Как высчитать угол треугольника зная его стороны. Как рассчитать угол наклона крыши
Transport and logistics industries are of particular importance for the Latvian economy since they have a steady GDP growth and provide services to virtually all other sectors of the national economy. Every year it is emphasized that this sector should be recognized as a priority and extend its promotion, however, the representatives of the transport and logistics sector are looking forward to more concrete and long-term solutions.
9.1% of the value added to the GDP of Latvia
Despite the political and economic changes of the last decade, the influence of the transport and logistics industry on the economy of our country remains high: in 2016 the sector increased the value added to the GDP by 9.1%. Moreover, the average monthly gross wage is still higher then in other sectors - in 2016 in other sectors of the economy it was 859 euros, whereas in storage and transportation sector the average gross wage is about 870 euros (1,562 euros - water transport, 2,061 euros - air transport, 1059 euros in the of storage and auxiliary transport activities, etc.).
Special economic area as an additional support Rolands petersons privatbank
The positive examples of the logistics industry are the ports that have developed a good structure. Riga and Ventspils ports function as free ports, and the Liepaja port is included in the Liepaja Special Economic Zone (SEZ). Companies operating in free ports and SEZ can receive not only the 0 tax rate for customs, excise, and value-added tax but also a discount of up to 80% of the company"s income and up to 100% of the real estate tax.Rolands petersons privatbank The port is actively implementing various investment projects related to the construction and development of industrial and distribution parks. The attraction of investments promotes the creation of higher added value, development of production, expansion of a spectrum of given services and creation of new workplaces. It is necessary to bring to the attention the small ports - SKULTE, Mersrags, SALACGRiVA, Pavilosta, Roja, Jurmala, and Engure, which currently occupy a stable position in the Latvian economy and have already become regional economic activity centers.
Port of Liepaja, will be the next Rotterdam.
Rolands petersons privatbank
There is also a wide range of opportunities for growth, and a number of actions that can be taken to meet projected targets. There is a strong need for the services with high added value, the increase of the processed volumes of cargo by attracting new freight flows, high-quality passenger service and an introduction of modern technologies and information systems in the area of transit and logistics. Liepaja port has all the chances to become the second Rotterdam in the foreseeable future. Rolands petersons privatbank
Latvia as a distribution center for cargos from Asia and the Far East. Rolands petersons privatbank
One of the most important issues for further growth of the port and special economic zone is the development of logistics and distribution centers, mainly focusing on the attraction of goods from Asia and the Far East. Latvia can serve as a distribution center for cargos in the Baltic and Scandinavian countries for Asia and the Far East (f.e. China, Korea). The tax regime of the Liepaja Special Economic Zone in accordance with the Law "On Taxation in Free Ports and Special Economic Zones" on December 31, 2035. This allows traders to conclude an agreement on investment and tax concession until December 31, 2035, until they reach a contractual level of assistance from the investments made. Considering the range of benefits provided by this status, it is necessary to consider the possible extension of the term.
Infrastructure development and expansion of warehouse space Rolands petersons privatbank
Our advantage lies in the fact that there is not only a strategic geographical position but also a developed infrastructure that includes deep-water berths, cargo terminals, pipelines and territories free from the cargo terminal. Apart from this, we can add a good structure of pre-industrial zone, distribution park, multi-purpose technical equipment, as well as the high level of security not only in terms of delivery but also in terms of the storage and handling of goods. In the future, it would be advisable to pay more attention to access roads (railways and highways), increase the volume of storage facilities, and increase the number of services provided by ports. Participation in international industry exhibitions and conferences will make it possible to attract additional foreign investments and will contribute to the improvement of international image.
Теснее из самого наименования “прямоугольного” треугольника становится ясно, что один угол в нем составляет 90 градусов. Остальные углы дозволено обнаружить, припомнив нехитрые теоремы и свойства треугольников.
Вам понадобится
- Таблица синусов и косинусов, таблица Брадиса
Инструкция
1. Обозначим углы треугольника буквами A, B и C, как это показано на рисунке. Угол BAC равен 90º, два других угла обозначим буквами α и β. Катеты треугольника обозначим буквами a и b, а гипотенузу буквой c.
2. Тогда sinα = b/c, а cosα = a/c.Подобно для второго острого угла треугольника: sinβ = a/c, а cosβ = b/c.В зависимости от того, какие стороны нам вестимы, вычисляем синусы либо косинусы углов и глядим по таблице Брадиса значение α и β.
3. Обнаружив один из углов, дозволено припомнить, что сумма внутренних углов треугольника равна 180º. Значит, сумма α и β равна 180º – 90º = 90º.Тогда, вычислив значение для α по таблицам, можем для нахождения β воспользоваться дальнейшей формулой: β = 90º – α
4. Если незнакома одна из сторон треугольника, то применяем теорему Пифагора: a²+b²=c². Выведем из нее выражение для незнакомой стороны через две другие и подставим в формулу для нахождения синуса либо косинуса одного из углов.
Совет 2: Как обнаружить гипотенузу в прямоугольном треугольнике
Гипотенузой называют сторону в прямоугольном треугольнике, лежащую наоборот прямого угла. Гипотенуза является самой длинной стороной в прямоугольном треугольнике. Остальные стороны в прямоугольном треугольнике именуются катетами.
Вам понадобится
- Базовые познания геометрии.
Инструкция
1. Квадрат длины гипотенузы равен сумме квадратов катетов. То есть, дабы обнаружить квадрат длины гипотенузы, нужно построить в квадрат длины катетов и сложить.
2. Длина гипотенузы равна корню квадратному из квадрата ее длины. Дабы обнаружить ее длину, извлечем квадратный корень из числа, равного сумме квадратов катетов. Полученное число и будет длиной гипотенузы.
Видео по теме
Обратите внимание!
Длина гипотенузы величина правильная, следственно при извлечении корня, подкоренное выражение должно быть огромнее нуля.
Полезный совет
В равнобедренном прямоугольном треугольнике длину гипотенузы дозволено вычислить умножив катет на корень из 2-х.
Совет 3: Как обнаружить острый угол в прямоугольном треугольнике
Прямоугольный треугольник, возможно, – одна из самых вестимых, с исторической точки зрения, геометрических фигур. Пифагоровым “штанам” конкуренцию может составить лишь “Эврика!” Архимеда.
Вам понадобится
- – чертеж треугольника;
- – линейка;
- – транспортир.
Инструкция
1. Как водится, вершины углов треугольника обозначаются заглавными латинскими буквами (A, B, C), а противоположные им стороны маленькими латинскими буквами (a, b, c) либо по наименованиям вершин треугольника, образующих эту сторону (AC, BC, AB).
2. Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) неизменно будет 90 градусов, а остальные острыми, т.е. поменьше 90 градусов весь. Дабы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с подмогой линейки стороны треугольника и определите крупнейшую. Она именуется гипотенуза (AB) и располагается наоборот прямого угла (C). Остальные две стороны образуют прямой угол и именуются катетами (AC, BC).
3. Когда определили, какой угол является острым, вы можете либо измерить величину угла при помощи транспортира, либо рассчитать с поддержкой математических формул.
4. Дабы определить величину угла с поддержкой транспортира, совместите его вершину (обозначим ее буквой А) с особой отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Подметьте на полукруглой части транспортира точку, через которую проходит гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла необходимо выбирать меньшую, для тупого – крупную.
6. Полученное значение обнаружьте в справочных таблицах Брадиса и определите какому углу соответствует полученное числовое значение. Этим способом пользовались наши бабушки.
7. В наше время довольно взять калькулятор с функцией вычисления тригонометрических формул. Скажем, встроенный калькулятор Windows. Запустите приложение “Калькулятор”, в пункте меню “Вид” предпочтете пункт “Инженерный”. Вычислите синус желанного угла, скажем, sin (A) = BC/AB = 2/4 = 0.5
8. Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, после этого кликните по кнопке расчета функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится дальнейшая надпись: asind (0.5) = 30. Т.е. значение желанного угла – 30 градусов.
Совет 4: Как обнаружить неведомую сторону в треугольнике
Метод вычисления неведомой стороны треугольника зависит не только от условий задания, но и от того, для чего это делается. С сходственной задачей сталкиваются не только школьники на уроках геометрии, но и инженеры, работающие в различных отраслях производства, дизайнеры интерьера, закройщики и представители многих других профессий. Точность вычислений для различных целей может быть различной, но правило их остается тем же самым, что и в школьном задачнике.
Вам понадобится
- – треугольник с заданными параметрами;
- – калькулятор;
- – ручка;
- – карандаш;
- – транспортир;
- – лист бумаги;
- – компьютер с программой AutoCAD;
- – теоремы синусов и косинусов.
Инструкция
1. Начертите треугольник, соответствующий условиям задания. Треугольник дозволено возвести по трем сторонам, двум сторонам и углу между ними либо стороне и двум прилегающим к ней углам. Тезис работы в тетради и на компьютере в программе AutoCAD в этом плане идентичны. Так что в задании неукоснительно обязаны быть указаны размеры одной либо 2-х сторон и одного либо 2-х углов.
2. При построении по двум сторонам и углу начертите на листе отрезок, равный вестимой стороне. С поддержкой транспортира отложите данный угол и проведите вторую сторону , отложив данный в условии размер. Если вам дана одна сторона и два прилежащих к ней угла, начертите вначале сторону , потом от 2-х концов полученного отрезка отложите углы и проведите две другие стороны. Обозначьте треугольник как ABC.
3. В программе AutoCAD комфортнее каждого строить неверный треугольник с подмогой инструмента «Отрезок». Вы обнаружите его через основную вкладку, предпочтя окно «Рисование». Задайте координаты знаменитой вам стороны, после этого - финальной точки второго заданного отрезка.
4. Определите вид треугольника. Если он прямоугольный, то незнакомая сторона вычисляется по теореме Пифагора. Гипотенуза равна квадратному корню из суммы квадратов катетов, то есть c=?a2+b2. Соответственно, всякий их катетов будет равно квадратному корню из разности квадратов гипотенузы и знаменитого катета: a=?c2-b2.
5. Для вычисления неведомой стороны треугольника, у которого даны сторона и два прилежащих угла, воспользуйтесь теоремой синусов. Сторона а так относится к sin?, как сторона b к sin?. ? и? в данном случае - противолежащие углы. Угол, тот, что не задан условиями задачи, дозволено обнаружить, припомнив, что сумма внутренних углов треугольника равна 180°. Вычтите из нее сумму вестимых вам 2-х углов. Обнаружьте неизвестную вам сторону b, решив пропорцию обыкновенным методом, то есть умножив знаменитую сторону а на sin? и поделив это произведение на sin?. Вы получаете формулу b=a*sin?/sin?.
6. Если вам знамениты стороны a и b и угол? между ними, используйте теорему косинусов. Незнакомая сторона с будет равна квадратному корню из суммы квадратов 2-х других сторон, минус удвоенное произведение этих же сторон, умноженное на косинус угла между ними. То есть c=?a2+b2-2ab*cos?.
Видео по теме
Совет 5: Как вычислить угол в прямоугольном треугольнике
Прямоугольный треугольник составляют два острых угла, величина которых зависит от длин сторон, а также один угол неизменно постоянной величины 90°. Вычислить размер острого угла в градусах дозволено с применением тригонометрических функций либо теоремы о сумме углов в вершинах треугольника в евклидовом пространстве.
Инструкция
1. Используйте тригонометрические функции, если в условиях задачи даны лишь размеры сторон треугольника. Скажем, по длинам 2-х катетов (коротких сторон, прилегающих к прямому углу) дозволено вычислить всякий из 2-х острых углов. Тангенс того угла (?), тот, что прилегает к катету А, дозволено обнаружить делением длины противолежащей ему стороны (катета В) на длину стороны А: tg(?) = В/А. А зная тангенс, дозволено вычислить и соответствующую ему величину угла в градусах. Для этого предуготовлена функция арктангенс: ? = arctg(tg(?)) = arctg(В/А).
2. По этой же формуле дозволено обнаружить величину и иного острого угла, лежащего наоборот катета А. Примитивно поменяйте обозначения сторон. Но дозволено сделать это и напротив, с подмогой иной пары тригонометрических функций – котангенса и арккотангенса. Котангенс угла b определяется делением длины прилежащего катета А на длину противолежащего В: tg(?) = А/В. А арккотангенс поможет извлечь из полученного значения величины угла в градусах: ? = arсctg(сtg(?)) = arсctg(А/В).
3. Если в начальных условиях дана длина одного из катетов (А) и гипотенузы (С), то для вычисления углов используйте функции, обратные синусу и косинусу – арксинус и арккосинус. Синус острого угла? равен отношению длины лежащего наоборот него катета В к длине гипотенузы С: sin(?) = В/С. Значит, для вычисления величины этого угла в градусах применяйте такую формулу: ? = arcsin(В/С).
4. А значение косинуса угла? определяется отношением длины примыкающего к этой вершине треугольника катета А к длине гипотенузы С. Это значит, что для вычисления величины угла в градусах, по аналогии с предыдущей формулой, нужно применять такое равенство: ? = arccos(А/С).
5. Теорема о сумме углов треугольника делает непотребным применение тригонометрических функций, если в условиях задачи дана величина одного из острых углов. В этом случае для вычисления неведомого угла (?) легко отнимите от 180° величины 2-х вестимых углов – прямого (90°) и острого (?): ? = 180° – 90° – ? = 90° – ?.
Обратите внимание!
Высота h делит треугольник ABC на два прямоугольных треугольника, сходственных ему. Тут срабатывает знак подобия треугольников по трем углам.
Инструкция
Чтобы вычислить величину острого угла в треугольнике, нужно знать значения величин всех его сторон. Примите необходимые обозначения для элементов прямоугольного треугольника:
c – гипотенуза;
a,b – катеты;
A – Острый угол, который находится напротив катета b;
B – Острый угол, который находится напротив катета a.
Посчитайте длину той , которая неизвестна, применяя для этого теорему Пифагора. Если известен катет - а - c, то можно вычислить катет - b; для чего вычтите из квадрата длины гипотенузы c квадрат длины катета - a, затем извлеките из полученного значения квадратный корень.
Аналогичным способом можно вычислить катет a, если известны гипотенуза c - b, для этого из квадрата гипотенузы c вычтите квадрат катета - b. После этого из полученного результата извлеките корень квадратный. Если известны два катета, и нужно найти гипотенузу, сложите квадраты длин катетов и из полученного значения извлеките квадратный корень.
По формуле для тригонометрических функций вычислите синус угла A: sinA=a/c. Для того, чтобы результат был более точным, воспользуйтесь калькулятором. Полученное значение округлите до 4 знаков после десятичной запятой. Аналогично найдите синус угла B, для чего sinB=b/c.
Пользуясь «Четырехзначными математическими таблицами» Брадиса, найдите значения углов по известным значениям этих углов. Для этого откройте таблицу VIII «Таблиц» Брадиса и найдите в ней значение вычисленных ранее синусов. В этой таблицы в первом столбце «А» указано значение искомого угла в . В столбце, в строчке «А», найдите значение минут для угла.
Видео по теме
Обратите внимание
Таблицы Брадиса содержат значения, ограниченные четырьмя знаками после десятичной запятой, поэтому округлите полученные в ходе вычислений значения до этого предела.
Полезный совет
Для определения угла после вычисления значения его синуса можно воспользоваться калькулятором, имеющим тригонометрические функции.
Источники:
- вычислить градусы
Вычисление квадратных пугает некоторых школьников в первое время. Посмотрим, как же с ними нужно работать и на что обратить внимание. Также приведём их свойства.
Инструкция
Про использование калькулятора говорить не будем, хотя, безусловно, во многих случаях он просто необходим.
Итак, квадратный из числа икс есть число игрек, которое даёт число икс.
Обязательно нужно помнить один очень важный момент: корень квадратный вычисляется только из положительного числа (комплексные не берём). Почему? Смотрите , написанное выше. Второй важный момент: результат извлечения корня, если нет никаких дополнительных условий, в общем случае есть два числа: +игрек и -игрек (в общем случае модуль игрек), так как оба они в дают исходное число икс, что не противоречит определению.
Корень из нуля - ноль.
Теперь то, что касается конкретных примеров. Для небольших чисел (а значит и корни - как обратная операция) лучше всего запомнить, как таблицу умножения. Я говорю о числах от 1 до 20. Это будет экономить ваше время и помогать в оценке возможного значения искомого корня. Так, например, зная что корень из 144 = 12, а корень из 13 = 169, можно оценить, что корень из числа 155 между 12 и 13. Аналогичные оценки можно применять и для более крупных чисел, их отличие будет лишь в сложности и времени выполнения этих операций.
Также есть другой простой интересный способ. Покажем его на примере.
Пусть есть число 16. Узнаем, какое число является его . Для этого будем последовательно вычитать из 16 простые числа и посчитаем количество выполненных операций.
Итак, 16-1=15 (1), 15-3=12 (2), 12-5=7 (3), 7-7=0 (4). 4 операции – искомое число 4. Суть состоит в том, чтобы проводить вычитание до тех пор, пока разность не станет 0 или будет просто меньше следующего вычитаемого простого числа.
Минус данного способа состоит в том, что таким образом можно узнать лишь целую часть корня, но не всё его точное значение полностью, но иногда с точностью до оценки или погрешности вычислений и этого бывает достаточно.
Некоторые основные : корень из суммы (разности) не сумме (разности) корней, а вот корень из произведения (частного) равен произведению (частному) корней.
Корень в квадрате из числа икс есть само число икс.
Видео по теме
Источники:
- как посчитать квадратный корень
Из школьного курса планиметрии известно определение: треугольником называется геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, которые попарно соединяют эти точки. Точки называют вершинами, а отрезки – сторонами треугольника. Разделяют следующие виды : остроугольные, и прямоугольные. Также треугольники классифицируют по сторонам: равнобедренные, равносторонние и разносторонние.
В зависимости от вида треугольника, существует несколько способов определения его углов, иногда достаточно знать лишь форму треугольника.
Инструкция
Треугольник прямоугольным, если у него есть прямой угол. При его можно воспользоваться тригонометрическими вычислениями.
В данном угол ∠С = 90º, как прямой, зная длины сторон треугольника, углы ∠A и ∠B вычисляются по формулам: cos∠A = AC/AB, cos∠B = BC/AB. Градусные меры углов можно узнать, обратившись к косинусов.
Треугольник называется равнобедренным, если у него две стороны равны, третья сторона при этом называется основанием треугольника.
В углы при равны, т.е. ∠A = ∠B. Одним из свойств треугольника является то, что его углов всегда равна 180º, поэтому вычислив по теореме косинусов угол ∠С, углы ∠A и ∠B можно вычислить так: ∠A = ∠B = (180º - ∠С)/2
Видео по теме
Источники:
- расчёт угла треугольника
Когда приходится иметь дело с решением прикладных задач, включающих тригонометрические функции, наиболее часто требуется вычислить значения синуса или косинуса заданного угла .
Инструкция
Первый вариант - классический, с использованием бумаги, транспортира и карандаша (или ручки).По определению синус угла равен противолежащего катета к гипотенузе прямоугольного треугольника. То есть, чтобы вычислить значение, вам надо при помощи транспортира построить прямоугольный треугольник, один из углов которого равен тому, синус которого вас интересует. Затем измерить длину гипотенузы и противолежащего катета и разделить второе на первое с нужной точности.
Второй вариант - школьный. Со школы все помнят «таблицы Брадиса», содержащие тысячи значений тригонометрических от разных углов. Можно поискать как бумажное издание, так и его электронный аналог в формате pdf - они есть в сети. Найдя таблицы, найти значение синуса нужного угла не составит труда.
Третий вариант - оптимальный. Если есть доступ к , то можно воспользоваться стандартным калькулятором ОС Windows. Его следует переключить в расширенный режим. Для этого в разделе «Вид» меню выберите пункт «Инженерный». Вид калькулятора изменится - в нем появятся, в частности, кнопки для вычисления тригонометрических функций.Теперь введите значение угла , синус которого вам требуется вычислить. Можно сделать это как с клавиатуры, так и щелкая курсором мыши нужные клавиши калькулятора. А можно просто и вставить нужное вам значение (CTRL + C и CTRL + V). После этого выберите единицы измерения, в которых должен быть рассчитан - для тригонометрических функций это могут быть радианы, градусы или рады. Делается это выбором одного из трех значений переключателя, расположенного ниже поля ввода вычисляемого значения. Теперь, нажав кнопку с надписью "sin", получите ответ на свой вопрос.
Четвертый вариант - самый современный. В эру интернета в сети существуют , предлагающие чуть ли не каждую возникающую проблему. Он-лайн калькуляторы тригонометрических функций с удобным интерфейсом, более продвинутыми функциональными возможностями найти совсем не . Лучшие из них предлагают вычислить не только значения отдельной функции, но и достаточно сложных выражений из нескольких функций.
Тригонометрические функции - это элементарные функции, которые возникли при изучении прямоугольных треугольников. Они выражают зависимость сторон этих фигур от острых углов и гипотенузы. Синус является прямой тригонометрической функцией.
Инструкция
Если рассматриваемый треугольник прямоугольным, то используйте базовое тригонометрической функции а для острых углов, который как отношение катета, противоположного данному острому углу, к гипотенузе прямоугольного треугольника. Помните следующее - угол, лежащий против гипотенузы, всегда равен 90°. А синус угла в 90° всегда равен единице.
Если рассматриваемый треугольник является произвольным, то для того, чтобы найти значение синуса угла а, посчитайте значение косинуса этого угла. Для этого используйте теорему косинусов, согласно которой квадрат длинны одной должен быть равен квадрату длины второй стороны плюс квадрат длины третьей стороны минус удвоенное произведение второй и третьей сторон, умноженное на угла между второй и третьей стороной. Для треугольника KMN KM2=NM2+ NK2-2NM*NK*cosλ. Отсюда посчитайте cosλ=KM2-NM2-NK22NM*NK И по формуле sin2 λ=1-cos2 λ вычислите sinλ=1-cos2λ
Еще один способ нахождения синуса угла заключается в использовании двух разных формул площади треугольника. Одна - в которой задействованы только длины (формула Герона). У вас должны быть известны длины всех сторон треугольника. Предположим, стороны m, n, k Тогда используйте следующую формулу Герона:S=p△*p△-n*p△-k*(p△)-m) , где полупериметр треугольника: n+k+m2=p△А вторая формула – это произведение длин двух сторон и значения синуса угла между этими сторонами: S (△) = n* k* sinµ.Т.к. значение S одинаково, приравняйте правые формул:p△*p△-n*p△-k*(p△-m)= n*k* sinµ.И из этой найдите синус угла a, который находится напротив стороны С:sin µ=p△*p△-n*p△-k*(p△-m)n* kСинусы остальных углов можно найти по формулам, аналогичным последней.
Видео по теме
Функция определяет зависимость между несколькими величинами таким образом, что заданным значениям ее аргументов ставятся в соответствие значения других величин (значений функции). Вычисление функции заключается в определении области ее возрастания или убывания, поиске значений на каком-либо интервале или в заданной точке, в построении графика функции, нахождении ее экстремумов и других параметров.
Инструкция
Найдите значения функции в заданном интервале . Для этого подставьте граничные значения в качестве аргумента х в выражение функции. Произведите вычисления f (х), запишите результаты. Обычно поиск значений выполняется для построения . Однако двух пограничных точек для этого недостаточно. На указанном интервале задайте шаг в 1 или 2 единицы, в зависимости от промежутка, прибавляйте значение х на величину шага и каждый раз высчитывайте соответствующее значение функции. Оформите результаты в табличном виде, где одной строкой будет аргумент х, второй – значения функции.
В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.
Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).
Быстрая навигация по статье
Длина сторон прямоугольного треугольника
Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²
- Находим квадрат длины катета a;
- Находим квадрат катета b;
- Складываем их между собой;
- Из полученного результата извлекаем корень второй степени.
Пример: a=4, b=3, c=?
- a²=4²=16;
- b² =3²=9;
- 16+9=25;
- √25=5. То есть, длина гипотенузы данного треугольника равна 5.
Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т.д..
Если известен периметр
В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.
Пример: P=18, a=7, b=6, c=?
1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:
2) Подставляем вместо них значения и вычисляем третью сторону:
c=18-7-6=5, итого: третья сторона треугольника равна 5.
Если известен угол
Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения. Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе. Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)
Если известна площадь
В этом случае одной формулой не обойтись.
1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:
sin γ= 2S/(a*b)
2) По следующей формуле вычисляем косинус того же угла:
sin² α + cos² α=1
cos α=√(1 — sin² α)=√(1- (2S/(a*b))²)
3) И снова воспользуемся теоремой синусов:
C=√((a²+b²)-a*b*cosα)
C=√((a²+b²)-a*b*√(1- (S/(a*b))²))
Подставив в это уравнение значения переменных, получим ответ задачи.