Формулы геометрической прогрессии как найти q. Геометрическая прогрессия

Геометрическая прогрессия, наряду с арифметической, является важным числовым рядом, который изучается в школьном курсе алгебры в 9 классе. В данной статье рассмотрим знаменатель геометрической прогрессии, и то, как его значение влияет на ее свойства.

Определение прогрессии геометрической

Для начала приведем определение этого числового ряда. Прогрессией геометрической называют такой ряд рациональных чисел, который формируется путем последовательного умножения его первого элемента на постоянное число, носящее название знаменателя.

Например, числа в ряду 3, 6, 12, 24, ... - это прогрессия геометрическая, поскольку если умножить 3 (первый элемент) на 2, то получим 6. Если 6 умножить на 2, то получим 12, и так далее.

Члены рассматриваемой последовательности принято обозначать символом ai, где i - это целое число, указывающее на номер элемента в ряду.

Приведенное выше определение прогрессии можно записать на языке математики следующим образом: an = bn-1 * a1, где b - знаменатель. Проверить эту формулу легко: если n = 1, то b1-1 = 1, и мы получаем a1 = a1. Если n = 2, тогда an = b * a1, и мы снова приходим к определению рассматриваемого ряда чисел. Аналогичные рассуждения можно продолжить для больших значений n.

Знаменатель прогрессии геометрической


Число b полностью определяет, какой характер будет носить весь числовой ряд. Знаменатель b может быть положительный, отрицательный, а также иметь значение больше единицы или меньше. Все перечисленные варианты приводят к разным последовательностям:

  • b > 1. Имеет место возрастающий ряд рациональных чисел. Например, 1, 2, 4, 8, ... Если элемент a1 будет отрицательным, тогда вся последовательность будет возрастать только по модулю, но убывать с учетом знака чисел.
  • b = 1. Часто такой случай не называют прогрессией, поскольку имеет место обычный ряд одинаковых рациональных чисел. Например, -4, -4, -4.

Формула для суммы

Перед тем как перейти к рассмотрению конкретных задач с использованием знаменателя рассматриваемого вида прогрессии, следует привести важную формулу для суммы ее первых n элементов. Формула имеет вид: Sn = (bn - 1) * a1 / (b - 1).

Получить это выражение можно самостоятельно, если рассмотреть рекурсивную последовательность членов прогрессии. Также заметим, что в приведенной формуле достаточно знать только первый элемент и знаменатель, чтобы найти сумму произвольного числа членов.

Бесконечно убывающая последовательность


Выше было дано пояснение, что она собой представляет. Теперь, зная формулу для Sn, применим ее к этому числовому ряду. Так как любое число, модуль которого не превышает 1, при возведении в большие степени стремится к нулю, то есть b∞ => 0, если -1

Поскольку разность (1 - b) всегда будет положительной, независимо от значения знаменателя, то знак суммы убывающей бесконечно прогрессии геометрической S∞ однозначно определяется знаком ее первого элемента a1.

Теперь рассмотрим несколько задач, где покажем, как применять полученные знания на конкретных числах.

Задача № 1. Вычисление неизвестных элементов прогрессии и суммы

Дана прогрессия геометрическая, знаменатель прогрессии 2, а ее первый элемент 3. Чему будут равны ее 7-й и 10-й члены, и какова сумма ее семи начальных элементов?

Условие задачи составлено достаточно просто и предполагает непосредственное использование вышеназванных формул. Итак, для вычисления элемента с номером n используем выражение an = bn-1 * a1. Для 7-го элемента имеем: a7 = b6 * a1, подставляя известные данные, получаем: a7 = 26 * 3 = 192. Аналогичным образом поступаем для 10-го члена: a10 = 29 * 3 = 1536.

Воспользуемся известной формулой для суммы и определим эту величину для 7-ми первых элементов ряда. Имеем: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Задача № 2. Определение суммы произвольных элементов прогрессии

Пусть -2 равен знаменатель прогрессии в геометрической прогрессии bn-1 * 4, где n - целое число. Необходимо определить сумму с 5-го по 10-й элемент этого ряда включительно.

Поставленная проблема не может быть решена непосредственно с использованием известных формул. Решить ее можно 2-мя различными методами. Для полноты изложения темы приведем оба.

Метод 1. Идея его проста: необходимо рассчитать две соответствующие суммы первых членов, а затем вычесть из одной другую. Вычисляем меньшую сумму: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Теперь вычисляем большую сумму: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Отметим, что в последнем выражении суммировались только 4 слагаемых, поскольку 5-е уже входит в сумму, которую требуется вычислить по условию задачи. Наконец, берем разницу: S510 = S10 - S4 = -1364 - (-20) = -1344.

Метод 2. Перед тем, как подставлять цифры и считать, можно получить формулу для суммы между членами m и n рассматриваемого ряда. Поступаем абсолютно так же, как в методе 1, только работаем сначала с символьным представлением суммы. Имеем: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1). В полученное выражение можно подставлять известные числа и вычислять конечный результат: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Задача № 3. Чему равен знаменатель?


Пусть a1 = 2, найдите знаменатель прогрессии геометрической, при условии, что ее бесконечная сумма составляет 3, и известно, что это убывающий ряд чисел.

По условию задачи нетрудно догадаться, какой формулой следует пользоваться для ее решения. Конечно же, для суммы прогрессии бесконечно убывающей. Имеем: S∞ = a1 / (1 - b). Откуда выражаем знаменатель: b = 1 - a1 / S∞. Осталось подставить известные значения и получить требуемое число: b = 1 - 2 / 3 = -1 / 3 или -0,333(3). Можно качественно проверить этот результат, если вспомнить, что для этого типа последовательности модуль b не должен выходить за пределы 1. Как видно, |-1 / 3|

Задача № 4. Восстановление ряда чисел

Пусть даны 2 элемента числового ряда, например, 5-й равен 30 и 10-й равен 60. Необходимо по этим данным восстановить весь ряд, зная, что он удовлетворяет свойствам прогрессии геометрической.

Чтобы решить задачу, необходимо для начала записать для каждого известного члена соответствующее выражение. Имеем: a5 = b4 * a1 и a10 = b9 * a1. Теперь разделим второе выражение на первое, получим: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Отсюда определяем знаменатель, взяв корень пятой степени от отношения известных из условия задачи членов, b = 1,148698. Полученное число подставляем в одно из выражений для известного элемента, получаем: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Таким образом, мы нашли, чему равен знаменатель прогрессии bn, и геометрическую прогрессию bn-1 * 17,2304966 = an, где b = 1,148698.

Где применяются прогрессии геометрические?


Если бы не существовало применения этого числового ряда на практике, то его изучение сводилось бы к чисто теоретическому интересу. Но такое применение существует.


Ниже перечислены 3 самых знаменитых примера:

  • Парадокс Зенона, в котором ловкий Ахиллес не может догнать медленную черепаху, решается с использованием понятия убывающей бесконечно последовательности чисел.
  • Если на каждую клетку шахматной доски класть зерна пшеницы так, что на 1-ю клетку положить 1 зерно, на 2-ю - 2, на 3-ю - 3 и так далее, то чтобы заполнить все клетки доски понадобится 18446744073709551615 зерен!
  • В игре "Башня Ханоя", чтобы переставить диски с одного стержня на другой, необходимо выполнить 2n - 1 операций, то есть их число растет в геометрической прогрессии от количества используемых дисков n.

Математика – это то, посредством чего люди управляют природой и собой.

Советский математик, академик А.Н. Колмогоров

Геометрическая прогрессия.

Наряду с задачами на арифметические прогрессии также распространенными на вступительных испытаниях по математике являются задачи, связанные с понятием геометрической прогрессии. Для успешного решения таких задач необходимо знать свойства геометрической прогрессии и иметь хорошие навыки их использования.

Настоящая статья посвящена изложению основных свойств геометрической прогрессии. Здесь также приводятся примеры решения типовых задач , позаимствованных из заданий вступительных испытаний по математике.

Предварительно отметим основные свойства геометрической прогрессии и напомним наиболее важные формулы и утверждения , связанные с этим понятием.

Определение. Числовая последовательность называется геометрической прогрессией, если каждое ее число, начиная со второго, равно предыдущему, умноженному на одно и то же число . Число называется знаменателем геометрической прогрессии.

Для геометрической прогрессии справедливы формулы

, (1)

где . Формула (1) называется формулой общего члена геометрической прогрессии, а формула (2) представляет собой основное свойство геометрической прогрессии: каждый член прогрессии совпадает со средним геометрическим своих соседних членов и .

Отметим , что именно из-за этого свойства рассматриваемая прогрессия называется «геометрической».

Приведенные выше формулы (1) и (2) обобщаются следующим образом:

, (3)

Для вычисления суммы первых членов геометрической прогрессии применяется формула

Если обозначить , то

где . Так как , то формула (6) является обобщением формулы (5).

В том случае , когда и , геометрическая прогрессия является бесконечно убывающей. Для вычисления суммы всех членов бесконечно убывающей геометрической прогрессии используется формула

. (7)

Например , с помощью формулы (7) можно показать , что

где . Данные равенства получены из формулы (7) при условии, что , (первое равенство) и , (второе равенство).

Теорема. Если , то

Доказательство. Если , то ,

Теорема доказана.

Перейдем к рассмотрению примеров решения задач на тему «Геометрическая прогрессия».

Пример 1. Дано: , и . Найти .

Решение. Если применить формулу (5), то

Ответ: .

Пример 2. Пусть и . Найти .

Решение. Так как и , то воспользуемся формулами (5), (6) и получим систему уравнений

Если второе уравнение системы (9) разделить на первое , то или . Отсюда следует и . Рассмотрим два случая.

1. Если , то из первого уравнения системы (9) имеем .

2. Если , то .

Пример 3. Пусть , и . Найти .

Решение. Из формулы (2) следует, что или . Так как , то или .

По условию . Однако , поэтому . Поскольку и , то здесь имеем систему уравнений

Если второе уравнение системы разделить на первое, то или .

Так как , то уравнение имеет единственный подходящий корень . В таком случае из первого уравнения системы вытекает .

Принимая во внимание формулу (7), получаем.

Ответ: .

Пример 4. Дано: и . Найти .

Решение. Так как , то .

Поскольку , то или

Согласно формуле (2) имеем . В этой связи из равенства (10) получаем или .

Однако по условию , поэтому .

Пример 5. Известно, что . Найти .

Решение. Согласно теореме имеем два равенства

Так как , то или . Поскольку , то .

Ответ: .

Пример 6. Дано: и . Найти .

Решение. Принимая во внимание формулу (5), получаем

Так как , то . Поскольку , и , то .

Пример 7. Пусть и . Найти .

Решение. Согласно формуле (1) можно записать

Следовательно, имеем или . Известно, что и , поэтому и .

Ответ: .

Пример 8. Найти знаменатель бесконечной убывающей геометрической прогрессии , если

и .

Решение. Из формулы (7) следует и . Отсюда и из условия задачи получаем систему уравнений

Если первое уравнение системы возвести в квадрат , а затем полученное уравнение разделить на второе уравнение , то получим

Или .

Ответ: .

Пример 9. Найти все значения , при которых последовательность , , является геометрической прогрессией.

Решение. Пусть , и . Согласно формуле (2), которая задает основное свойство геометрической прогрессии, можно записать или .

Отсюда получаем квадратное уравнение , корнями которого являются и .

Выполним проверку: если , то , и ; если , то , и .

В первом случае имеем и , а во втором – и .

Ответ: , .

Пример 10. Решить уравнение

, (11)

где и .

Решение. Левая часть уравнения (11) представляет собой сумму бесконечной убывающей геометрической прогрессии, в которой и , при условии: и .

Из формулы (7) следует , что . В этой связи уравнение (11) принимает вид или . Подходящим корнем квадратного уравнения является

Ответ: .

Пример 11. П оследовательность положительных чисел образует арифметическую прогрессию , а – геометрическую прогрессию , причем здесь . Найти .

Решение. Так как арифметическая последовательность , то (основное свойство арифметической прогрессии). Поскольку , то или . Отсюда следует , что геометрическая прогрессия имеет вид . Согласно формуле (2) , далее запишем , что .

Так как и , то . В таком случае выражение принимает вид или . По условию , поэтому из уравнения получаем единственное решение рассматриваемой задачи , т.е. .

Ответ: .

Пример 12. Вычислить сумму

. (12)

Решение. Умножим на 5 обе части равенства (12) и получим

Если из полученного выражения вычесть (12) , то

или .

Для вычисления подставим в формулу (7) значения , и получим . Так как , то .

Ответ: .

Приведенные здесь примеры решения задач будут полезны абитуриентам при подготовке к вступительным испытаниям. Для более глубокого изучения методов решения задач , связанных с геометрической прогрессией , можно использовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование, 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

3. Медынский М.М. Полный курс элементарной математики в задачах и упражнениях. Книга 2: Числовые последовательности и прогрессии. – М.: Эдитус , 2015. – 208 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Это число называется знаменателем геометрической прогрессии, т. е. каждый член отличается от предыдущего в q раз. (Будем считать, что q ≠ 1, иначе все уж слишком тривиально). Нетрудно видеть, что общая формула n -го члена геометрической прогрессии b n = b 1 q n – 1 ; члены с номерами b n и b m отличаются в q n – m раз.

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Вот, например, задача из папируса Райнда: «У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»


Рис. 1. Древнеегипетская задача о геометрической прогресии

Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

Сумма первых n членов геометрической прогрессии S n = b 1 (q n – 1) / (q – 1) . Эту формулу можно доказать, например, так: S n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 .

Добавим к S n число b 1 q n и получим:

S n + b 1 q n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 + b 1 q n = b 1 + (b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n –1) q = b 1 + S n q .

Отсюда S n (q – 1) = b 1 (q n – 1) , и мы получаем необходимую формулу.

Уже на одной из глиняных табличек Древнего Вавилона, относящейся к VI в. до н. э., содержится сумма 1 + 2 + 2 2 + 2 3 + ... + 2 9 = 2 10 – 1. Правда, как и в ряде других случаев мы не знаем, откуда этот факт был известен вавилонянам.

Быстрое возрастание геометрической прогрессии в ряде культур, – в частности, в индийской, – неоднократно используется как наглядный символ необозримости мироздания. В известной легенде о появлении шахмат властелин предоставляет их изобретателю возможность самому выбрать награду, и тот просит такое количество пшеничных зерен, которое получится, если одно положить на первую клетку шахматной доски, два – на вторую, четыре – на третью, восемь – на четвертую и т. д., всякий раз число увеличивается вдвое. Владыка думал, что речь идет, самое большое, о нескольких мешках, но он просчитался. Нетрудно видеть, что за все 64 клетки шахматной доски изобретатель должен был бы получить (2 64 – 1) зерно, что выражается 20-значным числом; даже если засевать всю поверхность Земли, потребовалось бы не менее 8 лет, чтобы собрать необходимое количество зерен. Эту легенду иногда интерпретируют как указание на практически неограниченные возможности, скрытые в шахматной игре.

То, что это число действительно 20-значное, увидеть нетрудно:

2 64 = 2 4 ∙ (2 10) 6 = 16 ∙ 1024 6 ≈ 16 ∙ 1000 6 = 1,6∙10 19 (более точный расчет дает 1,84∙10 19). А вот интересно, сможете ли вы узнать, какой цифрой оканчивается данное число?

Геометрическая прогрессия бывает возрастающей, если знаменатель по модулю больше 1, или убывающей, если он меньше единицы. В последнем случае число q n при достаточно больших n может стать сколь угодно малым. В то время как возрастающая геометрическая прогрессия возрастает неожиданно быстро, убывающая столь же быстро убывает.

Чем больше n , тем слабее число q n отличается от нуля, и тем ближе сумма n членов геометрической прогрессии S n = b 1 (1 – q n ) / (1 – q ) к числу S = b 1 / (1 – q ) . (Так рассуждал, например, Ф. Виет). Число S называется суммой бесконечно убывающей геометрической прогрессии. Тем не менее, долгие века вопрос о том, какой смысл имеет суммирование ВСЕЙ геометрической прогрессии, с ее бесконечным числом членов, не был достаточно ясен математикам.

Убывающую геометрическую прогрессию можно видеть, например, в апориях Зенона «Деление пополам» и «Ахиллес и черепаха». В первом случае наглядно показывается, что вся дорога (предположим, длины 1) является суммой бесконечного числа отрезков 1/2, 1/4, 1/8 и т. д. Так оно, конечно, и есть с точки зрения представлений о конечной сумме бесконечной геометрической прогрессии. И все же – как такое может быть?

Рис. 2. Прогрессия с коэффициентом 1/2

В апории про Ахиллеса ситуация чуть более сложная, т. к. здесь знаменатель прогрессии равен не 1/2, а какому-то другому числу. Пусть, например, Ахиллес бежит со скоростью v , черепаха движется со скоростью u , а первоначальное расстояние между ними равно l . Это расстояние Ахиллес пробежит за время l /v , черепаха за это время сдвинется на расстояние lu /v . Когда Ахиллес пробежит и этот отрезок, дистанция между ним и черепахой станет равной l (u /v ) 2 , и т. д. Получается, что догнать черепаху – значит найти сумму бесконечно убывающей геометрической прогрессии с первым членом l и знаменателем u /v . Эта сумма – отрезок, который в итоге пробежит Ахиллес до места встречи с черепахой – равен l / (1 – u /v ) = lv / (v – u ) . Но, опять-таки, как надо интерпретировать этот результат и почему он вообще имеет какой-то смысл, долгое время было не очень ясно.

Рис. 3. Геометрическая прогрессия с коэффициентом 2/3

Сумму геометрической прогрессии использовал Архимед при определении площади сегмента параболы. Пусть данный сегмент параболы отграничен хордой AB и пусть в точке D параболы касательная параллельна AB . Пусть C – середина AB , E – середина AC , F – середина CB . Проведем прямые, параллельные DC , через точки A , E , F , B ; пусть касательную, проведенную в точке D , эти прямые пересекают в точках K , L , M , N . Проведем также отрезки AD и DB . Пусть прямая EL пересекает прямую AD в точке G , а параболу в точке H ; прямая FM пересекает прямую DB в точке Q , а параболу в точке R . Согласно общей теории конических сечений, DC – диаметр параболы (то есть отрезок, параллельный ее оси); он и касательная в точке D могут служить осями координат x и y , в которых уравнение параболы записывается как y 2 = 2px (x – расстояние от D до какой-либо точки данного диаметра, y – длина параллельного данной касательной отрезка от этой точки диаметра до некоторой точки на самой параболе).

В силу уравнения параболы, DL 2 = 2 ∙ p ∙ LH , DK 2 = 2 ∙ p ∙ KA , а поскольку DK = 2DL , то KA = 4LH . Т. к. KA = 2LG , LH = HG . Площадь сегмента ADB параболы равна площади треугольника ΔADB и площадям сегментов AHD и DRB , вместе взятых. В свою очередь, площадь сегмента AHD аналогичным образом равна площади треугольника AHD и оставшихся сегментов AH и HD , с каждым из которых можно провести ту же операцию – разбить на треугольник (Δ) и два оставшихся сегмента (), и т. д.:

Площадь треугольника ΔAHD равна половине площади треугольника ΔALD (у них общее основание AD , а высоты отличаются в 2 раза), которая, в свою очередь, равна половине площади треугольника ΔAKD , а значит, и половине площади треугольника ΔACD . Таким образом, площадь треугольника ΔAHD равна четверти площади треугольника ΔACD . Аналогично, площадь треугольника ΔDRB равна четверти площади треугольника ΔDFB . Итак, площади треугольников ΔAHD и ΔDRB , вместе взятые, равны четверти площади треугольника ΔADB . Повторение этой операции в применении к сегментам AH , HD , DR и RB выделит и из них треугольники, площадь которых, вместе взятых, будет в 4 раза меньше, чем площадь треугольников ΔAHD и ΔDRB , вместе взятых, а значит, в 16 раз меньше, чем площади треугольника ΔADB . И так далее:

Таким образом, Архимед доказал, что «всякий сегмент, заключенный между прямой и параболой, составляет четыре трети треугольника, имеющего с ним одно и то же основание и равную высоту».

>>Математика: Геометрическая прогрессия

Для удобства читателя этот параграф строится точно по тому же плану, которого мы придерживались в предыдущем параграфе.

1. Основные понятия.

Определение. Числовую последовательность, все члены которой отличны от 0 и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число называют геометрической прогрессией . При этом число 5 называют знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия - это числовая последовательность (b n), заданная рекуррентно соотношениями

Можно ли, глядя на числовую последовательность, определить, является ли она геометрической прогрессией? Можно. Если вы убедились в том, что отношение любого члена последовательности к предыдущему члену постоянно то перед вами- геометрическая прогрессия.
Пример 1.

1, 3, 9, 27, 81,... .
Ь 1 = 1, q = 3.

Пример 2.

Это геометрическая прогрессия, у которой
Пример 3.


Это геометрическая прогрессия, у которой
Пример 4.

8, 8, 8, 8, 8, 8,....

Это геометрическая прогрессия, у которой b 1 - 8, q = 1.

Заметим, что эта последовательность является и арифметической прогрессией (см. пример 3 из § 15).

Пример 5.

2,-2,2,-2,2,-2.....

Это геометрическая прогрессия, у которой b 1 = 2, q = -1.

Очевидно, что геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1 (см. пример 1), и убывающей, если b 1 > 0, 0 < q < 1 (см. пример 2).

Для обозначения того, что последовательность (b n) является геометрической прогрессией, иногда бывает удобна следующая запись:


Значок заменяет словосочетание «геометрическая прогрессия».
Отметим одно любопытное и в то же время достаточно очевидное свойство геометрической прогрессии:
Если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е. является геометрической прогрессией.
У второй геометрической прогрессии первый член равен а равен q 2 .
Если в геометрической прогрессии отбросить все члены, следующие за b n , то получится конечная геометрическая прогрессия
В дальнейших пунктах этого параграфа мы рассмотрим наиболее важные свойства геометрической прогрессии.

2. Формула п-го члена геометрической прогрессии.

Рассмотрим геометрическую прогрессию знаменателем q. Имеем:


Нетрудно догадаться, что для любого номера n справедливо равенство


Это - формула n-го члена геометрической прогрессии.

Замечание.

Если вы прочли важное замечание из предыдущего параграфа и поняли его, то попробуйте доказать формулу (1) методом математической индукции подобно тому, как зто было сделано для формулы n-го члена арифметической прогрессии.

Перепишем формулу n-го члена геометрической прогрессии


и введем обозначения: Получим у = mq 2 , или, подробнее,
Аргумент х содержится в показателе степени, поэтому такую функцию называют показательной функцией. Значит, геометрическую прогрессию можно рассматривать как показательную функцию, заданную на множестве N натуральных чисел . На рис. 96а изображен график функции рис. 966 - график функции В обоих случаях имеем изолированные точки (с абсциссами х= 1, х = 2, х = 3 и т.д.), лежащие на некоторой кривой (на обоих рисунках представлена одна и та же кривая, только по-разному расположенная и изображенная в разных масштабах). Эту кривую называют экспонентой. Подробнее о показательной функции и ее графике речь пойдет в курсе алгебры 11-го класса.


Вернемся к примерам 1-5 из предыдущего пункта.

1) 1, 3, 9, 27, 81,... . Это геометрическая прогрессия, у которой Ь 1 = 1, q = 3. Составим формулу n-го члена
2) Это геометрическая прогрессия, у которой Составим формулу n-го члена

Это геометрическая прогрессия, у которой Составим формулу n-го члена
4) 8, 8, 8, ..., 8, ... . Это геометрическая прогрессия, у которой b 1 = 8, q = 1. Составим формулу n-го члена
5) 2, -2, 2, -2, 2, -2,.... Это геометрическая прогрессия, у которой b 1 = 2, q = -1. Составим формулу n-го члена

Пример 6.

Дана геометрическая прогрессия

Во всех случаях в основе решения лежит формула n-го члена геометрической прогрессии

а) Положив в формуле n-го члена геометрической прогрессии n = 6, получим


б) Имеем


Так как 512 = 2 9 , то получаем п - 1 = 9, п = 10.


г) Имеем

Пример 7.

Разность между седьмым и пятым членами геометрической прогрессии равна 48, сумма пятого и шестого членов прогрессии также равна 48. Найти двенадцатый член этой прогрессии.

Первый этап. Составление математической модели .

Условия задачи можно кратко записать так:


Воспользовавшись формулой n-го члена геометрической прогрессии, получим:
Тогда второе условие задачи (b 7 - b 5 = 48) можно записать в виде


Третье условие задачи (b 5 +b 6 = 48) можно записать в виде


В итоге получаем систему двух уравнений с двумя переменными b 1 и q:


которая в сочетании с записанным выше условием 1) и представляет собой математическую модель задачи.

Второй этап.

Работа с составленной моделью. Приравняв левые части обоих уравнений системы, получим:


(мы разделили обе части уравнения на выражение b 1 q 4 , отличное от нуля).

Из уравнения q 2 - q - 2 = 0 находим q 1 = 2, q 2 = -1. Подставив значение q = 2 во второе уравнение системы, получим
Подставив значение q = -1 во второе уравнение системы, получим b 1 1 0 = 48; это уравнение не имеет решений.

Итак, b 1 =1, q = 2 - эта пара является решением составленной системы уравнений.

Теперь мы можем записать геометрическую прогрессию, о которой идет речь в задаче: 1, 2, 4, 8, 16, 32, ... .

Третий этап.

Ответ на вопрос задачи. Требуется вычислить b 12 . Имеем

О т в е т: b 12 = 2048.

3. Формула суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия


Обозначим через S n сумму ее членов, т.е.

Выведем формулу для отыскания этой суммы .

Начнем с самого простого случая, когда q = 1. Тогда геометрическая прогрессия b 1 ,b 2 , b 3 ,..., bn состоит из n чисел, равных b 1 , т.е. прогрессия имеет вид b 1 , b 2 , b 3 , ..., b 4 . Сумма этих чисел равна nb 1 .

Пусть теперь q = 1 Для отыскания S n применим искусственный прием: выполним некоторые преобразования выражения S n q. Имеем:

Выполняя преобразования, мы, во-первых, пользовались определением геометрической прогрессии, согласно которому (см. третью строчку рассуждений); во-вторых, прибавили и вычли отчего значение выражения, разумеется, не изменилось (см. четвертую строчку рассуждений); в-третьих, воспользовались формулой n-го члена геометрической прогрессии:


Из формулы (1) находим:

Это - формула суммы n членов геометрической прогрессии (для случая, когда q = 1).

Пример 8.

Дана конечная геометрическая прогрессия

а) сумму членов прогрессии; б) сумму квадратов ее членов.

б) Выше (см. с. 132) мы уже отмечали, что если все члены геометрической прогрессии возвести в квадрат , то получится геометрическая прогрессия с первым членом Ь 2 и знаменателем q 2 . Тогда сумма шести членов новой прогрессии будет вычисляться по

Пример 9.

Найти 8-й член геометрической прогрессии, у которой


Фактически мы доказали следующую теорему.

Числовая, последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого Теорема (и последнего, в случае конечной последовательности),равен произведению предшествующего и последующего членов (характеристическое свойство геометрической прогрессии).

Инструкция

10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

Если известна сумма нескольких членов геометрической прогрессии или сумма всех членов убывающей геометрической прогрессии, то для нахождения знаменателя прогрессии воспользуйтесь соответствующими формулами:
Sn = b1*(1-q^n)/(1-q), где Sn – сумма n первых членов геометрической прогрессии и
S = b1/(1-q), где S – сумма бесконечно убывающей геометрической прогрессии (сумма всех членов прогрессии со знаменателем меньшим единицы).
Пример.

Первый член убывающей геометрической прогрессии равен единице, а сумма всех ее членов равна двум.

Требуется определить знаменатель этой прогрессии.
Решение:

Подставьте данные из задачи в формулу. Получится:
2=1/(1-q), откуда – q=1/2.

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Инструкция

Если известно два соседних члена геометрической b(n+1) и b(n), чтобы получить знаменатель, надо число с большим разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. По формуле b(n)=b1 q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и член b1. Также каждый из прогрессии по модулю равен среднему своих соседних членов: |b(n)|=√, отсюда прогрессия и получила свое .

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).