Οι απλούστερες εξισώσεις με εφαπτομένη. Επίλυση τριγωνομετρικών εξισώσεων. Πώς να λύσετε μια τριγωνομετρική εξίσωση

Κατά την επίλυση πολλών μαθηματικά προβλήματα, ειδικά αυτές που συμβαίνουν πριν από τον βαθμό 10, η σειρά των ενεργειών που εκτελούνται που θα οδηγήσουν στον στόχο είναι σαφώς καθορισμένη. Τέτοια προβλήματα περιλαμβάνουν, για παράδειγμα, γραμμικά και τετραγωνικές εξισώσεις, γραμμικό και τετραγωνικές ανισότητες, κλασματικές εξισώσειςκαι εξισώσεις που ανάγονται σε δευτεροβάθμιες. Η αρχή της επιτυχούς επίλυσης καθενός από τα αναφερόμενα προβλήματα είναι η εξής: πρέπει να καθορίσετε τον τύπο του προβλήματος που λύνετε, θυμηθείτε απαραίτητη σειράενέργειες που θα οδηγήσουν στο επιθυμητό αποτέλεσμα, δηλ. απαντήστε και ακολουθήστε αυτά τα βήματα.

Είναι προφανές ότι η επιτυχία ή η αποτυχία στην επίλυση ενός συγκεκριμένου προβλήματος εξαρτάται κυρίως από το πόσο σωστά καθορίζεται ο τύπος της εξίσωσης που επιλύεται, πόσο σωστά αναπαράγεται η ακολουθία όλων των σταδίων της επίλυσής της. Φυσικά, σε αυτή την περίπτωση είναι απαραίτητο να έχετε τις δεξιότητες για την εκτέλεση πανομοιότυπων μετασχηματισμών και υπολογισμών.

Η κατάσταση είναι διαφορετική με τριγωνομετρικές εξισώσεις.Δεν είναι καθόλου δύσκολο να τεκμηριωθεί το γεγονός ότι η εξίσωση είναι τριγωνομετρική. Προκύπτουν δυσκολίες κατά τον καθορισμό της αλληλουχίας των ενεργειών που θα οδηγούσαν στη σωστή απάντηση.

Με εμφάνισηεξίσωση, μερικές φορές είναι δύσκολο να προσδιοριστεί ο τύπος του. Και χωρίς να γνωρίζουμε τον τύπο της εξίσωσης, είναι σχεδόν αδύνατο να επιλέξετε το σωστό από πολλές δεκάδες τριγωνομετρικούς τύπους.

Για να λύσετε μια τριγωνομετρική εξίσωση, πρέπει να δοκιμάσετε:

1. Φέρτε όλες τις συναρτήσεις που περιλαμβάνονται στην εξίσωση στις «ίδιες γωνίες».
2. Φέρτε την εξίσωση σε «πανομοιότυπες συναρτήσεις».
3. παραμετροποιήστε την αριστερή πλευρά της εξίσωσης κ.λπ.

Ας σκεφτούμε βασικές μέθοδοι λύσης τριγωνομετρικές εξισώσεις.

I. Αναγωγή στις απλούστερες τριγωνομετρικές εξισώσεις

Διάγραμμα λύσης

Βήμα 1.Εξπρές τριγωνομετρική συνάρτησημέσω γνωστών εξαρτημάτων.

Βήμα 2.Βρείτε το όρισμα συνάρτησης χρησιμοποιώντας τους τύπους:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = αρκτάνη a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Βήμα 3.Βρείτε την άγνωστη μεταβλητή.

Παράδειγμα.

2 cos(3x – π/4) = -√2.

Λύση.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Απάντηση: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Αντικατάσταση μεταβλητής

Διάγραμμα λύσης

Βήμα 1.Ανάγουμε την εξίσωση σε αλγεβρική μορφή σε σχέση με μία από τις τριγωνομετρικές συναρτήσεις.

Βήμα 2.Σημειώστε τη συνάρτηση που προκύπτει με τη μεταβλητή t (αν χρειάζεται, εισάγετε περιορισμούς στο t).

Βήμα 3.Καταγράψτε και λύστε την αλγεβρική εξίσωση που προκύπτει.

Βήμα 4.Κάντε μια αντίστροφη αντικατάσταση.

Βήμα 5.Να λύσετε την απλούστερη τριγωνομετρική εξίσωση.

Παράδειγμα.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Λύση.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Έστω sin (x/2) = t, όπου |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 ή e = -3/2, δεν ικανοποιεί τη συνθήκη |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Απάντηση: x = π + 4πn, n Є Z.

III. Μέθοδος μείωσης σειράς εξίσωσης

Διάγραμμα λύσης

Βήμα 1.Αντικαταστήστε αυτήν την εξίσωση με μια γραμμική, χρησιμοποιώντας τον τύπο για τη μείωση του βαθμού:

αμαρτία 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Βήμα 2.Λύστε την εξίσωση που προκύπτει χρησιμοποιώντας τις μεθόδους I και II.

Παράδειγμα.

cos 2x + cos 2 x = 5/4.

Λύση.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Απάντηση: x = ±π/6 + πn, n Є Z.

IV. Ομογενείς εξισώσεις

Διάγραμμα λύσης

Βήμα 1.Μειώστε αυτήν την εξίσωση στη φόρμα

α) a sin x + b cos x = 0 (ομογενής εξίσωση πρώτου βαθμού)

ή στη θέα

β) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (ομοιογενής εξίσωση δεύτερου βαθμού).

Βήμα 2.Διαιρέστε και τις δύο πλευρές της εξίσωσης με

α) cos x ≠ 0;

β) cos 2 x ≠ 0;

και πάρτε την εξίσωση για το tan x:

α) a tan x + b = 0;

β) a tan 2 x + b arctan x + c = 0.

Βήμα 3.Λύστε την εξίσωση χρησιμοποιώντας γνωστές μεθόδους.

Παράδειγμα.

5sin 2 x + 3sin x cos x – 4 = 0.

Λύση.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Έστω tg x = t, τότε

t 2 + 3t – 4 = 0;

t = 1 ή t = -4, που σημαίνει

tg x = 1 ή tg x = -4.

Από την πρώτη εξίσωση x = π/4 + πn, n Є Z; από τη δεύτερη εξίσωση x = -arctg 4 + πk, k Є Z.

Απάντηση: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Μέθοδος μετασχηματισμού εξίσωσης με χρήση τριγωνομετρικών τύπων

Διάγραμμα λύσης

Βήμα 1.Χρησιμοποιώντας όλα τα είδη τριγωνομετρικοί τύποι, ανάγετε αυτήν την εξίσωση σε μια εξίσωση που επιλύεται με τις μεθόδους I, II, III, IV.

Βήμα 2.Λύστε την εξίσωση που προκύπτει χρησιμοποιώντας γνωστές μεθόδους.

Παράδειγμα.

αμαρτία x + αμαρτία 2x + αμαρτία 3x = 0.

Λύση.

1) (αμαρτία x + αμαρτία 3x) + αμαρτία 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) αμαρτία 2x (2cos x + 1) = 0;

sin 2x = 0 ή 2cos x + 1 = 0;

Από την πρώτη εξίσωση 2x = π/2 + πn, n Є Z; από τη δεύτερη εξίσωση cos x = -1/2.

Έχουμε x = π/4 + πn/2, n Є Z; από τη δεύτερη εξίσωση x = ±(π – π/3) + 2πk, k Є Z.

Ως αποτέλεσμα, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Απάντηση: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Η ικανότητα και η ικανότητα επίλυσης τριγωνομετρικών εξισώσεων είναι πολύ σημαντικό, η ανάπτυξή τους απαιτεί σημαντική προσπάθεια, τόσο από την πλευρά του μαθητή όσο και από την πλευρά του δασκάλου.

Πολλά προβλήματα στερεομετρίας, φυσικής κ.λπ. σχετίζονται με την επίλυση τριγωνομετρικών εξισώσεων Η διαδικασία επίλυσης τέτοιων προβλημάτων ενσωματώνει πολλές από τις γνώσεις και τις δεξιότητες που αποκτώνται με τη μελέτη των στοιχείων της τριγωνομετρίας.

Οι τριγωνομετρικές εξισώσεις κατέχουν σημαντική θέση στη διαδικασία της εκμάθησης των μαθηματικών και της προσωπικής ανάπτυξης γενικότερα.

Έχετε ακόμα ερωτήσεις; Δεν ξέρετε πώς να λύσετε τριγωνομετρικές εξισώσεις;
Για να λάβετε βοήθεια από έναν δάσκαλο, εγγραφείτε.
Το πρώτο μάθημα είναι δωρεάν!

ιστοσελίδα, κατά την πλήρη ή μερική αντιγραφή υλικού, απαιτείται σύνδεσμος προς την πηγή.

Η διατήρηση του απορρήτου σας είναι σημαντική για εμάς. Για το λόγο αυτό, έχουμε αναπτύξει μια Πολιτική Απορρήτου που περιγράφει τον τρόπο με τον οποίο χρησιμοποιούμε και αποθηκεύουμε τις πληροφορίες σας. Διαβάστε τις πρακτικές απορρήτου μας και ενημερώστε μας εάν έχετε ερωτήσεις.

Συλλογή και χρήση προσωπικών πληροφοριών

Οι προσωπικές πληροφορίες αναφέρονται σε δεδομένα που μπορούν να χρησιμοποιηθούν για την αναγνώριση ή επικοινωνία με ένα συγκεκριμένο άτομο.

Ενδέχεται να σας ζητηθεί να δώσετε τα προσωπικά σας στοιχεία ανά πάσα στιγμή όταν επικοινωνήσετε μαζί μας.

Ακολουθούν ορισμένα παραδείγματα των τύπων προσωπικών πληροφοριών που ενδέχεται να συλλέγουμε και πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες.

Ποιες προσωπικές πληροφορίες συλλέγουμε:

  • Όταν υποβάλλετε μια αίτηση στον ιστότοπο, ενδέχεται να συλλέξουμε διάφορες πληροφορίες, όπως το όνομά σας, τον αριθμό τηλεφώνου, τη διεύθυνση email σας κ.λπ.

Πώς χρησιμοποιούμε τα προσωπικά σας στοιχεία:

  • Τα προσωπικά στοιχεία που συλλέγουμε μας επιτρέπουν να επικοινωνήσουμε μαζί σας και να σας ενημερώσουμε σχετικά μοναδικές προσφορές, προωθητικές ενέργειες και άλλες εκδηλώσεις και επερχόμενες εκδηλώσεις.
  • Από καιρό σε καιρό, ενδέχεται να χρησιμοποιήσουμε τα προσωπικά σας στοιχεία για να στείλουμε σημαντικές ειδοποιήσεις και επικοινωνίες.
  • Ενδέχεται επίσης να χρησιμοποιήσουμε προσωπικές πληροφορίες για εσωτερικούς σκοπούς, όπως διεξαγωγή ελέγχων, ανάλυση δεδομένων και διάφορες έρευνες, προκειμένου να βελτιώσουμε τις υπηρεσίες που παρέχουμε και να σας παρέχουμε συστάσεις σχετικά με τις υπηρεσίες μας.
  • Εάν συμμετέχετε σε κλήρωση, διαγωνισμό ή παρόμοια προσφορά, ενδέχεται να χρησιμοποιήσουμε τις πληροφορίες που παρέχετε για τη διαχείριση τέτοιων προγραμμάτων.

Αποκάλυψη πληροφοριών σε τρίτους

Δεν αποκαλύπτουμε τις πληροφορίες που λαμβάνουμε από εσάς σε τρίτους.

Εξαιρέσεις:

  • Εάν είναι απαραίτητο - σύμφωνα με το νόμο, τη δικαστική διαδικασία, τις νομικές διαδικασίες ή/και με βάση δημόσια αιτήματα ή αιτήματα από κυβερνητικές υπηρεσίεςστο έδαφος της Ρωσικής Ομοσπονδίας - αποκαλύψτε τα προσωπικά σας στοιχεία. Ενδέχεται επίσης να αποκαλύψουμε πληροφορίες σχετικά με εσάς εάν κρίνουμε ότι αυτή η αποκάλυψη είναι απαραίτητη ή κατάλληλη για λόγους ασφάλειας, επιβολής του νόμου ή άλλους σκοπούς δημόσιας υγείας. σημαντικές περιπτώσεις.
  • Σε περίπτωση αναδιοργάνωσης, συγχώνευσης ή πώλησης, ενδέχεται να μεταφέρουμε τις προσωπικές πληροφορίες που συλλέγουμε στον αντίστοιχο τρίτο διάδοχο.

Προστασία προσωπικών πληροφοριών

Λαμβάνουμε προφυλάξεις - συμπεριλαμβανομένων διοικητικών, τεχνικών και φυσικών - για την προστασία των προσωπικών σας δεδομένων από απώλεια, κλοπή και κακή χρήση, καθώς και από μη εξουσιοδοτημένη πρόσβαση, αποκάλυψη, τροποποίηση και καταστροφή.

Σεβασμός του απορρήτου σας σε εταιρικό επίπεδο

Για να διασφαλίσουμε ότι τα προσωπικά σας στοιχεία είναι ασφαλή, κοινοποιούμε τα πρότυπα απορρήτου και ασφάλειας στους υπαλλήλους μας και εφαρμόζουμε αυστηρά τις πρακτικές απορρήτου.


Παραδείγματα:

\(2\sin(⁡x) = \sqrt(3)\)
tg\((3x)=-\) \(\frac(1)(\sqrt(3))\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Πώς να λύσετε τριγωνομετρικές εξισώσεις:

Οποιαδήποτε τριγωνομετρική εξίσωση πρέπει να μειωθεί σε έναν από τους ακόλουθους τύπους:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

όπου \(t\) είναι μια παράσταση με x, \(a\) είναι ένας αριθμός. Τέτοιες τριγωνομετρικές εξισώσεις ονομάζονται το πιο απλό. Μπορούν εύκολα να λυθούν χρησιμοποιώντας () ή ειδικούς τύπους:


Παράδειγμα . Λύστε την τριγωνομετρική εξίσωση \(\sin⁡x=-\)\(\frac(1)(2)\).
Λύση:

Απάντηση: \(\αριστερά[ \αρχή(συγκεντρώθηκε)x=-\frac(π)(6)+2πk, \\ x=-\frac(5π)(6)+2πn, \end(συγκεντρώθηκε)\δεξιά.\) \(k,n∈Z\)

Τι σημαίνει κάθε σύμβολο στον τύπο για τις ρίζες των τριγωνομετρικών εξισώσεων, βλ.

Προσοχή!Οι εξισώσεις \(\sin⁡x=a\) και \(\cos⁡x=a\) δεν έχουν λύσεις εάν \(a ϵ (-∞;-1)∪(1;∞)\). Επειδή το ημίτονο και το συνημίτονο για οποιοδήποτε x είναι μεγαλύτερο ή ίσο με \(-1\) και μικρότερο ή ίσο με \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

Παράδειγμα . Λύστε την εξίσωση \(\cos⁡x=-1,1\).
Λύση: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Απάντηση : Δεν υπάρχουν λύσεις.


Παράδειγμα . Λύστε την τριγωνομετρική εξίσωση tg\(⁡x=1\).
Λύση:

Ας λύσουμε την εξίσωση χρησιμοποιώντας τον αριθμητικό κύκλο. Για αυτό:
1) Κατασκευάστε έναν κύκλο)
2) Κατασκευάστε τους άξονες \(x\) και \(y\) και τον εφαπτομενικό άξονα (διέρχεται από το σημείο \((0;1)\) παράλληλα με τον άξονα \(y\)).
3) Στον εφαπτομενικό άξονα, σημειώστε το σημείο \(1\).
4) Συνδέστε αυτό το σημείο και την αρχή των συντεταγμένων - μια ευθεία γραμμή.
5) Σημειώστε τα σημεία τομής αυτής της ευθείας και τον αριθμητικό κύκλο.
6) Ας υπογράψουμε τις τιμές αυτών των σημείων: \(\frac(π)(4)\) ,\(\frac(5π)(4)\)
7) Καταγράψτε όλες τις τιμές αυτών των σημείων. Δεδομένου ότι βρίσκονται σε απόσταση ακριβώς \(π\) μεταξύ τους, όλες οι τιμές μπορούν να γραφτούν σε έναν τύπο:

Απάντηση: \(x=\)\(\frac(π)(4)\) \(+πk\), \(k∈Z\).

Παράδειγμα . Λύστε την τριγωνομετρική εξίσωση \(\cos⁡(3x+\frac(π)(4))=0\).
Λύση:


Ας χρησιμοποιήσουμε ξανά τον αριθμητικό κύκλο.
1) Κατασκευάστε έναν κύκλο, άξονες \(x\) και \(y\).
2) Στον άξονα συνημιτόνου (άξονας \(x\)), σημειώστε \(0\).
3) Σχεδιάστε μια κάθετη στον άξονα συνημιτόνου μέσω αυτού του σημείου.
4) Σημειώστε τα σημεία τομής της κάθετης και του κύκλου.
5) Ας υπογράψουμε τις τιμές αυτών των σημείων: \(-\) \(\frac(π)(2)\),\(\frac(π)(2)\).
6) Καταγράφουμε ολόκληρη την τιμή αυτών των σημείων και τα εξισώνουμε με το συνημίτονο (σε αυτό που βρίσκεται μέσα στο συνημίτονο).

\(3x+\)\(\frac(π)(4)\) \(=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac(π)(4)\) \(=\)\(\frac(π)(2)\) \(+2πk\) \(3x+\)\(\frac( π)(4)\) \(=-\)\(\frac(π)(2)\) \(+2πk\)

8) Ως συνήθως, θα εκφράσουμε το \(x\) σε εξισώσεις.
Μην ξεχνάτε να αντιμετωπίζετε τους αριθμούς με \(π\), καθώς και \(1\), \(2\), \(\frac(1)(4)\), κ.λπ. Αυτοί είναι οι ίδιοι αριθμοί με όλους τους άλλους. Καμία αριθμητική διάκριση!

\(3x=-\)\(\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\) \(3x=-\)\ (\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\)
\(3x=\)\(\frac(π)(4)\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac(3π)(4)\) \(+2πk\) \(|:3\)
\(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\)

Απάντηση: \(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\) , \(k∈Z\).

Η μείωση των τριγωνομετρικών εξισώσεων στο απλούστερο είναι μια δημιουργική εργασία εδώ που πρέπει να χρησιμοποιήσετε και τις δύο και ειδικές μεθόδους για την επίλυση εξισώσεων:
- Μέθοδος (η πιο δημοφιλής στην Ενιαία Κρατική Εξέταση).
- Μέθοδος.
- Μέθοδος βοηθητικών ορισμάτων.


Ας εξετάσουμε ένα παράδειγμα επίλυσης της τετραγωνικής τριγωνομετρικής εξίσωσης

Παράδειγμα . Λύστε την τριγωνομετρική εξίσωση \(2\cos^2⁡x-5\cos⁡x+2=0\)
Λύση:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Ας κάνουμε την αντικατάσταση \(t=\cos⁡x\).

Η εξίσωσή μας έχει γίνει τυπική. Μπορείτε να το λύσετε χρησιμοποιώντας .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

\(t_1=\)\(\frac(5-3)(4)\) \(=\)\(\frac(1)(2)\) ; \(t_2=\)\(\frac(5+3)(4)\) \(=2\)

Κάνουμε αντίστροφη αντικατάσταση.

\(\cos⁡x=\)\(\frac(1)(2)\); \(\cos⁡x=2\)

Λύνουμε την πρώτη εξίσωση χρησιμοποιώντας τον αριθμητικό κύκλο.
Η δεύτερη εξίσωση δεν έχει λύσεις γιατί \(\cos⁡x∈[-1;1]\) και δεν μπορεί να είναι ίσο με δύο για οποιοδήποτε x.

Ας γράψουμε όλους τους αριθμούς που βρίσκονται σε αυτά τα σημεία.

Απάντηση: \(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\).

Ένα παράδειγμα επίλυσης τριγωνομετρικής εξίσωσης με τη μελέτη του ODZ:

Παράδειγμα (ΧΡΗΣΗ) . Λύστε την τριγωνομετρική εξίσωση \(=0\)

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Υπάρχει ένα κλάσμα και υπάρχει μια συνεφαπτομένη - αυτό σημαίνει ότι πρέπει να το γράψουμε. Επιτρέψτε μου να σας υπενθυμίσω ότι μια συνεφαπτομένη είναι στην πραγματικότητα ένα κλάσμα:

ctg\(x=\)\(\frac(\cos⁡x)(\sin⁡x)\)

Επομένως, το ODZ για ctg\(x\): \(\sin⁡x≠0\).

ODZ: ctg\(x ≠0\); \(\sin⁡x≠0\)

\(x≠±\)\(\frac(π)(2)\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

Ας σημειώσουμε τις «μη λύσεις» στον αριθμητικό κύκλο.

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Ας απαλλαγούμε από τον παρονομαστή στην εξίσωση πολλαπλασιάζοντάς τον με ctg\(x\). Μπορούμε να το κάνουμε αυτό, αφού γράψαμε παραπάνω ότι ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡(2x)=0\)

Ας εφαρμόσουμε τον τύπο διπλής γωνίας για το ημίτονο: \(\sin⁡(2x)=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Εάν τα χέρια σας απλώνονται για να διαιρεθούν με το συνημίτονο, τραβήξτε τα πίσω! Μπορείτε να διαιρέσετε με μια παράσταση με μια μεταβλητή εάν σίγουρα δεν είναι ίση με μηδέν (για παράδειγμα, αυτά: \(x^2+1,5^x\)). Αντίθετα, ας βάλουμε το \(\cos⁡x\) εκτός αγκύλων.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

Ας «χωρίσουμε» την εξίσωση στα δύο.

\(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

Ας λύσουμε την πρώτη εξίσωση χρησιμοποιώντας τον αριθμητικό κύκλο. Διαιρέστε τη δεύτερη εξίσωση με το \(2\) και μετακινήστε το \(\sin⁡x\) στη δεξιά πλευρά.

\(x=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Οι προκύπτουσες ρίζες δεν περιλαμβάνονται στο ODZ. Ως εκ τούτου, δεν θα τα γράψουμε ως απάντηση.
Η δεύτερη εξίσωση είναι χαρακτηριστική. Ας το διαιρέσουμε με \(\sin⁡x\) (\(\sin⁡x=0\) δεν μπορεί να είναι λύση στην εξίσωση γιατί σε αυτήν την περίπτωση \(\cos⁡x=1\) ή \(\cos⁡ x=-1\)).

Χρησιμοποιούμε ξανά κύκλο.


\(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\)

Αυτές οι ρίζες δεν αποκλείονται από το ODZ, οπότε μπορείτε να τις γράψετε στην απάντηση.

Απάντηση: \(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\).

Κατά την επίλυση πολλών μαθηματικά προβλήματα, ειδικά αυτές που συμβαίνουν πριν από τον βαθμό 10, η σειρά των ενεργειών που εκτελούνται που θα οδηγήσουν στον στόχο είναι σαφώς καθορισμένη. Τέτοια προβλήματα περιλαμβάνουν, για παράδειγμα, γραμμικές και τετραγωνικές εξισώσεις, γραμμικές και τετραγωνικές ανισώσεις, κλασματικές εξισώσεις και εξισώσεις που ανάγονται σε τετραγωνικές. Η αρχή της επιτυχούς επίλυσης καθενός από τα αναφερόμενα προβλήματα είναι η εξής: πρέπει να καθορίσετε τον τύπο του προβλήματος που επιλύετε, να θυμάστε την απαραίτητη σειρά ενεργειών που θα οδηγήσουν στο επιθυμητό αποτέλεσμα, δηλ. απαντήστε και ακολουθήστε αυτά τα βήματα.

Είναι προφανές ότι η επιτυχία ή η αποτυχία στην επίλυση ενός συγκεκριμένου προβλήματος εξαρτάται κυρίως από το πόσο σωστά καθορίζεται ο τύπος της εξίσωσης που επιλύεται, πόσο σωστά αναπαράγεται η ακολουθία όλων των σταδίων της επίλυσής της. Φυσικά, σε αυτή την περίπτωση είναι απαραίτητο να έχετε τις δεξιότητες για την εκτέλεση πανομοιότυπων μετασχηματισμών και υπολογισμών.

Η κατάσταση είναι διαφορετική με τριγωνομετρικές εξισώσεις.Δεν είναι καθόλου δύσκολο να τεκμηριωθεί το γεγονός ότι η εξίσωση είναι τριγωνομετρική. Προκύπτουν δυσκολίες κατά τον καθορισμό της αλληλουχίας των ενεργειών που θα οδηγούσαν στη σωστή απάντηση.

Μερικές φορές είναι δύσκολο να προσδιοριστεί ο τύπος του με βάση την εμφάνιση μιας εξίσωσης. Και χωρίς να γνωρίζουμε τον τύπο της εξίσωσης, είναι σχεδόν αδύνατο να επιλέξετε το σωστό από πολλές δεκάδες τριγωνομετρικούς τύπους.

Για να λύσετε μια τριγωνομετρική εξίσωση, πρέπει να δοκιμάσετε:

1. Φέρτε όλες τις συναρτήσεις που περιλαμβάνονται στην εξίσωση στις «ίδιες γωνίες».
2. Φέρτε την εξίσωση σε «πανομοιότυπες συναρτήσεις».
3. παραμετροποιήστε την αριστερή πλευρά της εξίσωσης κ.λπ.

Ας σκεφτούμε βασικές μέθοδοι επίλυσης τριγωνομετρικών εξισώσεων.

I. Αναγωγή στις απλούστερες τριγωνομετρικές εξισώσεις

Διάγραμμα λύσης

Βήμα 1.Να εκφράσετε μια τριγωνομετρική συνάρτηση ως προς γνωστές συνιστώσες.

Βήμα 2.Βρείτε το όρισμα συνάρτησης χρησιμοποιώντας τους τύπους:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = αρκτάνη a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Βήμα 3.Βρείτε την άγνωστη μεταβλητή.

Παράδειγμα.

2 cos(3x – π/4) = -√2.

Λύση.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Απάντηση: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Αντικατάσταση μεταβλητής

Διάγραμμα λύσης

Βήμα 1.Ανάγουμε την εξίσωση σε αλγεβρική μορφή σε σχέση με μία από τις τριγωνομετρικές συναρτήσεις.

Βήμα 2.Σημειώστε τη συνάρτηση που προκύπτει με τη μεταβλητή t (αν χρειάζεται, εισάγετε περιορισμούς στο t).

Βήμα 3.Καταγράψτε και λύστε την αλγεβρική εξίσωση που προκύπτει.

Βήμα 4.Κάντε μια αντίστροφη αντικατάσταση.

Βήμα 5.Να λύσετε την απλούστερη τριγωνομετρική εξίσωση.

Παράδειγμα.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Λύση.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Έστω sin (x/2) = t, όπου |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 ή e = -3/2, δεν ικανοποιεί τη συνθήκη |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Απάντηση: x = π + 4πn, n Є Z.

III. Μέθοδος μείωσης σειράς εξίσωσης

Διάγραμμα λύσης

Βήμα 1.Αντικαταστήστε αυτήν την εξίσωση με μια γραμμική, χρησιμοποιώντας τον τύπο για τη μείωση του βαθμού:

αμαρτία 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Βήμα 2.Λύστε την εξίσωση που προκύπτει χρησιμοποιώντας τις μεθόδους I και II.

Παράδειγμα.

cos 2x + cos 2 x = 5/4.

Λύση.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Απάντηση: x = ±π/6 + πn, n Є Z.

IV. Ομογενείς εξισώσεις

Διάγραμμα λύσης

Βήμα 1.Μειώστε αυτήν την εξίσωση στη φόρμα

α) a sin x + b cos x = 0 (ομογενής εξίσωση πρώτου βαθμού)

ή στη θέα

β) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (ομοιογενής εξίσωση δεύτερου βαθμού).

Βήμα 2.Διαιρέστε και τις δύο πλευρές της εξίσωσης με

α) cos x ≠ 0;

β) cos 2 x ≠ 0;

και πάρτε την εξίσωση για το tan x:

α) a tan x + b = 0;

β) a tan 2 x + b arctan x + c = 0.

Βήμα 3.Λύστε την εξίσωση χρησιμοποιώντας γνωστές μεθόδους.

Παράδειγμα.

5sin 2 x + 3sin x cos x – 4 = 0.

Λύση.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Έστω tg x = t, τότε

t 2 + 3t – 4 = 0;

t = 1 ή t = -4, που σημαίνει

tg x = 1 ή tg x = -4.

Από την πρώτη εξίσωση x = π/4 + πn, n Є Z; από τη δεύτερη εξίσωση x = -arctg 4 + πk, k Є Z.

Απάντηση: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Μέθοδος μετασχηματισμού εξίσωσης με χρήση τριγωνομετρικών τύπων

Διάγραμμα λύσης

Βήμα 1.Χρησιμοποιώντας όλους τους πιθανούς τριγωνομετρικούς τύπους, ανάγετε αυτήν την εξίσωση σε μια εξίσωση που επιλύεται με τις μεθόδους I, II, III, IV.

Βήμα 2.Λύστε την εξίσωση που προκύπτει χρησιμοποιώντας γνωστές μεθόδους.

Παράδειγμα.

αμαρτία x + αμαρτία 2x + αμαρτία 3x = 0.

Λύση.

1) (αμαρτία x + αμαρτία 3x) + αμαρτία 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) αμαρτία 2x (2cos x + 1) = 0;

sin 2x = 0 ή 2cos x + 1 = 0;

Από την πρώτη εξίσωση 2x = π/2 + πn, n Є Z; από τη δεύτερη εξίσωση cos x = -1/2.

Έχουμε x = π/4 + πn/2, n Є Z; από τη δεύτερη εξίσωση x = ±(π – π/3) + 2πk, k Є Z.

Ως αποτέλεσμα, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Απάντηση: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Η ικανότητα και η ικανότητα επίλυσης τριγωνομετρικών εξισώσεων είναι πολύ σημαντικό, η ανάπτυξή τους απαιτεί σημαντική προσπάθεια, τόσο από την πλευρά του μαθητή όσο και από την πλευρά του δασκάλου.

Πολλά προβλήματα στερεομετρίας, φυσικής κ.λπ. σχετίζονται με την επίλυση τριγωνομετρικών εξισώσεων Η διαδικασία επίλυσης τέτοιων προβλημάτων ενσωματώνει πολλές από τις γνώσεις και τις δεξιότητες που αποκτώνται με τη μελέτη των στοιχείων της τριγωνομετρίας.

Οι τριγωνομετρικές εξισώσεις κατέχουν σημαντική θέση στη διαδικασία της εκμάθησης των μαθηματικών και της προσωπικής ανάπτυξης γενικότερα.

Έχετε ακόμα ερωτήσεις; Δεν ξέρετε πώς να λύσετε τριγωνομετρικές εξισώσεις;
Για να λάβετε βοήθεια από έναν δάσκαλο -.
Το πρώτο μάθημα είναι δωρεάν!

blog.site, κατά την πλήρη ή μερική αντιγραφή υλικού, απαιτείται σύνδεσμος στην αρχική πηγή.

Το μάθημα βίντεο "Get an A" περιλαμβάνει όλα τα απαραίτητα θέματα για την επιτυχή επιτυχία της Ενιαίας Κρατικής Εξέτασης στα μαθηματικά με 60-65 βαθμούς. Πλήρως όλες οι εργασίες 1-13 του Προφίλ Unified State Exam στα μαθηματικά. Κατάλληλο και για επιτυχία στη Βασική Ενιαία Κρατική Εξέταση στα μαθηματικά. Αν θέλετε να περάσετε τις εξετάσεις του Ενιαίου Κράτους με 90-100 μόρια, πρέπει να λύσετε το μέρος 1 σε 30 λεπτά και χωρίς λάθη!

Μάθημα προετοιμασίας για την Ενιαία Κρατική Εξέταση για τις τάξεις 10-11, καθώς και για εκπαιδευτικούς. Όλα όσα χρειάζεστε για να λύσετε το Μέρος 1 της Ενιαίας Κρατικής Εξέτασης στα μαθηματικά (τα πρώτα 12 προβλήματα) και το πρόβλημα 13 (τριγωνομετρία). Και αυτά είναι περισσότερα από 70 μόρια στην Ενιαία Κρατική Εξέταση και ούτε ένας μαθητής 100 βαθμών ούτε ένας φοιτητής ανθρωπιστικών επιστημών μπορεί να τα κάνει χωρίς αυτά.

Όλη η απαραίτητη θεωρία. Γρήγορες λύσεις, παγίδες και μυστικά της Ενιαίας Κρατικής Εξέτασης. Όλες οι τρέχουσες εργασίες του μέρους 1 από την τράπεζα εργασιών FIPI έχουν αναλυθεί. Το μάθημα συμμορφώνεται πλήρως με τις απαιτήσεις της Ενιαίας Κρατικής Εξέτασης 2018.

Το μάθημα περιέχει 5 μεγάλα θέματα, 2,5 ώρες το καθένα. Κάθε θέμα δίνεται από την αρχή, απλά και ξεκάθαρα.

Εκατοντάδες εργασίες Ενιαίας Κρατικής Εξέτασης. Προβλήματα λέξεων και θεωρία πιθανοτήτων. Απλοί και εύκολοι στην απομνημόνευση αλγόριθμοι για την επίλυση προβλημάτων. Γεωμετρία. Θεωρία, υλικό αναφοράς, ανάλυση όλων των τύπων εργασιών Ενιαίας Κρατικής Εξέτασης. Στερεομετρία. Δύσκολες λύσεις, χρήσιμα cheat sheets, ανάπτυξη χωρικής φαντασίας. Τριγωνομετρία από το μηδέν στο πρόβλημα 13. Κατανόηση αντί να στριμώχνω. Σαφείς εξηγήσεις περίπλοκων εννοιών. Αλγεβρα. Ρίζες, δυνάμεις και λογάριθμοι, συνάρτηση και παράγωγος. Μια βάση για την επίλυση σύνθετων προβλημάτων του Μέρους 2 της Ενιαίας Κρατικής Εξέτασης.