Как происходит бурение нефтяных газовых скважин. Технология бурения нефтяных и газовых скважин. Новые технологии бурения нефтяных и газовых скважин на выставке

В процесс бурения нефтяных и газовых скважин привлекают высокотехнологическое оборудование, обладающее высокой мощностью. Перечень проводимых работ зависит от характеристик месторождений углеводородов. Пласты с природным сырьем могут располагаться вертикального, горизонтально или наклонно, что напрямую влияет на способ его добычи.

Что такое скважина?

Скважины предназначены для добычи и газа, воды и других полезных ресурсов. Она представляет собой выработку в горной породе, имеющую цилиндрическую форму. Ее длина намного превышает диаметр. Скважина состоит из нескольких частей.

Начало цилиндрического углубления в горной породе называют устьем, стенки – стволом, дно – забоем. Диаметр скважин на нефть в верхней точке редко превышает 900 мм, а в нижней – больше 165 мм. По глубине их разделяют на мелкие (до 1500 м), средние (до 4500 м), глубокие (до 6000 м), сверхглубокие (от 6000 м).

В зависимости от назначения скважин для добычи углеводородов их разделяют на следующие разновидности:

  • эксплуатационные. Напрямую используются для добычи углеводородов;
  • нагнетательные. Закачивают воду для поддержки пластового давления, что позволяет продлить период разработки месторождений энергоресурсов;
  • разведочные. Позволяют определить ресурс выявленных горизонтов;
  • специальные. Предназначены для определения геологических характеристик территории, нефтеносного слоя, для сброса стоков в глубокие пласты;
  • структурно-поисковые. Предназначены для определения точного размещения месторождений углеводородов.

Как происходит бурение?

Технология бурения нефтегазовой скважины подразумевает проведение следующих работ:

  • Процесс бурения скважин с различными техническими характеристиками начинается с подготовки специализированной техники.
  • Осуществляют углубление ствола скважины. В процессе работы нагнетается вода, что позволяет произвести бурение более качественно.
  • Чтобы углубление в грунте не разрушилось, производят укрепление его стенок. Для этого применяются обсадные трубы. Пространство между их стенками и почвой бетонируют, что позволяет значительно укрепить цилиндрическую поверхность ствола.
  • На финишном этапе работ осуществляется освоение скважины. Происходит устройство призабойной зоны, перфорация, вызов оттока нефти.

Способы проведения бурильных работ

Во время может использоваться различное оборудование, что определяет способ проведения основных работ.

Ударный способ

Подразумевает последовательное разрушение горных пород при помощи долота, подвешенного на канате. Рабочий инструмент буровой установки также состоит из ударной штанги, канатного замка. Они соединяются через переходной блок и канат с опорной мачтой. Основной рабочий инструмент совершает движения при помощи бурового станка. Чтобы углубление в грунте очистить от остатков горной породы, долото время от времени вынимают. Внутрь нагнетают специальную жидкость, которая при помощи желонки извлекается наружу вместе с мелкими частицами почвы.

Вращательный способ

Данная технология бурения приобрела большую популярность. Разрушение горных пород происходит при помощи вращения долота. На него действует осевая нагрузка, что подразумевает прямую передачу крутящего момента от приводного механизма на рабочий инструмент. При используется ротор. Он передает вращение через колонну труб. При обычном бурении в качестве приводного механизма применяют электробур, винтовой двигатель, которые устанавливаются непосредственно над долотом.

Особенности проделки горизонтальных скважин

Производится для добычи углеводородов в труднодоступных местах, где сделать это другими способами невозможно. Данный способ отличается большой производительностью. Его активно используют для добычи энергетических ресурсов со дна крупных водоемов.

В процесс проведения работ создают ствол, который наклоняется относительно вертикальной оси под определенным углом. Горизонтальное бурение происходит в несколько этапов:

  1. Подготовка бурового оборудования к работе;
  2. Необходимо пробурить скважину для определения характеристик горной породы, глубины залегания нефтеносных слоев, их размещение относительно вертикальной оси;
  3. Создание раствора, тщательная регулировка его основных характеристик;
  4. Проведение работ по глушению;
  5. Герметизация устья;
  6. Проведение подготовительных работ по геолого-физическому исследованию обустроенных стволов;
  7. Подготовка ствола к опусканию испытателя существующих пород;
  8. Взрывание снарядов, что позволяет осуществить отбор крена;
  9. Освоение свежеобустроенной скважины;
  10. Доставка на место добычи буровых комплексов.

Бурение горизонтальных скважин

Способы бурения скважин на море

Технология бурения скважин на водоемах отличается от применяемых методик на суше. Самый простой способ осуществления необходимых операций – установка на свайном фундаменте платформ, на которых размещают все оборудование. Устройство данной конструкции происходит на мелководье. Также установка бурильного оборудования может происходить на искусственно насыпанной суше.

При бурении скважин нефть обычно получают из разных участков океана или моря. Поэтому целесообразно устанавливать передвижные платформы. После завершения рабочего цикла они перемещаются в выбранную точку и продолжают процесс добычи углеводородов. Выделяют три типа буровых платформ.

Самоподъемная

Является понтоном. На платформе присутствует вырез, над которым размещается буровая вышка. Также на понтоне находится все необходимое оборудование, электростанция, складские и вспомогательные помещения, многоэтажная рубка. При бурении колоны опускаются, опираются на дно, что приводит к поднятию платформы над поверхностью воды.

Полупогружная

Применяются, где глубина добычи нефти достигает 300-600 м. Полупогружная платформа плавает по поверхности воды на огромных понтонах. Фиксация всего сооружения осуществляется массивными якорями весом около 15 т.

Гравитационная

Устанавливается на массивном бетонном основании, которое опирается на морское дно.

Перечисленные методы бурения скважин для добычи полезных углеводородов активно применяются во всем мире. Они все время усовершенствуются, что позволяет повысить их продуктивность.

Видео: Основы геологии нефти и газа

Тема: Бурение нефтяных и газовых скважин.

План: 1. Общие сведения о нефтегазовых операциях.

2. Способы бурения скважин.

3. Классификация скважин.

1.Общие сведения о нефтегазовых операциях.

Бурение скважин - это процесс сооружения направленной горной выработки большой длины и малого (по сравнению с длиной) диаметра. Начало скважины на по­верхности земли называют устьем, дно - забоем. Этот про­цесс - бурение - распространен в различных отраслях на­родного хозяйства.

Цели и задачи бурения

Нефть и газ добывают, пользуясь скважина­ми, основными процессами строительства которых являются бурение и крепление. Необходимо осуществлять качествен­ное строительство скважин во все возрастающих объемах при кратном снижении сроков их проводки, а также при уменьшении трудо- и энергоемкости и капитальных затрат.

Бурение скважин - единственный метод результативной разработки, приращения добычи и запасов нефти и газа.

Цикл сооружения нефтяных и газовых скважин до сдачи их в эксплуатацию состоит из следующих последовательных звеньев:

проходка ствола скважины, осуществление которой воз­можно только при выполнении параллельно протекающих работ двух видов - углубление забоя посредством локально­го разрушения горной породы и очистка ствола от разру­шенной (выбуренной) породы;

разобщение пластов, состоящее из последовательных ра­бот двух видов - закрепление стенок ствола обсадными тру­бами, соединенными в обсадную колонну, и герметизация (це­ментирование, тампонирование) заколонного пространства;

освоение скважины как эксплуатационного объекта.

2. Способы бурения скважин.

Распространенные способы вращательного бу­рения - роторное, турбинное и бурение электробуром - пред­полагают вращение разрушающего породу рабочего инстру­мента - долота. Разрушенная порода удаляется из скважины закачиваемым в колонну труб и выходящим через заколон-ное пространство буровым раствором, пеной или газом.

Роторное бурение

При роторном бурении долото вращается вместе со всей колонной бурильных труб; вращение переда­ется через рабочую трубу от ротора, соединенного с силовой установкой системой трансмиссий. Нагрузка на долото созда­ется частью веса бурильных труб.

При роторном бурении максимальный крутящий момент колонны зависит от сопротивления породы вращению доло­та, сопротивлений трения колонны и вращающейся жидкости о стенку скважины, а также от инерционного эффекта упру­гих крутильных колебаний.

В мировой буровой практике наиболее распространен ро­торный способ: почти 100 % объема буровых работ в США и Канаде выполняется этим способом. В последние годы наме­тилась тенденция увеличения объемов роторного бурения и в России, даже в восточных районах. Основные преимущества роторного бурения перед турбинным - независимость регу­лирования параметров режима бурения, возможность сраба­тывания больших перепадов давления на долоте, значитель­ное увеличение проходки за рейс долота в связи с меньшими частотами его вращения и др.

Турбинное бурение

При турбинном бурении долото соединяется с валом турбины турбобура, которая приводится во вращение движением жидкости под давлением через систему роторов и статоров. Нагрузка создается частью веса бурильных труб.

Наибольший крутящий момент обусловлен сопротивлени­ем породы вращению долота. Максимальный крутящий мо­мент, определяемый расчетом турбины (значением ее тор­мозного момента), не зависит от глубины скважины, частоты вращения долота, осевой нагрузки на него и механических свойств разбуриваемых пород. Коэффициент передачи мощ­ности от источника энергии к разрушающему инструменту в турбинном бурении выше, чем в роторном.

Однако при турбинном бурении невозможно независимое регулирование параметров режима бурения, и при этом вели­ки затраты энергии на 1 м проходки, расходы на амортиза­цию турбобуров и содержание цехов по их ремонту.

Турбинный способ бурения получил широкое распрост­ранение в России благодаря работам ВНИИБТ.

Бурение винтовыми (объемными) двигателями

Рабочие органы двигателей созданы на основе многозаходного винтового механизма, что позволяет полу­чить необходимую частоту вращения при повышенном по сравнению с турбобурами вращающем моменте.

Забойный двигатель состоит из двух секций - двигатель­ной и шпиндельной.

Рабочими органами двигательной секции являются статор и ротор, представляющие собой винтовой механизм. В эту секцию входит также двухшарнирное соединение. Статор при помощи переводника соединяется с колонной бурильных труб. Вращающий момент посредством двухшарнирного со­единения передается с ротора на выходной вал шпинделя.

Шпиндельная секция предназначена для передачи осевой нагрузки на забой, восприятия гидравлической нагрузки, дей­ствующей на ротор двигателя, и уплотнения нижней части вала, что способствует созданию перепада давления.

В винтовых двигателях вращающий момент зависит от пе­репада давления в двигателе. По мере нагружения вала разви­ваемый двигателем вращающий момент растет, увеличивается и перепад давления в двигателе. Рабочая характеристика вин­тового двигателя с требованиями эффективной отработки долот позволяет получить двигатель с частотой вращения вы­ходного вала в пределах 80-120 об/мин с увеличенным вра­щающим моментом. Указанная особенность винтовых (объемных) двигателей делает их перспективными для внед­рения в практику буровых работ.

Бурение электробуром

При использовании электробуров вращение долота осуществляется электрическим (трехфазным) двигате­лем переменного тока. Энергия к нему подается с поверхно­сти по кабелю, расположенному внутри колонны бурильных труб. Буровой раствор циркулирует так же, как и при ро­торном способе бурения. Кабель внутрь колонны труб вво­дится через токоприемник, расположенный над вертлюгом. Электробур присоединяют к нижнему концу бурильной ко­лонны, а долото крепят к валу электробура. Преимущество электрического двигателя перед гидравлическим состоит в том, что у электробура частота вращения, момент и другие параметры не зависят от количества подаваемой жидкости, ее физических свойств и глубины скважины, и в возможнос­ти контроля процесса работы двигателя с поверхности. К недостаткам относятся сложность подвода энергии к элект­родвигателю особенно при повышенном давлении и необхо­димость герметизации электродвигателя от бурового рас­твора.

Перспективные направления в развитии способов бурения в мировой практике

В отечественной и зарубежной практике ве­дутся научно-исследовательские и опытно-конструкторские

работы в области создания новых методов бурения, техноло­гий, техники.

К ним относятся углубление в горных породах с исполь­зованием взрывов, разрушение пород при помощи ультра­звука, эрозионное, с помощью лазера, вибрации и др.

Некоторые из названных методов получили развитие и применяются, хотя и в незначительном объеме, зачастую на стадии эксперимента.

Гидромеханический метод разрушения горных пород при углублении скважин все чаще используется в экспе­риментальных и полевых условиях. С.С. Шавловским прове­дена классификация водяных струй, которые могут приме­няться при бурении скважин. Основа классификации - развиваемое давление, рабочая длина струй и степень их воздействия на породы различного состава, сцементирован-ности и прочности в зависимости от диаметра насадки, начального давления струи и расхода воды. Применение во­дяных струй позволяет в сравнении с механическими спосо­бами повысить технико-экономические показатели проходки скважины.

На VII Международном симпозиуме (Канада, 1984) были представлены результаты работ по использованию водяных струй в бурении. Его возможности связываются с непрерыв­ной, пульсирующей или прерывистой подачей флюида, нали­чием или отсутствием абразивного материала и технико-технологическими особенностями способа.

Эрозионное бурение обеспечивает скорости углубления в 4-20 раз больше, чем при роторном бурении (в аналогичных условиях). Это объясняется, в первую очередь, значительным увеличением мощности, подводимой к забою по сравнению с другими методами.

Сущность его состоит в том, что к долоту специальной конструкции вместе с буровым раствором подается абразив­ный материал - стальная дробь. Размер гранул - 0,42 - 0,48 мм, концентрация в растворе - 6 %. Через насадки до­лота с большой скоростью на забой подается этот раствор с дробью и забой разрушается. В бурильной колонне последо­вательно устанавливают два фильтра, предназначенные для отсева и удержания частиц, размер которых не позволяет им пройти через насадки долота.

Один фильтр - над долотом, второй - под ведущей тру­бой, где можно осуществлять очистку. Химическая обработка бурового раствора с дробью сложнее, чем обработка обыч­ного раствора, особенно при повышенных температурах.

Особенность в том, что необходимо удерживать дробь в рас­творе во взвешенном состоянии и затем генерировать этот абразивный материал.

После предварительной очистки бурового раствора от газа и шлама при помощи гидроциклонов дробь отбирают и со­храняют в смоченном состоянии. Затем раствор пропускают через гидроциклоны тонкой очистки и дегазатор и восста­навливают его утраченные показатели химической обработ­кой. Часть бурового раствора смешивают с дробью и подают в скважину, на пути смешивая с обычным буровым раство­ром (в расчетном соотношении).

Лазеры - квантовые генераторы оптического диапазона - одно из замечательных достижений науки и техники. Они нашли широкое применение во многих областях науки и техники.

По зарубежным данным в настоящее время возможна ор­ганизация производства газовых лазеров непрерывного дей­ствия с выходной мощностью 100 кВт и выше. Коэффициент полезного действия (КПД) газовых лазеров может достигать 20 - 60 %. Большая мощность лазеров при условии получения чрезвычайно высоких плотностей излучения достаточна для расплавления и испарения любых материалов, в том числе горных пород. Горная порода при этом также растрескива­ется и шелушится.

Экспериментально установлена минимальная плотность мощности лазерного излучения, достаточного для разрушения пород плавлением: для песчаников, алевролитов и глин она составляет примерно 1,2-1,5 кВт/см 2 . Плотность мощности эффективного разрушения нефтенасыщенных горных пород из-за термических процессов горения нефти, особенно при поддуве в зону разрушения воздуха или кислорода, ниже и составляет 0,7 - 0,9 кВт/см 2 .

Подсчитано, что для скважины глубиной 2000 м и диамет­ром 20 см нужно затратить около 30 млн кВт энергии лазер­ного излучения. Проводка скважин такой глубины пока не конкурентоспособна в сравнении с традиционными механи­ческими методами бурения. Однако имеются теоретические предпосылки повышения КПД лазеров: при КПД, равном 60 %, энергетические и стоимостные затраты существенно снизятся и его конкурентоспособность повысится. При использовании лазера в случае бурения скважин глубиной 100 - 200 м стои­мость работ относительно невелика. Но во всех случаях при лазерном бурении форма сечения может быть запрограмми­рованной, а стенка скважины будет формироваться из расплава горной породы и будет представлять собой стеклооб­разную массу, позволяющую повысить коэффициент вытес­нения бурового раствора цементным. В некоторых случаях можно, очевидно, обойтись без крепления скважин.

Зарубежные фирмы предлагают несколько конструкций лазеров. Основу их составляет мощный лазер, размещенный в герметичном корпусе, способном выдержать высокое дав­ление. Температуроустойчивость пока не прорабатывалась. По этим конструкциям излучение лазера передается на забой через светопроводящее волокно. По мере разрушения (плавления) горной породы лазеробур подается вниз; он мо­жет быть снабжен установленным в корпусе вибратором. При вдавливании снаряда в расплав породы стенки скважины могут уплотняться.

В Японии начат выпуск углекислотных газовых лазеров, которые при использовании в бурении существенно (до 10 раз) повысят скорость проходки.

Сечение скважины при формировании ствола этим мето­дом может иметь произвольную форму. Компьютер по раз­работанной программе дистанционно задает режим сканиро­вания лазерного луча, что позволяет запрограммировать раз­мер и форму ствола скважины.

Проведение лазеротермических работ возможно в даль­нейшем в перфорационных работах. Лазерная перфорация обеспечит управляемость процесса разрушения обсадной ко­лонны, цементного камня и породы, а также может способ­ствовать проникновению каналов на значительную глубину, что, безусловно, повысит степень совершенства вскрытия пласта. Однако оплавление пород, целесообразное при углуб­лении скважины, здесь неприемлемо, что должно быть учте­но при использовании этого метода в дальнейшем.

В отечественных работах есть предложения о создании ла-зероплазменных установок для термического бурения сква­жин. Однако транспортировка плазмы к забою скважины пока затруднена, хотя и ведутся исследования по возможнос­ти разработки световодов ("световодных труб").

Одним из наиболее интересных методов воздействия на горные породы, обладающих критерием "универсаль­ность", является метод их плавления при помощи непосред­ственного контакта с тугоплавким наконечником - пенетра-тором. Значительные успехи в создании термопрочных мате­риалов позволили перенести вопрос о плавлении горных пород в область реального проектирования. Уже при темпе­ратуре примерно 1200-1300 °С метод плавления работоспо-

собен в рыхлых грунтах, песках и песчаниках, базальтах и других породах кристаллического фундамента. В породах осадочного комплекса проходка глинистых и карбонатных пород требует, по-видимому, более высокой температуры.

Метод бурения плавлением позволяет получить на стенках скважины достаточно толстую ситалловую корку с гладкими внутренними стенками. Метод обладает высоким коэффици­ентом ввода энергии в породу - до 80-90 %. При этом мо­жет быть, хотя бы принципиально, решена проблема удале­ния расплава с забоя. Выходя по выводящим каналам или просто обтекая гладкий пенетратор, расплав, застывая, обра­зует шлам, размерами и формой которого можно управлять. Шлам выносится жидкостью, которая циркулирует выше бу­рового снаряда и охлаждает его верхнюю часть.

Первые проекты и образцы термобуров появились в 60-х годах, а наиболее активно теория и практика плавления гор­ных пород начали развиваться с середины 70-х годов. Эф­фективность процесса плавления определяется в основном температурой поверхности пенетратора и физическими свой­ствами горных пород и мало зависит от механических и прочностных свойств. Это обстоятельство обусловливает оп­ределенную универсальность метода плавления в смысле при­менимости его для проходки различных пород. Температур­ный интервал плавления этих различных полиминеральных многокомпонентных систем в основном укладывается в диа­пазон 1200-1500 °С при атмосферном давлении. В отличие от механического метод разрушения горных пород плавлением с увеличением глубины и температуры залегающих пород по­вышает свою эффективность.

Как уже говорилось, параллельно с проходкой осуществ­ляются крепление и изоляция стенок скважины в результате создания непроницаемого стекловидного кольцевого слоя. Пока еще не ясно, будет ли происходить износ поверхност­ного слоя пенетратора, каковы его механизм и интенсив­ность. Не исключено, что бурение плавлением, хотя и с не­большой скоростью, может проводиться непрерывно в пре­делах интервала, определяемого конструкцией скважины. Сама же эта конструкция из-за непрерывного крепления стенок может быть значительно упрощена, даже в сложных геологических условиях.

Можно себе представить технологические процедуры, свя­занные только с креплением и изоляцией стенок последова­тельно с проходкой ствола способом обычного механическо­го бурения. Эти процедуры могут относиться только к ин-

тервалам, представляющим опасность в связи с возможнос­тью возникновения различных осложнений.

С точки зрения технической реализации следует предус­мотреть токопровод к нагнетательным элементам пенетрато-ра аналогично используемому при электробурении.

3. Классификация скважин

Скважины можно классифицировать по на­значению, профилю ствола и фильтра, степени совершенства и конструкции фильтра, количеству обсадных колонн, распо­ложению на поверхности земли и т.д.

По назначению различают скважины: опорные, парамет­рические, структурно-поисковые, разведочные, нефтяные, га­зовые, геотермальные, артезианские, нагнетательные, наблю­дательные, специальные.

По профилю ствола и фильтра скважины бывают: верти­кальные, наклонные, направленно-ориентированные, гори­зонтальные.

По степени совершенства выделяют скважины: сверхсо­вершенные, совершенные, несовершенные по степени вскрытия продуктивных пластов, несовершенные по характе­ру вскрытия продуктивных пластов.

По конструкции фильтра скважины классифицируют на: незакрепленные, закрепленные эксплуатационной колонной, закрепленные вставным щелевым или сетчатым фильтром, закрепленные гравийно-песчаным фильтром.

По количеству находящихся в скважине колонн выделяют скважины: одноколонные (только эксплуатационная колон­на), многоколонные (двух-, трех-, п-колонные).

По расположению на поверхности земли скважины разли­чают: расположенные на суше, шельфовые, морские.

Назначение структурно-поисковых скважин - установле­ние (уточнение) тектоники, стратиграфии, литологии разреза пород, оценка возможных продуктивных горизонтов.

Разведочные скважины служат для выявления продуктив­ных пластов, а также для оконтуривания разрабатываемых нефтяных и газовых месторождений.

Добывающие (эксплуатационные) предназначены для до­бычи нефти и газа из земных недр. К этой категории отно­сят также нагнетательные, оценочные, наблюдательные и пье­зометрические скважины.

Нагнетательные необходимы для закачки в пласт воды, га­за или пара с целью поддержания пластового давления или обработки призабойной зоны. Эти меры направлены на уд­линение периода фонтанного способа добычи нефти или по­вышение эффективности добычи.

Назначение оценочных скважин-определение начальной водонефтенасыщенности и остаточной нефтенасыщенности пласта и проведение иных исследований.

Контрольные и наблюдательные скважины служат для на­блюдения за объектом разработки, исследования характера продвижения пластовых флюидов и изменения газонефтена-с ыщенности пласта.

Опорные скважины бурят для изучения геологического строения крупных регионов с целью установления общих за­кономерностей залегания горных пород и выявления возмож­ностей образования в этих породах месторождений нефти и газа.

Контрольные вопросы:

1. Как классифицируют скважины?

2. Какие известны способы бурения скважин?

3. Что представляет собой лазерное бурение? ?

Литература

1. Баграмов Р.А. Буровые машины и комплексы: Учеб. для вузов. - М.: Недра,1988. - 501 с.

2. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Заканчивание скважин: Учеб. пособие для

вузов. - М: ООО «Недра-Бизнесцентр», 2000. - 670 с.

3. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Осложнения и аварии при бурении нефтяных

и газовых скважин: Учеб. для вузов. - М.: ООО «Недра-Бизнесцентр», 2000. -679 с.

4. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Технология бурения нефтяных и газовых

скважин: Учеб. для вузов. - М.: ООО «Недра-Бизнесцентр», 2001. - 679 с.

5. Болденко Д.Ф., Болденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. - М.:Недра,

Бурение нефтяных или газовых скважин является сложным, я в ряде случаев и опасным процессом. Бурение нефтяных или газовых скважин может быть успешно осуществлено только при обязательном соблюдении ряда правил и положений. Бурение скважин применяется в различных целях, включая: изучение строения земной коры, поиски и разведку нефти, газа, воды и твёрдых полезных ископаемых, а также при строительстве дорог для изучения грунта и др. При этом при поисках нефти и газа проводится глубокое бурение, которое представляет собой сложный процесс и, как правило, трудоемкий для людей, осуществляющих бурение. Он требует больших материальных и технических средств, включая специальные инструменты, материалы, оборудование и установки.

В ряде мест нашей страны бурение на нефтьи газ проводится в сложных геологических и климатических условиях с достижением продуктивных горизонтов на глубине ниже 3 км, а нередко 4--5 км.

Как указывалось ранее, бурение на большой глубине, в том числе под соленосные толщи, а также и труднодоступных районах тундры с вечной мерзлотой и тайги, конечно, требует от буровиков в современных условиях проводить выполнение всех видов работ, связанных с бурением глубоких скважин на нефть и газ, с особой ответственностью и высокой квалификацией. В противном случае во время бурения скважин возможны различные осложнения, которые могут пагубно воздействовать на людей и окружающую среду. Поэтому тщательный и ответственный подход к своим обязанностям для каждого члена буровой бригады является главным принципом безаварийной работы буровиков в процессе бурения глубоких скважин на нефть и газ.

Ряд буровых бригад в последние годы, когда началось освоение необжитых и труднодоступных районов, в том числе Западной Сибири используют вахтовый метод, т. с. бригады буровиков выезжают на место бурения скважин на короткое время, живя в походных условиях. А затем возвращаются в свои стационарные буровые организации.

Бурение глубоких скважин производится путём механического разрушения горных пород с применением специальных двигателей. При этом различают два вида механического бурения: ударное и вращательное. Ударное бурение, называемое также ударно-канатным, заключается в следующем. На канате подвешиваемся долото, которое периодически опускается на забои и разрушает породу. Канат находится на барабане буровой установки и с помощью различных приспособлений может опускаться и подниматься.

Разрушенная порода па забое, называемая шламом, периодически удаляется. Для того буровой инструмент поднимают, спускают вниз желонку (ведро с клапаном в дне). При погружении желонки клапан открывается, и она заполняется смесью пластовой пли доливаемой жидкости и разбуренной породы. Во время подъема желонки клапан закрывается. В результате многократных опусканий и подъемов желонки забой скважины очищается, и вновь продолжается бурение скважины.

При ударном способе бурения, как правило, не используют промывочную жидкость. Но с целью сохранения пробуренного ствола скважину обсаживаю, т. е. спускают обсадную колонну, состоящую из металлических труб, соединенных через резьбу или сваркой. По мере углубления скважины обсадную колонну продвигают к забою и удлиняют нулём наращивании ещё одной трубы. Если продвинуть обсадную трубу вниз невозможно, спускают внутрь вторую обсадную колонну меньшего диаметра. Для того скважину углубляют долотом, а колонну наращивают. Возможен спуск и последующих колонн меньшего диаметра, пока не будет достигнута проектная глубина.

Эффективность ударного способа бурения зависит от выбора долота для бурения определенной породы, от массы бурового инструмент, числа ударов долота о забой и других причин.

Мри ударном способе бурения используются станки с небольшой массой (до 20 т), что позволяет их легко транспортировать для бурения неглубоких скважин вдалеке от населённых пунктов.

Но при бурении нефтяных и газовых скважин ударный способ не применяется. Бурение на нефть и газ проводится путём вращательного способа бурения.

Вращательное бурение производится в результате одновременного воздействия на долото нагрузки и крутящего момента. Этот способ бурения осуществляется с использованием ротора или забойных двигателей: турбобура или электробура.

При роторном бурении мощность от двигателя передастся ротору -- вращательному механизму, установленному над устьем скважины в центре вышки. Ротор вращает бурильную колонну труб с долотом.

При бурении с забойным двигателем долото привинчено к валу, а бурильная колонна -- к корпусу двигателя. При работе двигателя вращается его вал и долото, а бурильная колонна не вращается. Следовательно, при роторном бурении углубление долота в породу происходит при перемещающейся вдоль оси скважины и вращающейся бурильной колонны, а при бурении с забойным двигателем -- не вращающейся бурильной колонны.

При вращательном способе бурения проводится промывка скважины водой или глинистым раствором в течение всего времени работы долота на забое. Промывочная жидкость нагнетается в скважину и выносит выбуренную породу на поверхность, в специальные ёмкости (желоба), затем она очищается и очистительных механизмах и вновь поступает в приёмные ёмкости буровых насосов и закачивается в скважину.

Бурильные трубы поднимают для смены изношенного долота, их развинчивают на секции, которые называют свечами. Свечи устанавливают и фонаре вышки на подсвечнике. Затем спускают бурильную колонну в скважину в обратном порядке.

К забойным двигателям относятся: турбобур и электробур. Вращение вала турбобура происходит за счет преобразования гидравлической энергии потока промывочной жидкости по бурильной колонне, поступающей в турбобур, в механическую энергию турбобура, с которым жёстко соединено долото.

При бурении с электробуром энергия к его двигателю подаётся по кабелю, секции которого укреплены концентрично внутри бурильной колонны.

Различные способы вращательного бурения имеют специфические особенности режима бурения. Режим бурения характеризуется комплексом покупателей бурения, включая: скорость про ходки, нагрузку па забой, частоту вращении долота, расход промывочной жидкости и др.

Под оптимальным режимом бурения понимают сочетание таких параметров бурения, при которых достигается наибольший эффект, т. е. при сравнительно небольших затратах материальных и денежных средств получены высокие скорости бурения, а фактический ствол скважины близок к проектному.

Для каждой породы можно подобрать оптимальные параметры бурения: нагрузки на долото, частоты вращения долота и расхода промывочной жидкости.

В случае бурения с помощью ротора взаимосвязи параметров режима бурения не отмечается, поэтому оптимальный режим подбираю! по каждому параметру и отдельности. При этом, в зависимости от геологии разреза с учётом твёрдости пород, выбирается нагрузка на долото и частота его вращения, а также устанавливается расход промывочной жидкости в зависимости от степени очистки забоя скважины.

В отличие от роторного бурения при бурении с турбобуром существует связь между параметрами режима бурения. Например, с увеличением расхода промывочной жидкости при одинаковой нагрузке на забой также увеличивается частота вращения нала турбобура. И зависимости от твердости пород нагрузку меняют, и соответственно меняется частота вращения долота, что и приводит к оптимальным показателям бурения скважины. При бурении с электробуром, в отличие от турбинного бурения не устанавливается связь между параметрами режима бурения, однако частота вращения долота высокая, что и обеспечивает оптимальный режим бурения.

В большинстве случаев по проекту бурятся вертикальные скважины, ствол которых близок к вертикали. К вертикальным относятся скважины, в которых угол между осью скважины и вертикалью (зенитный угол) по всему стволу имеет отклонение не более 2°, При отклонении более 2° скважины считаются искривлёнными.

Причины искривления скважин могут быть различными и зависящими как от природных геологических условий проводки скважин, так и от результата деятельности буровиков и других служб, связанных с бурением скважин на нефть и газ. К геологическим причинам искривления скважин относятся: наклонное залегание слоев, тектонические нарушения, наличие каперн, переслаивание пород различной твёрдости, а также твердые включения типа валунов и др. К техническим причинам относятся: искривление бурильных труб, перекос в резьбовых соединениях и др. К технологическим причинам относятся: неправильный выбор конструкции скважины, неправильное соотношение диаметров бурильных труб и скважины, применение неблагоприятного режима бурения и др.

Значительное отклонение от проектного ствола скважины приводит к большим осложнениям при бурении, в том числе к авариям.

В результате непроизвольного искривления скважины могут произойти следующие трудности: осложнение спускоподъемных работ, более интенсивное изнашивание бурильных труб и соединительных муфт, обвалы пород, истирание обсадных труб, затруднение их спуска в скважину, увеличение опасности смятия труб, осложнения при цементировании и др.

Искривлённые скважины в последующем при эксплуатации являются ненадёжными и быстро выходят из строя вследствие преждевременного изнашивания глубинно-насосного оборудования, насосных штанг и эксплуатационной колонны.

Однако в ряде случаев проводят специально наклонное и горизонтальное бурение скважин, в том числе под дно моря, под овраги, горы, на площадях, занятых заповедниками, под промышленные объекты и жилые посёлки, при тушении горящих фонтанов и ликвидации открытых выбросов нефти и газа и др.

При этом используются специальные отклонители, которые устанавливаются между турбобуром и бурильной колонной.

Для бурения скважин на нефть и газ применяют долота, представляющие собой буровые инструменты для механического разрушения горных пород. Обычно для разбуривания пород средней твёрдости, твёрдых, крепких и очень крепких пород, используются долота дробяще-скалывающего действия, так называемые шарошечные долота.

В ряде случаев используются также долота режуще-истирающего действия с алмазными и твердосплавными вставками. Они используются мри проходке разрезов, где наблюдается чередование пород различной твёрдости, включая сочетание высоко-пластичных с породами средней твёрдости.

Момент опускания долота в скважину, при котором буровики используют специальные стабилизаторы, чтобы долото точно опустилось в центр забоя.

Долота могут использоваться для сплошною бурения, когда порода разрушается по всему забою, или для кольцевого бурения, когда порода разрушается по кольцу забоя. В последнем случае долота называются колонковыми и используются для отбора керна из скважины. При этом используют бурильные головки: шарошечные, алмазные и твердосплавные. Колонковое долото состоит из бурильной головки, грунтоноски, корпуса колонкового набора и шарового клапана. С помощью грунтоноски, в которой имеются кернорватели и кернодержатели, а вверху широкой клапан, производится отбор и сохранение керна до его подъёма на поверхность.

Бурильная колонна предназначена осуществлять процесс бурения скважины. Она соединяет долото или забойный двигатель с наземным оборудованием. Бурильная колонна состоит из ряда бурильных труб. В сё верхней части имеется ведущая квадратная труба, присоединённая к вертлюгу. Бурильные трубы свинчены при помощи бурильных замков и соединительных муфт. Задача бурильной колонны заключается в передаче вращения долоту, создании нагрузки на долото, для подъёма и спуска долот, проведения различных вспомогательных работ в процессе бурения скважины и испытания пластов.

Для вращения долота на забое скважины применяются упомянутые выше механизмы: роторы, турбобуры и электробуры.

Роторы обеспечивают вращательное движение бурильной колонны и долота, а также поддерживают на весу тяжёлую бурильную колонну. Ротор, установленный на устье скважины, состоит из станины, во внутренней части которой установлен вращающийся стол. В центре стола имеется отверстие (проходное) для спуска через него долот и бурильных труб. Диаметр отверстия стола ротора варьирует от 400 до 700 мм, что определяется максимальным диаметром долота, которое проходит через него. В центральное отверстие вставляют вкладыши и зажимы, которые обеспечивают подвеску ведущей трубы квадратного сечения. К ведущей трубе крепится последующая бурильная труба, а затем и другие.

Турбобуры, являясь забойными двигателями, преобразуют гидравлическую энергию в механическую, что обеспечивает вращение вала турбобура и долота. Турбобур состоит из двух основных элементов турбины: статора, жёстко скреплённого с корпусом, и ротора, укреплённого па валу турбобура. За счёт множества ступеней (до 350) гидравлический поток, перетекая от ступени к ступени, создаёт мощную механическую энергию, которая приводит в работу долото. Чем больше ступеней в турбобуре, тем больше мощность и вращательный момент и тем эффективнее работа турбобура.

Электробуры преобразуют электрическую энергию, подаваемую с поверхности, в механическую энергию, вращающую долото на забое. Электробуры, состоящие из двух основных частей -- электродвигателя и маслонаполненного шпинделя, с привинченным долотом спускают в скважину на бурильной колонне. Энергия от силового трансформатора подаётся по наружному кабелю и внутреннему кабелю, последний из которых вмонтирован в колонну бурильных труб. При этом промывочная жидкость, пройдя через систему переводников и дубрикаторов, попадает внутрь полого вала электродвигателя и затем -- к долоту. И далее, как при роторном и турбинном бурении, промывочная жидкость увлекает обломки выбуренной породы и поднимает их по затрубному пространству на поверхность.

Буровые установки различаются по своим характеристикам в зависимости от глубины бурении скважин. Нагрузка на крюк буровой установки должна соответствовать весу бурильной колонны, а вес бурильной колонны должен быть больше веса обсадной колонны.

В связи с этим буровые установки различаются по параметрам (максимальной допустимой нагрузки на крюк), которые зависят от диаметра скважины и бурильных труб, а также от массы последних.

Буровые установки отличаются по характеристикам бурового и энергетического оборудования.

Общий вид буровой установки для бурения скважин на нефть и газ.

Буровая установка включает в себя ряд механизмов, которые смонтированы на общем основании, что позволяет транспортировать установку от одной скважины к другой в собранном виде. В состав обычной для роторного бурения установки включаются: вышка, кранблок, талевый блок, крюк, вертлюг, лебёдка, дизели, редуктор, буровой насос, приёмные емкости насосов, пневмо-управление, ротор. Установка имеет металлический каркас, который обшивается щитами и досок или прорезиненной ткани для защиты механизмов и людей от атмосферных осадков и ветра.

Кроме этого, в комплект установки входит циркуляционная система, которая состоит из вибрационного сига, желобов, приемных емкостей для промывочной жидкости, нагнетательных трубопроводов.

Более сложное буровое оборудование и установки используются для бурения на море. Как указывалось ранее, бурение на морс осуществляется либо со стационарных платформ, либо с плавучих платформ и специальных судов.

При этом для стационарных платформ требуется возведение металлического основания, жёстко скреплённого с морским дном. Для этого используются опорные блоки, устанавливаемые специальными охранными агрегатами, которые надёжно цементируются.

Буровые основания связываются эстакадами, а все буровые помещения размещаются на приэстакадных участках очень компактно и укрываются дли защиты оборудовании и работников буровой бригады. Строительные работы в море по возведению основания и установке бурового оборудовании очень трудоёмки и выполняются специальными организациями.

Па самых современных буровых установках имеется пульт управления процессом бурения скважин, где управление производится кнопками, смонтированными па компактной клавиатуре мембранного типа. Так, например, пульт бурильщика к приводу «Пауэр Дрилл 2000», поставляемый фирмой США «Дженерал Электрик Драйв Системе», выполнен в стиле современного промышленного дизайна и имеет закрытые клавиши, которые были специально спроектированы так, чтобы ими мог безошибочно пользоваться бурильщик в толстых рабочих рукавицах.

Флуорссцстные цифровые дисплеи -- три программируемых и один диагностический -- снабжают бурильщика данными о состоянии буровой установки и рабочих параметрах. Автоматическая диагностика и прямая связь с приводом «Пауэр Дрилл 2000» делают пульт уникальным подспорьем для бурильщика. Каждый раз, когда бурильщик пытается задать неразрешенную функцию, пульт информирует его о допущенной ошибке. Первой выявляется ошибка, которая с наибольшей вероятностью приводит к прекращению работы буровой установки.

Это даст бурильщику мгновенную обратную связь, позволяя ему исправить ошибку и быстрее возобновить нормальную работу. Оператор может переключать диагностические дисплеи с тем, чтобы получить больше информации о выявленных неисправностях. Состояние системы постоянно отображается простыми полными словами на легкочитаемом программном устройстве специализированной клавиатуры, установленной непосредственно на приводе. Диагностическиесигналы подаются на клавиатуру при помощи легкочитаемого текста, что позволяет персоналу буровой установки, располагающему минимальными навыками в области электротехники, за несколько минут определить неисправность на любом уровне.

Помимо буровой установки с ротором, турбобура или электробура, набора долот, на буровой площадке имеется следующее оборудование и материалы:

  • 1) буровые штанги и насосно-компрессорные трубы;
  • 2) обсадные трубы;
  • 3) насосы для закачки жидкостей и компрессоры для закачки газа или воздуха;
  • 4) глина и различные химреагенты;
  • 5) ёмкости для глинистого раствора и других промывочных жидкостей;
  • 6) цементировочные агрегаты и цемент;
  • 7) перфораторы и испытатели пластов и другое оборудование.

Перед бурением скважины геологической службой совместно с буровыми и проектными организациями составляется геолого-технический наряд (ГТН), в котором представлены геологическая и техническая части. К бурению скважины буровики приступают после утверждения и подписания ГТН руководителямиорганизаций, выполняющих работы. В геологической части ГТН приводится прогнозируемый разрез отложений в месте бурения скважины. Указываются глубины вскрытия различных стратиграфических подразделений разреза, проектный разрез отложений (литологическан колонка) с указанием крепости пород,

приводятся необходимые интервалы отбора керна и испытания пластов в открытом стволе, а также указываются возможные осложнения при бурении против определённых интервалов разреза, приводится комплекс необходимых промыслово-геофизических работ.

В технической части предлагается наиболее оптимальная конструкция скважины, указываются: условия испытания колонн, запасы раствора и химреагентов, способы бурения, тип забойного двигателя, тип, размер, количество долот, режим бурения скважины (осевая нагрузка, скорость вращения ротора, подача насосов, лишение, число насосов), тип бурового раствора по интервалам разбуривания разреза, параметры промывочной жидкости, химическая обработка раствора, скорость подъёма инструмента, компоновка бурильной колонны, параметры буровой установки и др.

Конструкция скважины представляет собой систему труб различного диаметра и глубины спуска в скважину, которая обеспечивает её жёсткое крепление со стенками ствола и прилегающих горных пород. Обычно, чтобы перекрыть верхнюю часть разреза, сложенную рыхлыми породами, сооружают шурф глубиной 4--8 м и в него спускают трубу большого диаметра с окном вверху. Пространство между трубой и стенкой шурфа заполняют бу-товым камнем цементным раствором, что позволяет надёжно укрепить устье скважины. Затем к окну в трубе приваривают металлический желоб, по которому в процессе бурения скважины промывочная жидкость направляется в желобную систему. Трубу, установленную в шурфе, называют направлением.

После установки направления приступают к бурению скважины. После бурения рыхлых пород в верхней части разреза (50-- 400 м) спускают обсадную колонну из стальных труб и цементируют затрубное пространство. Первая обсадная колонна называется кондуктором.

Затем продолжают бурение. Если в дальнейшем при бурении возникают осложнения из-за неустойчивых пластов, спускают вторую обсадную колонну, называемую промежуточной. 13 ряде случаев приходится спускать и третью, и четвёртую колонны, чтобы укрепить ствол скважины.

После достижения проектной глубины в скважину спускают эксплуатационную колонну и её цементируют. Она может быть предназначена либо для подъёма нефти или газа на поверхность, либо -- для нагнетания воды (газа или воздуха) в продуктивный пласт для поддержания давления.

Схема расположения обсадных колонн с указанием их диаметров, глубины перехода с большего диаметра скважины на меньший, глубины спуска обсадных колонн и интервалов их цементирования позволяет представить конструкцию скважины.

По количеству спущенных обсадных колонн скважины могут быть одноколонными, двухколонными и трёхколонными. Обычно начальный диаметр скважины колеблется от 400 до 600 мм, а конечный составляет 127 мм (5").

При бурении часто наблюдались обвалы верхней части осадочного комплекса, сложенной глинами, песчаниками и галечниками; образование каверн вгалогенных породах кунгура, в которых происходили поломы бурильного инструмента; возникало аномально высокое давление, требующее бурения па утяжелённом растворе (1,7 г/см"); поглощение глинистого раствора (вплоть до потери циркуляции) при проходке пористых и трещиноватых пород, что в сочетании с аномально высоким давлением грозит открытыми газовыми выбросами; образование сальников против пористых и трещиноватых пород продуктивной толщи, что приводит к прихватам и затяжкам бурильного инструмента.

После спуска обсадных колонн в скважину производят их цементирование (цементаж). Для этого в затрубное пространство заливают цемент, используя специальные тампонажные цементы. Цементные растворы готовятся в специальных цементосмесительных машинах, которые приезжают на буровую. Через цементировочные агрегаты, оснащенные насосами, происходит продавка цемента из обсадной колонны в затрубное пространство скважины до определенной высоты подъёма цемента, указанной в ГТН.

Разбуривание продуктивных горизонтов в разведочных скважинах проводится колонковыми долотами с целью отбора и последующего изучения керна. После окончания бурения продуктивных пластов проводится полный объём промыслово-геофизических исследований скважин (ГИС).

Затем опробуют пласты с помощью испытателей пластов, которые основаны на вызове притока нефти из пласта за счёт резкого перепада давления в системе пласт-бурильная колонна.

Обычно скважину пробуривают несколько ниже подошвы продуктивного горизонта, спускают эксплуатационную колонну и цементируют один или два раза. Затем после затвердения цемента перфорируют стенку колонны, включая цементное кольцо, напротив продуктивного пласта для установления связи колонны с пластом. Для этого используют различные перфораторы (кумулятивные, торпедные или пулевые). Наиболее часто используют кумулятивные перфораторы, основанные на действии кумулятивной струи, возникающей за счёт взрыва медной облицовки заряда и ударной волны. При этом тонкая металлическая струя выбрасывается со скоростью 8000--10 000 м/с и пробивает отверстия в колонне и цементном камне. Перфоратор спускают в скважину и производят рассчитанную сеть отверстий против продуктивного пласта.

Подземный ремонт скважин проводится как в процессе бурения, так и при их последующей эксплуатации специальными бригадами подземного ремонта, которые выполняют капитальный и текущий ремонты скважин. Бригады ремонтников обычно работают вахтами (сменами), как и буровые бригады.

Бурением называется воздействие спецтехники на почвенные слои, в результате чего в земле образуется скважина, через которую будут добывать ценные ресурсы. Процесс бурения нефтяных скважин осуществляется по разным направлениям работы, которые зависят от расположения почвенного или горного пласта: оно может быть горизонтальным, вертикальным либо наклонным.

В результате работы в земле образуется цилиндрическая пустота в виде прямого ствола, или скважина. Ее диаметр может быть различным в зависимости от назначения, но он всегда меньше параметра длины. Начало скважины расположено на поверхности почвы. Стены называются стволом, а дно скважины – забоем.

Ключевые этапы

Если для водных скважин может использоваться среднее и легкое оборудование, то спецтехника для бурения нефтяной скважины может использоваться только тяжелая. Процесс бурения может осуществляться только при помощи специального оборудования.

Сам процесс делится на следующие этапы:

  • Подвоз техники на участок, где будет производиться работа.
  • Собственно бурение шахты. Процесс включает в себя несколько работ, одна из которых – углубление ствола, которое происходит при помощи регулярного промывания и дальнейшего разрушения горной породы.
  • Чтобы ствол скважины не был разрушен и не засорил ее, пласты породы укрепляют. С этой целью в пространство прокладывают специальную колонну из соединенных между собой труб. Место между трубой и породой закрепляют цементным раствором: эта работа носит название тампонирования.
  • Последней работой является освоение. На нем вскрывается последний пласт породы, формируется призабойная зона, а также проводится перфорация шахты и отток жидкости.

Подготовка площадки

Для организации процесса бурения нефтяной скважины потребуется провести также подготовительный этап. В случае, если разработка ведется в области лесного массива, требуется, помимо оформления основной документации, заручиться согласием на работы в лесхозе. Подготовка самого участка включает следующие действия:


  1. Вырубка деревьев на участке.
  2. Разбитие зоны на отдельные части земли.
  3. Составление плана работ.
  4. Создание поселка для размещения рабочей силы.
  5. Подготовка основания для буровой станции.
  6. Проведение разметки на месте работы.
  7. Создание фундаментов для установки цистерн на складе с горючими материалами.
  8. Обустройство складов, завоз и отладка оборудования.

После этого необходимо заняться подготовкой оборудования непосредственно для бурения нефтяных скважин. В этот этап входят следующие процессы:

  • Установка и проверка техники.
  • Проводка линий для энергоснабжения.
  • Монтаж оснований и вспомогательных элементов для вышки.
  • Установка вышки и подъем на нужную высоту.
  • Отладка всего оборудования.

Когда оборудование для бурения нефтяных скважин будет готово к эксплуатации, необходимо получить заключение от специальной комиссии, что техника находится в исправном состоянии и готова к работе, а персонал обладает достаточными знаниями в области правил безопасности на производстве подобного рода. При проверке уточняется, правильную ли конструкцию имеют осветительные приборы (они должны иметь устойчивый к взрывам кожух), установлено ли по глубине шахты освещение с напряжением 12В. Замечания, касающиеся качества работы и безопасности, необходимо принять во внимание заранее.

До начала работ по бурению скважины необходимо установить шурф, завезти трубы для укрепления бурового ствола, долото, малую спецтехнику для вспомогательных работ, обсадные трубы, приборы для измерений в ходе бурения, обеспечить водоснабжение и решить другие вопросы.

Буровая площадка содержит объекты для проживания рабочих, технические помещения, лабораторное строение для анализа проб почвы и получаемых результатов, склады для инвентаря и малого рабочего инструмента, а также средства для медицинской помощи и средства безопасности.

Особенности бурения нефтяной скважины

После установки начинаются процессы по переоснащению талевой системы: в ходе этих работ монтируется оборудование, а также апробируются малые механические средства. Установка мачты открывает процесс забуривания в почву; направление не должно разойтись с осевым центром вышки.

После того, как завершается центровка, проводится создание скважины под направление: под этим процессом понимается установка трубы для усиления ствола и заливка начальной части цементом. После установки направления центровка между самой вышкой и роторными осями регулируется повторно.

Бурение под шурф осуществляется в центре ствола, и в процессе работы делается обсадка при помощи труб. При бурении шурфа используется турбобур, для регулировки скорости вращения необходимо удерживать его посредством каната, который фиксируется на самой вышке, а другой частью удерживается физически.

За пару суток до запуска буровой установки, когда прошел подготовительный этап, собирается конференция с участием членов администрации: технологов, геологов, инженеров, бурильщиков. К вопросам, обсуждаемым на конференции, относятся следующие:

  • Схема залегания пластов на нефтяном месторождении: слой глины, слой песчаника с водоносами, слой нефтяных залежей.
  • Конструктивные особенности скважины.
  • Состав горной породы в точке исследований и разработок.
  • Учет возможных трудностей и осложняющих работу факторов, которые могут появиться при бурении нефтяной скважины в конкретном случае.
  • Рассмотрение и анализ карты нормативов.
  • Рассмотрение вопросов, связанных с безаварийной проводкой.

Документы и оборудование: основные требования

Процесс бурения скважины под нефть может начаться только после оформления ряда документов. К ним относятся следующие:

  • Разрешение о начале эксплуатации буровой площадки.
  • Карта нормативов.
  • Журнал по растворам для бурения.
  • Журнал по обеспечению охраны труда в работе.
  • Учет функционирования дизелей.
  • Вахтовый журнал.

К основному механическому оборудованию и расходным материалам, которые используются в процессе бурения скважины, относятся следующие виды:

  • Оборудование для цементирования, сам цементный раствор.
  • Оборудование для обеспечения безопасности.
  • Каротажные механизмы.
  • Техническая вода.
  • Реагенты для различных целей.
  • Вода для питья.
  • Трубы для обсадки и собственно бурения.
  • Площадка под вертолет.

Типы скважин

В процессе бурения нефтяной скважины в горной породе формируется шахта, которую проверяют на наличие нефти либо газа посредством перфорации ствола, при котором происходит стимуляция притока искомого вещества из продуктивной области. После этого бурильная техника демонтируется, скважина пломбируется с указанием даты начала и окончания бурения, а затем мусор вывозится, а металлические части подвергаются утилизации.

При начале процесса диаметр ствола составляет до 90 см, а к концу редко доходит до 16,5 см. В ходе работы строительство скважины делается в несколько этапов:

  1. Углубление дня скважины, для чего используется буровое оборудование: оно размельчает горную породу.
  2. Удаление обломков из шахты.
  3. Закрепление ствола при помощи труб и цемента.
  4. Работы, в ходе которых исследуется полученный разлом, выявляются продуктивные расположения нефти.
  5. Спуск глубины и ее цементирование.

Скважины могут отличаться по заглубленности и делятся на следующие разновидности:

  • Небольшие (до 1500 метров).
  • Средние (до 4500 метров).
  • Углубленные (до 6000 метров).
  • Сверхуглубленные (более 6000 метров).

Бурение скважины подразумевает измельчение цельного пласта породы долотом. Полученные части удаляют посредством вымывания специальным раствором; глубина шахты делается больше при разрушении всей забойной площади.

Проблемы в ходе бурения нефтяных скважин

В ходе бурения скважин можно столкнуться с рядом технических проблем, которые замедлят или сделают работу практически невозможной. К ним относятся следующие явления:

  • Разрушения ствола, обвалы.
  • Уход в почву жидкости для промывки (удаления частей породы).
  • Аварийные состояния оборудования или шахты.
  • Ошибки в сверлении ствола.

Чаще всего обвалы стенок происходят из-за того, что горная порода обладает нестабильной структурой. Признаком обвала является увеличенное давление, большая вязкость жидкости, которая используется для промывки, а также повышенное число кусков породы, которые выходят на поверхность.

Поглощение жидкости чаще всего случается в случае, если залегающий ниже пласт целиком забирает раствор в себя. Его пористая система или высокая степень впитываемости способствует такому явлению.

В процессе бурения скважины снаряд, который движется по часовой стрелке, доходит до места забоя и поднимается обратно. Проведение скважины доходит до коренных пластов, в которые происходит врезка до 1,5 метра. Чтобы скважина не была размыта, в начало погружается труба, она же служит средством проведения промывочного раствора напрямую в желоб.

Буровой снаряд, а также шпиндель может вращаться с разной скоростью и частотой; этот показатель зависит от того, какие виды горных пород требуется пробить, какой диаметр коронки будет сформирован. Скорость контролируется посредством регулятора, который регулирует уровень нагрузки на коронку, служащую для бурения. В процессе работы создается необходимое давление, которое оказывается на стены забоя и резцы самого снаряда.

Проектирование бурения скважины

Перед началом процесса по созданию нефтяной скважины составляется проект в виде чертежа, в котором обозначаются следующие аспекты:

  • Свойства обнаруженных горных пород (устойчивость к разрушению, твердость, степень содержания воды).
  • Глубина скважины, угол ее наклона.
  • Диаметр шахты в конце: это важно для определения степени влияния на него твердости горных пород.
  • Метод бурения скважины.

Проектирование нефтяной скважины необходимо начинать с определения глубины, конечного диаметра самой шахты, а также уровня бурения и конструктивных особенностей. Геологический анализ позволяет разрешить эти вопросы вне зависимости от типа скважины.


Методы бурения

Процесс создания скважины для добычи нефти может осуществляться несколькими способами:

  • Ударно-канатный метод.
  • Работа с применением роторных механизмов.
  • Бурение скважины с использованием забойного мотора.
  • Бурение турбинного типа.
  • Бурение скважины с использованием винтового мотора.
  • Бурение скважины посредством электрического бура.

Первый способ относится к наиболее известным и проверенным методам, и в этом случае шахту пробивают ударами долота, которые производятся с определенной периодичностью. Удары делаются посредством влияния веса долота и утяжеленной штанги. Поднятие оборудования происходит из-за балансира оборудования для бурения.

Работа с роторным оборудованием основана на вращении механизма при помощи ротора, который ставится на устье скважины через трубы для бурения, которые осуществляют функцию вала. Бурение скважин малого размера производится посредством участия в процессе шпиндельного мотора. Роторный привод соединен с карданом и лебедкой: такое устройство позволяет контролировать скорость, с которой вращаются валы.

Бурение при помощи турбины производится посредством передачи вращающегося момента колонне от мотора. Такой же способ позволяет передавать и энергию гидравлики. При этом методе функционирует только один канал подачи энергии на уровне до забоя.

Турбобур – это особый механизм, который преобразует энергию гидравлики в давлении раствора в механическую энергию, которая и обеспечивает вращение.

Процесс бурения нефтяной скважины состоит из опускания и подъема колонны в шахту, а также удерживание на весу. Колонной называется сборная конструкция из труб, которые соединяются друг с другом посредством специальных замков. Главной задачей является передача различных типов энергии к долоту. Таким образом осуществляется движение, приводящее к углублению и разработке скважины.

Первоначально в нашей стране использовали бурение для строительства соляных скважин. Информация о бурении скважин для поисков нефти относится к 30-м годам XIX века на Тамани. По предложению горного инженера Н.И. Воскобойникова в 1848 году на Биби-Эйбате была пробурена скважина с помощью бура, из которой получена нефть. Это была первая нефтяная скважина в мире, построенная с помощью бурения с использованием способа непрерывной очистки скважины от пробуренной породы промывкой жидкостью.

Скважины бурятся вертикальные, наклонные, горизонтальные. Широкое применение получил метод наклонно-направленного кустового бурения, когда с одной площадки бурится наклонным способом 15 и более скважин. Этот метод успешно применяется в условиях заболоченных мест, при бурении скважин с морских буровых платформ, для сохранения плодородных пахотных земель и т.д.

Понятие о скважине

Скважина - это горная выработка (вертикальная или наклонная) круглого сечения, глубиной от нескольких метров до нескольких километров, различного диаметра, сооружаемая в толще земной коры. Верхняя часть скважины называется устьем, нижняя часть скважины называется забоем, а боковая поверхность называется стволом скважины. Расстояние от устья скважины до забоя по оси ствола скважины называется длиной скважины. Проекция длины на вертикальную ось называется глубиной скважины.

Скважины бывают нефтяные, газовые, газоконденсатные, нагнетательные, наблюдательные, оценочные и т.д. Конструкция скважин должна отвечать следующим требованиям:

  • 1. Обеспечивать механическую устойчивость стенок ствола скважины и надежное разобщение всех (нефть, газ, вода) пластов друг от друга, свободный доступ к забою скважин спускаемого оборудования, недопущение обрушения горных пород в стволе скважины.
  • 2. Эффективную и надежную связь забоя скважины с продуктивным (нефтяным или газовым) пластом.
  • 3. Возможность герметизации устья скважины и обеспечение направления извлекаемой продукции в систему сбора, подготовки и транспорта нефти и газа или нагнетания в пласт агента воздействия.
  • 4. Возможность проведения в скважинах исследовательских работ, а также различных геолого-технических и ремонтно-профилактических работ.

Устойчивость стенок ствола скважин и разобщение пластов друг от друга достигается за счет бурения и спуска в скважину нескольких труб, называемых обсадными. Вначале скважина бурится на глубину 50-100 метров, в нее спускается стальная труба (1 = 500 мм и более - направление. Пространство между наружной стенкой трубы и стенкой скважины (породы) заполняется специальным тампонажным цементным раствором под давлением с целью недопущения обвала верхних пород и перетоков между верхними пластами. Затем скважина бурится меньшим диаметром долота на глубину 500-600 м, в нее спускается труба диаметром 249-273 мм и цементируется, как и направление, до устья. Эта колонна труб называется кондуктором и предназначена для предотвращения размыва верхних пластов, а также для создания канала для бурового глинистого раствора. После этого скважина бурится до проектного забоя. В нее спускается эксплуатационная колонна (стальная труба диаметром 146-168 мм), а пространство между трубой и породой под давлением заполняется цементным раствором до устья. Объем цементного раствораи давление его закачки определяются расчетом. После затвердения цементного раствора (обычно 48 часов) в межтрубном пространстве между наружной стенкой трубы и породой образуется цементный камень, который разобщает пласты между собой.

В зависимости от характеристики залежи, ее пластового давления, геологического разреза и др. конструкция скважин может быть одноколонной или многоколонной (двух или трех). Последняя колонна называется эксплуатационной.

После завершения бурения, спуска эксплуатационной колонны, ее цементации в скважине в интервале нефтяного или газового пласта делаются сквозные отверстия через стальную трубу и цементный камень с помощью специальных перфораторов.

После этого скважина осваивается и вводится в эксплуатацию. Скважина может быть с закрытым или открытым забоем. Открытый забой используется, когда продуктивный пласт сложен из плотных пород - карбонатных, известковых или плотных песчаников. При открытом забое скважина бурится до кровли продуктивного пласта, спускается эксплуатационная колонна и цементируется. Затем долотом меньшего диаметра через эксплуатационную колонну вскрывают (добуривают) продуктивный пласт. При этом не требуется перфорация, т.к. продуктивный пласт не перекрывается металлической трубой.

Если продуктивный пласт состоит из неустойчивых и слабоцементированных песчаников или известняков, то забой скважины оборудуется закрытым. При этом скважина бурится до проектной глубины (несколько ниже на 15-20 м продуктивного пласта создается так называемый «зумф»), в нее спускается эксплуатационная колонна, которая цементируется, а затем делается перфорация продуктивных участков пласта для сообщения пласта с забоем скважины. Если пласт представлен слабоцементированными песчаниками или алевролитами, то продуктивный пласт можно вскрывать при открытом забое с последующим спуском фильтра-хвостовика. Фильтр представляется в виде отверстий в эксплуатационной колонне в интервале продуктивного пласта.

Способы бурения нефтяных и газовых скважин.

Существует несколько способов бурения, но промышленное применение нашло механическое бурение. Механическое бурение подразделяется на ударное и вращательное. При ударном бурении буровой инструмент состоит из долота 1, ударной штанги 2, канатного замка 3. На бурящейся скважине устанавливается мачта 12, которая имеет в верхней части блок 5, оттяжной ролик балансира 6, вспомогательный ролик 8 и барабан бурового станка 11. Канат навивается на барабан 11 бурового станка. Буровой инструмент подвешивается на канате 4, который перекидывается через блок 5 мачты 12. При вращении шестерен 10 шатун 9, совершая возвратно-поступательное движение, приподнимает и опускает балансирную раму 6. При опускании рамы оттяжной ролик 7 натягивает канат и поднимает буровой инструмент над забоем скважины. При подъеме рамы канат опускается, долото падает на забой и разрушает породу. Для очистки забоя от разрушенной породы (шлама) поднимают буровой инструмент из скважины и спускают в нее желонку (удлиненный цилиндр типа ведра с клапаном в дне). Для повышения эффективности ударно-канатного бурения необходимо своевременно очищать забой скважины от выбуренной породы.

Вращательное бурение.

Нефтяные и газовые скважины в настоящее время бурятся методом вращательного бурения. При вращательном бурении разрушение горной породы происходит за счет вращающегося долота. Под весом инструмента долото входит в породу и под влиянием крутящего момента разрушает породу. Крутящий момент передается на долото с помощью ротора, устанавливаемого на устье скважины через колоннубурильных труб. Этот метод бурения называется роторным бурением. Если крутящий момент передается на долото от забойного двигателя (турбобура, электробура), то этот способ называют турбинным бурением.

Турбобур - это гидравлическая турбина, приводимая во вращение с помощью нагнетаемой насосами в скважину промывочной жидкости.

Электробур представляет собой электродвигатель в герметичном исполнении, электрический ток к нему подается по кабелю с поверхности.

Буровая вышка - это металлическое сооружение над скважиной для спуска и подъема бурового инструмента с долотом, забойных двигателей, обсадных труб, размещения бурильных свечей после их подъема из скважины и т.д.

Вышки выпускаются нескольких модификаций. Основные характеристики вышек - это грузоподъемность, высота, емкость «магазинов» (место длясвечей бурильных труб), размеры нижнего и верхнего оснований, вес (масса вышки).

Грузоподъемность вышки - это максимальная, предельно допустимая нагрузка на вышку в процессе бурения скважины. Высота вышки определяет длину свечи, которую можно извлечь из скважины, от величины которой зависит продолжительность спускоподъемных операций.

Для бурения скважин на глубину 400-600 м применяется вышка высотой 16-18 м, на глубину 2000-3000 м - высотой 42 м, а на глубину от 4000 до 6500 м - 53 м. Емкость «магазина» показывает, какая суммарная длина бурильных труб диаметром 114-168 мм может быть размещена в них. Размеры верхнего и нижнего оснований характеризуют условия буровой бригады с учетом размещения бурового оборудования, бурильного инструмента и средств механизации спускоподъемных операций. Размеры верхнего основания вышек составляют 2x2 или 2,6x2,6 м, а нижнего - 8x8 или 10x10 м.

Общая масса буровых вышек составляет десятки тонн.

Цикл строительства скважины.

Перед началом бурения на месте бурения скважины площадку освобождают от посторонних предметов, при наличии леса его вырубают и выкорчевывают. Если бурение будет вестись в заболоченной местности, то предварительно отсыпают дорогу до места буровой, а также отсыпают площадку, ликвидируя заболоченность, под буровой установкой. Делают планировку площадки, подводят линию электропередачи, связь и водовод.

Буровые вышки, если позволяет рельеф местности и расстояние, перевозят без разборки на специальных гусеничных тележках или на санях с полозьями, а также возможен метод пневмопередвижки. После перевозки и установки на месте буровой вышки начинают монтаж остального оборудования, т.е. монтаж поршневых насосов с дизельным приводом или насосов с электроприводом; систему очистки бурового раствора, электрощитовую, устьевое оборудование (ротор, превентор, гидравлический индикатор веса), буровое укрытие для привышечных сооружений и т.д. Если бурение начинается на новой площади, удаленной- от места ведения буровых работ, в этом случае все оборудование, включая буровую вышку, насосный блок, очистные сооружения и т.д., завозят в разобранном виде на буровую площадку и здесь начинают собирать буровую вышку и все остальное оборудование.

После монтажа буровой вышки и всего оборудования начинают проводить подготовительные работы к бурению скважины.

К подготовительным работам относятся:

  • 1. Оснастка талевого блока и кронблока стальным канатом и подвеска подъемного крюка.
  • 2. Установка и опробование средств малой механизации.
  • 3. Сборка и подвеска к крюку вертлюга квадрата (ведущая труба), присоединение гибкого высоконапорного шланга к трубе-стояку и к вертлюгу.
  • 4. Центровка вышки.
  • 5. Установка ротора.
  • 6. Бурение направления скважины.

Скважины бурят вертикальные, наклонно-направленные и горизонтальные. Долгое время основным видом бурения скважин было вертикальное бурение. Последние годы все чаще стал применяться метод наклонно-направленного бурения, т.е. когда, согласно проектам на бурение, скважина бурится по траектории с отклонением от вертикали. Обычно наклонные скважины целесообразно бурить под дно моря, реки, озера, а также под горы, овраги; в болотистой местности, заповедных лесах, под крупные промышленные объекты, города и села. Наклонные скважины также применяют при ликвидации открытых нефтяных и газовых фонтанов, а также в целях сохранения плодородных земель, с целью снижения стоимости бурения скважин за счет сокращения подготовительных работ и коммуникаций (связь, электроэнергия, водоводы и т.д.). Для отклонения профиля скважины от вертикали применяют специальные приспособления. К ним относятся: кривой переводник, кривая бурильная труба, различного вида отклонители и т.д. Все больше и больше в нашей стране в последние годы применяется горизонтальное бурение скважин и бурение боковых горизонтальных стволов скважин в отработанных и нерентабельных скважинах, где имеются невыработанные пропластки с нефтью.

Перфорация скважин. После того как обсадные трубы спущены в скважину и зацементированы, против продуктивной части пласта при помощи перфораторов делают отверстия в эксплуатационной колонне и цементном камне для соединения продуктивной части пласта с забоем скважины. Эта операция называется перфорацией. Применяются различные методы перфорации скважин: пулевая, торпедная, кумулятивная и гидропескоструйная.

Пулевой перфоратор (ПП) представляет собой трубу длиной 1 м и диаметром 100 мм, которая заряжается спрессованным порохом и 10 стальными пулями. На каротажном кабеле пулевой перфоратор спускают в скважину, заполненную глинистым раствором, устанавливают против заданного интервала продуктивного пласта и делают выстрелы. Глубина отверстий в породе не превышает 5-7 см. Многие пули застревают в эксплуатационной колонне, в цементном камне, и только небольшое число их пробивает колонну и цементный камень. Практически в настоящее время не находит применения.

Торпедный перфоратор (ТП). Торпедная перфорация осуществляется аппаратами, спускаемыми на кабеле и стреляющими разрывными снарядами диаметром 22 мм. Аппарат состоит из секций, в каждой из которых имеется по два горизонтальных ствола. Снаряд снабжен детонатором накольного типа. При остановке снаряда происходит взрыв внутреннего заряда и растрескивание окружающей горной породы. Глубина каналов, по данным испытаний, составляет 100-160 мм, диаметр канала 22 мм. На 1 м продуктивной части пласта делается не более четырех отверстий, так как при торпедной перфорации часто происходит разрушение обсадной колонны. Так же, как и пулевая, торпедная перфорация применяется очень ограниченно.

В настоящее время в основном применяют кумулятивную перфорацию (ПК). Кумулятивные перфораторы имеют заряды с конусной выемкой, которые позволяют фокусировать взрывные потоки газов и направлять их с большой скоростью перпендикулярно к стенкам скважины.

В кумулятивный перфоратор вставляют шашку из спрессованного порошкообразного взрывчатого вещества, которая имеет конусную выемку, облицованную металлической плашкой.

Кумулятивная перфорация осуществляется стреляющими перфораторами, не имеющими пуль или снарядов. Прострел колонны, цементного камня и породы достигается за счет сфокусированного взрыва. Такая фокусировка обусловлена конической формой поверхности заряда взрывчатого вещества (ВВ), облицованной тонким металлическим покрытием (листовая медь толщиной 0,6 мм). Энергия взрыва в виде тонкого пучка газов - продуктов облицовки - пробивает канал. Кумулятивнаяструя имеет скорость в головной части до 6-8 км/с и создает давление 3-5 тыс. мПа.

При выстреле кумулятивным зарядом в колонне и цементном камне образуется узкий перфорационный канал глубиной до 350 мм и диаметром в средней части 8-14 мм.

На нефтяных промыслах применяют также гидропескоструйный перфоратор (ГПП).

Гидропескоструйный перфоратор состоит из толстостенного корпуса, в который ввинчивается до десяти насадок из абразивно-стойкого материала (керамики, твердых сплавов) диаметрами отверстий 3-6 мм.

Гидропескоструйный перфоратор спускают в скважину на насосно-компрессорных трубах. Перед проведением перфорации скважины с поверхности в НКТ бросают шар, который перекрывает сквозное отверстие перфоратора. После этого с помощью насосных агрегатов АН-500 или АН-700 через НКТ в скважину закачивают жидкость с песком. Нагнетаемая жидкость с песком выходит только через насадки. При выходе из насадок развиваются огромные скорости абразивной струи. В результате за короткое время пробиваются отверстия в обсадных трубах, цементном камне и породе, ствол скважины соединяется с продуктивным пластом. В зависимости от диаметра насадок, их числа и скорости закачки жидкости глубина перфорационных отверстий достигает 40-60 см. При этом сохраняется герметичность цементного камня за колонной. При гидропескоструйной перфорации на устье скважины создается давление до 40 мПа. Темп прокачки жидкости с песком составляет 3-4 л/с на одну насадку. При этом объемная скорость струи в насадке достигает 200-300 м3/сут, а перепад давления 18-22 мПа. Продолжительность перфорации одного интервала - 15-20 минут. По окончании перфорации заданного интервала перфоратор поднимают и устанавливают на следующий интервал, и операция повторяется.

вызов притока в скважину.

В промысловой практике применяют следующие способы вызова притока жидкости из продуктивного пласта к забою скважины: тартание, поршневание, замена жидкости в скважине на более легкую, компрессорный метод, прокачка газожидкостной смеси, откачка глубинными насосами. Перед освоением скважины на устье устанавливается арматура. В любом случае на фланце обсадной колонны должна устанавливаться задвижка высокого давления для перекрытия ствола скважины в аварийных ситуациях.

Поршневание . При поршневании (свабировании) поршень, или сваб, спускается в НКТ на стальном канате. Поршень (сваб) представляет собой трубу диаметром 25-37,5 мм с клапаном, в нижней части открывающимся вверх. На наружной поверхности трубы (в стыках) устанавливаются резиновые манжеты (3-4 шт.), армированные проволочной сеткой. При спуске сваба под уровень жидкость в скважине перетекает через клапан в пространство над поршнем. При подъеме сваба клапан закрывается, а манжеты, распираемые давлением столба жидкости над ними, прижимаются к стенкам НКТ и уплотняются. За один подъем поршень выносит столб жидкости, равный глубине погружения его под уровень жидкости. Глубина погружения ограничивается прочностью тартального каната и обычно составляет 100-150 м.

Тартание - это извлечение жидкости из скважины желонкой, спускаемой на стальном (16 мм) канате с помощью лебедки на тракторе (автомобиле). Изготавливается желонка из трубы длиной 7,5-8 м, имеющей в нижней части клапан со штоком, открывающимся при упоре на шток. В верхней части желонки имеется скоба для крепления каната. Диаметр желонки не должен превышать 0,7 диаметра обсадной колонны. За один спуск желонка выносит из скважины жидкость объемом не более 0,06 м3.

Тартание - трудоемкий и малопроизводительный способ. В то же время тартание дает возможность извлекать глинистый раствор с забоя и контролировать уровень жидкости в скважине. Многократные спуск и подъем поршня приводят к постепенному понижению уровня жидкости в скважине. Большим недостатком этого метода является то, что приходится работать при открытом устье, что связано с опасностью выброса жидкости и открытого фонтанирования. Поэтому поршневание применяется в основном при освоении нагнетательных скважин.

Замена жидкости в скважине. Скважина, законченная бурением, обычно заполнена глинистым раствором. Если заменить глинистый раствор в скважине водой или дегазированной нефтью, то уменьшим забойное давление. Этим способом осваиваются скважины с большим пластовым давлением и хорошими коллекторскими свойствами.

Компрессорный способ освоения. Компрессорный способ имеет более широкое применение при освоении скважин. В скважину перед освоением спускаются насосно-компрессорные трубы, а устье оборудуется фонтанной арматурой. К межтрубному пространству через нагнетательный трубопровод подсоединяют передвижной компрессор или газовую линию с высоким давлением от газокомпрессорной станции. При нагнетании газа в скважину жидкость в межтрубном пространстве оттесняется до башмака НКТ или до пускового отверстия (3-4 мм) в НКТ, сделанного заранее на глубине 700-800 м от устья, и прорывается в НКТ. Газ, попадая в НКТ, газирует жидкость в них. В результате давление на забое значительно снижается. Регулируя расход газа, изменяют плотность газожидкостной смеси в трубах, а соответственно, и давление на забое скважины. При забойном давлении ниже пластового начинается приток жидкости и газа в скважину. После получения устойчивого притока скважина переводится на стационарный режим работы. Этот способ позволяет сравнительно быстро получить значительные депрессии на пласт, что особенно важно для эффективной очистки призабойной зоны скважины. В условиях крепких пород (песчаников, известняков) это приводит к интенсивной очистке порового пространства от кальматирующего (закупоривающего) материала, а в условиях рыхлых пород - к разрушению призабойной зоны пласта. Чтобы обеспечить более плавный пуск скважины, проводят закачку аэрированной нефти через межтрубное пространство с использованием компрессора, промывочного агрегата и смесителя. После выброса газожидкостной смеси через выкидную линию в приемную емкость подачу аэрированной нефти постепенно уменьшают до полного ее прекращения.

Освоение скважин сжатым воздухом в основном проводят применением передвижных компрессоров УКП-80 или КС-100. Компрессор УКП-80 развивает давление 8 МПа с подачей воздуха 8 м /мин, а КС-100 развивает давление 10 МПа с подачей воздуха 16 м3/мин. Следует отметить, что при освоении скважин сжатым воздухом возможны взрывы, так как при содержании углеводородного газа в смеси с воздухом от 6 до 15% образуется гремучая смесь.

Освоение скважин закачкой газированной жидкости.

Освоение скважин газированной жидкостью заключается в том, что вместо газа или воздуха в межтрубное пространство закачивается смесь газа с жидкостью (вода или нефть). Плотность такой газожидкостной смеси зависит от соотношения расходов закачиваемых газа и жидкости, что позволяет регулировать параметры процесса освоения. С учетом того, что плотность газожидкостной смеси больше плотности чистого газа, этот метод позволяет осваивать глубокие скважины компрессорами, которые создают меньшее давление.

Освоение нагнетательных скважин. Нагнетательные скважины должны иметь высокую приемистость по всей толщине продуктивного пласта. Этого можно достичь хорошей очисткой призабойной зоны продуктивного пласта от грязи и других кальматирующих материалов. Призабойную зону пласта очищают перед пуском нагнетательной скважины под закачку теми же способами, что и при освоении нефтедобывающих скважин, но дренирование призабойных зон пласта проводят по времени значительно дольше. Длительность промывки достигает одних суток и более и зависит от количества механических примесей, содержащихся в выходящей из скважины воде. Содержание механических примесей в конце промывки не должно превышать 10-20 мг/л.

Максимальная очистка порового пространства призабойной зоны пласта происходит с использованием таких способов дренирования, которые позволяют создавать очень высокие депрессии на пласт, обеспечивающие высокие скорости фильтрации жидкости к забоям скважин в условиях неустановившихся режимов. Чаще всего дренирование пласта проводят методами самоизлива, аэризации жидкости, откачки с применением высокопроизводительных погружных центробежных насосов и др.

При освоении нагнетательных скважин широкое применение получил метод переменных давлений (МПД). При использовании этого метода в призабойную зону пласта через НКТ с использованием насосных агрегатов в течение короткого времени периодически создают высокое давление нагнетания, которое затем резко сбрасывают через межтрубное пространство (проводят «разрядку»). При закачке жидкости с высоким давлением в призабойной зоне пласта раскрываются имеющиеся и образуются новые трещины, а при сбрасывании давления происходит приток жидкости к забою с большой скоростью. Хорошие результаты получают при использовании способа периодического дренирования призабойных зон созданием многократных мгновенных высоких депрессий на забое.

Иногда плохая приемистость нагнетательных скважин происходит или из-за низкой природной проницаемости пород пласта, или большого количества глинистых пропластков, освоить которые проведением дренажа призабойных зон не удается. В таких случаях для увеличения приемистости нагнетательных скважин используют другие методы воздействия, которые позволяют увеличивать диаметры фильтрационных каналов или создавать систему трещин в породах пласта. К таким методам относятся различные кислотные обработки, тепловые методы, гидравлический разрыв пласта, щелевая разгрузка, обработка пласта оксидатом и т.д.