .
-
Вычислите наименьшее общее кратное. Для этого перемножьте числа в записанной операции умножения.
- Например, 2 × 2 × 5 × 7 × 3 = 420 {\displaystyle 2\times 2\times 5\times 7\times 3=420} . Таким образом, наименьшее общее кратное 20 и 84 равно 420.
Нахождение общих делителей
-
Нарисуйте сетку как для игры в крестики-нолики. Такая сетка представляет собой две параллельные прямые, которые пересекаются (под прямым углом) с другими двумя параллельными прямыми. Таким образом, получатся три строки и три столбца (сетка очень похожа на значок #). Первое число напишите в первой строке и втором столбце. Второе число напишите в первой строке и третьем столбце.
- Например, найдите наименьшее общее кратное чисел 18 и 30. Число 18 напишите в первой строке и втором столбце, а число 30 напишите в первой строке и третьем столбце.
-
Найдите делитель, общий для обоих чисел. Запишите его в первой строке и первом столбце. Лучше искать простые делители, но это не является обязательным условием.
- Например, 18 и 30 – это четные числа, поэтому их общим делителем будет число 2. Таким образом, напишите 2 в первой строке и первом столбце.
-
Разделите каждое число на первый делитель. Каждое частное запишите под соответствующим числом. Частное – это результат деления двух чисел.
- Например, 18 ÷ 2 = 9 {\displaystyle 18\div 2=9} , поэтому запишите 9 под 18.
- 30 ÷ 2 = 15 {\displaystyle 30\div 2=15} , поэтому запишите 15 под 30.
-
Найдите делитель, общий для обоих частных. Если такого делителя нет, пропустите два следующих шага. В противном случае делитель запишите во второй строке и первом столбце.
- Например, 9 и 15 делятся на 3, поэтому запишите 3 во второй строке и первом столбце.
-
Разделите каждое частное на второй делитель. Каждый результат деления запишите под соответствующим частным.
- Например, 9 ÷ 3 = 3 {\displaystyle 9\div 3=3} , поэтому запишите 3 под 9.
- 15 ÷ 3 = 5 {\displaystyle 15\div 3=5} , поэтому запишите 5 под 15.
-
Если нужно, дополните сетку дополнительными ячейками. Повторяйте описанные действия до тех пор, пока у частных не будет общего делителя.
-
Обведите кружками числа в первом столбце и последней строке сетки. Затем выделенные числа запишите в виде операции умножения.
- Например, числа 2 и 3 находятся в первом столбце, а числа 3 и 5 находятся в последней строке, поэтому операцию умножения запишите так: 2 × 3 × 3 × 5 {\displaystyle 2\times 3\times 3\times 5} .
-
Найдите результат умножения чисел. Так вы вычислите наименьшее общее кратное двух данных чисел.
- Например, 2 × 3 × 3 × 5 = 90 {\displaystyle 2\times 3\times 3\times 5=90} . Таким образом, наименьшее общее кратное 18 и 30 равно 90.
Алгоритм Евклида
-
Запомните терминологию, связанную с операцией деления. Делимое – это число, которое делят. Делитель – это число, на которое делят. Частное – это результат деления двух чисел. Остаток – это число, оставшееся при делении двух чисел.
- Например, в выражении 15 ÷ 6 = 2 {\displaystyle 15\div 6=2}
ост. 3:
15 – это делимое
6 – это делитель
2 – это частное
3 – это остаток.
- Например, в выражении 15 ÷ 6 = 2 {\displaystyle 15\div 6=2}
ост. 3:
Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых меньше 10. Если даны большие числа, воспользуйтесь другим методом.