Какие значения принимает показательная функция. Показательная функция – свойства, графики, формулы
Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.
Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.
Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.
Показательная функция
Что такое показательная функция?
Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .
Основные свойства показательной функции y = a x :
График показательной функции
Графиком показательной функции является экспонента :
Графики показательных функций (экспоненты)
Решение показательных уравнений
Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.
Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:
Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).
Помимо этого, полезно помнить об основных формулах и действиях со степенями:
Title="Rendered by QuickLaTeX.com">
Пример 1. Решите уравнение:
Решение: используем приведенные выше формулы и подстановку:
Уравнение тогда принимает вид:
Дискриминант полученного квадратного уравнения положителен:
Title="Rendered by QuickLaTeX.com">
Это означает, что данное уравнение имеет два корня. Находим их:
Переходя к обратной подстановке, получаем:
Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:
С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.
Ответ: x = 3.
Пример 2. Решите уравнение:
Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).
Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:
Последний переход был осуществлен в соответствии с теоремой 1.
Ответ: x = 6.
Пример 3. Решите уравнение:
Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:
Ответ: x = 0.
Пример 4. Решите уравнение:
Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:
Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .
Ответ: x = 0.
Пример 5. Решите уравнение:
Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.
Ответ: x = -1.
Пример 6. Решите уравнение:
Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:
Ответ: x = 2.
Решение показательных неравенств
Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.
Для решения показательных неравенств требуется знание следующей теоремы:
Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).
Пример 7. Решите неравенство:
Решение: представим исходное неравенство в виде:
Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:
Воспользуемся подстановкой:
Тогда неравенство примет вид:
Итак, решением неравенства является промежуток:
переходя к обратной подстановке, получаем:
Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:
Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:
Итак, окончательно получаем ответ:
Пример 8. Решите неравенство:
Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:
Введем новую переменную:
С учетом этой подстановки неравенство принимает вид:
Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:
Итак, неравенству удовлетворяют следующие значения переменной t :
Тогда, переходя к обратной подстановке, получаем:
Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:
Окончательно получаем ответ:
Пример 9. Решите неравенство:
Решение:
Делим обе части неравенства на выражение:
Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:
t , находящиеся в промежутке:
Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:
Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:
Пример 10. Решите неравенство:
Решение:
Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:
Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:
Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.
Ответ: x = 1.
Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.
Сергей Валерьевич
P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.
Введем сначала определение показательной функции.
Показательная функция $f\left(x\right)=a^x$, где $a >1$.
Введем свойства показательной функции, при $a >1$.
\ \[корней\ нет.\] \
Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке $(0,1)$.
$f""\left(x\right)={\left(a^xlna\right)}"=a^x{ln}^2a$
\ \[корней\ нет.\] \
График (рис. 1).
Рисунок 1. График функции $f\left(x\right)=a^x,\ при\ a >1$.
Показательная функция $f\left(x\right)=a^x$, где $0
Введем свойства показательной функции, при $0
Область определения -- все действительные числа.
$f\left(-x\right)=a^{-x}=\frac{1}{a^x}$ -- функция ни четна, ни нечетна.
$f(x)$ - непрерывна на всей области определения.
Область значения -- интервал $(0,+\infty)$.
$f"(x)=\left(a^x\right)"=a^xlna$
\ \[корней\ нет.\] \ \[корней\ нет.\] \
Функция выпукла на всей области определения.
Поведение на концах области определения:
\[{\mathop{lim}_{x\to -\infty } a^x\ }=+\infty \] \[{\mathop{lim}_{x\to +\infty } a^x\ }=0\]
График (рис. 2).
Пример задачи на построение показательной функции
Исследовать и построить график функции $y=2^x+3$.
Решение.
Проведем исследование по примеру схемы выше:
Область определения -- все действительные числа.
$f\left(-x\right)=2^{-x}+3$ -- функция ни четна, ни нечетна.
$f(x)$ - непрерывна на всей области определения.
Область значения -- интервал $(3,+\infty)$.
$f"\left(x\right)={\left(2^x+3\right)}"=2^xln2>0$
Функция возрастает на всей области определения.
$f(x)\ge 0$ на всей области определения.
Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке ($0,4)$
$f""\left(x\right)={\left(2^xln2\right)}"=2^x{ln}^22>0$
Функция выпукла на всей области определения.
Поведение на концах области определения:
\[{\mathop{lim}_{x\to -\infty } a^x\ }=0\] \[{\mathop{lim}_{x\to +\infty } a^x\ }=+\infty \]
График (рис. 3).
Рисунок 3. График функции $f\left(x\right)=2^x+3$
Концентрация внимания:
Определение. Функция вида называется показательной функцией .
Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:
Само аналитическое выражение a x в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения x y точка x = 1; y = 1 входит в область допустимых значений.
Построить графики функций: и .
График показательной функции | |
y = a x , a > 1 | y = a x , 0< a < 1 |
Свойства показательной функции
Свойства показательной функции | y = a x , a > 1 | y = a x , 0< a < 1 |
|
||
2. Область значений функции | ||
3.Промежутки сравнения с единицей | при x > 0, a x > 1 | при x > 0, 0< a x < 1 |
при x < 0, 0< a x < 1 | при x < 0, a x > 1 | |
4. Чётность, нечётность. | Функция не является ни чётной, ни нечётной (функция общего вида). | |
5.Монотонность. | монотонно возрастает на R | монотонно убывает на R |
6. Экстремумы. | Показательная функция экстремумов не имеет. | |
7.Асимптота | Ось O x является горизонтальной асимптотой. | |
8. При любых действительных значениях x и y ; |
Когда заполняется таблица, то параллельно с заполнением решаются задания.
Задание № 1. (Для нахождения области определения функции).
Какие значения аргумента являются допустимыми для функций:
Задание № 2. (Для нахождения области значений функции).
На рисунке изображен график функции. Укажите область определения и область значений функции:
Задание № 3. (Для указания промежутков сравнения с единицей).
Каждую из следующих степеней сравните с единицей:
Задание № 4. (Для исследования функции на монотонность).
Сравнить по величине действительные числа m и n если:
Задание № 5. (Для исследования функции на монотонность).
Сделайте заключение относительно основания a , если:
y(x) = 10 x ; f(x) = 6 x ; z(x) - 4 x
Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?
В одной координатной плоскости построены графики функций:
y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .
Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?
Число
одна из важнейших постоянных в математике. По
определению, оно равно пределу
последовательности
при
неограниченном
возрастании n
.
Обозначение e
ввёл Леонард Эйлер
в 1736 г. Он вычислил первые 23 знака этого числа в
десятичной записи, а само число назвали в честь
Непера «неперовым числом».
Число e играет особую роль в математическом анализе. Показательная функция с основанием e , называется экспонентой и обозначается y = e x . Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого - два раза, сорок пять, девяносто, сорок пять. |
Домашнее задание:
Колмогоров п. 35; № 445-447; 451; 453.
Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.
Показательная функция
- это обобщение произведения n
чисел, равных a
:
y(n)
= a n = a·a·a···a
,
на множество действительных чисел x
:
y(x)
= a x
.
Здесь a
- фиксированное действительное число, которое называют основанием показательной функции
.
Показательную функцию с основанием a
также называют экспонентой по основанию a
.
Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,...
,
показательная функция является произведением x
множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел ,
показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n
рациональных чисел, ,
ее определяют по формуле(1.11). Для действительных ,
показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x
:
.
При таком определении, показательная функция определена для всех ,
и удовлетворяет свойствам (1.5-8), как и для натуральных x
.
Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».
Свойства показательной функции
Показательная функция y = a x
,
имеет следующие свойства на множестве действительных чисел ()
:
(1.1)
определена и непрерывна, при ,
для всех ;
(1.2)
при a ≠ 1
имеет множество значений ;
(1.3)
строго возрастает при ,
строго убывает при ,
является постоянной при ;
(1.4)
при ;
при ;
(1.5)
;
(1.6)
;
(1.7)
;
(1.8)
;
(1.9)
;
(1.10)
;
(1.11)
,
.
Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:
При b = e
,
получаем выражение показательной функции через экспоненту:
Частные значения
, , , , .
На рисунке представлены графики показательной функции
y(x)
= a x
для четырех значений основания степени
: a = 2
,
a = 8
,
a = 1/2
и a = 1/8
.
Видно, что при a > 1
показательная функция монотонно возрастает. Чем больше основание степени a
,
тем более сильный рост. При 0
< a < 1
показательная функция монотонно убывает. Чем меньше показатель степени a
,
тем более сильное убывание.
Возрастание, убывание
Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.
y = a x , a > 1 | y = a x , 0 < a < 1 | |
Область определения | - ∞ < x < + ∞ | - ∞ < x < + ∞ |
Область значений | 0 < y < + ∞ | 0 < y < + ∞ |
Монотонность | монотонно возрастает | монотонно убывает |
Нули, y = 0 | нет | нет |
Точки пересечения с осью ординат, x = 0 | y = 1 | y = 1 |
+ ∞ | 0 | |
0 | + ∞ |
Обратная функция
Обратной для показательной функции с основанием степени a является логарифм по основанию a .
Если ,
то
.
Если ,
то
.
Дифференцирование показательной функции
Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.
Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.
Пусть задана показательная функция:
.
Приводим ее к основанию e
:
Применим правило дифференцирования сложной функции . Для этого вводим переменную
Тогда
Из таблице производных имеем (заменим переменную x
на z
):
.
Поскольку - это постоянная, то производная z
по x
равна
.
По правилу дифференцирования сложной функции:
.
Производная показательной функции
.
Производная n-го порядка:
.
Вывод формул > > >
Пример дифференцирования показательной функции
Найти производную функции
y = 3
5
x
Решение
Выразим основание показательной функции через число e
.
3
= e ln 3
Тогда
.
Вводим переменную
.
Тогда
Из таблицы производных находим:
.
Поскольку 5ln 3
- это постоянная, то производная z
по x
равна:
.
По правилу дифференцирования сложной функции имеем:
.
Ответ
Интеграл
Выражения через комплексные числа
Рассмотрим функцию комплексного числа z
:
f(z)
= a z
где z = x + iy
;
i 2 = - 1
.
Выразим комплексную постоянную a
через модуль r
и аргумент φ
:
a = r e i φ
Тогда
.
Аргумент φ
определен не однозначно. В общем виде
φ = φ 0 + 2
πn
,
где n
- целое. Поэтому функция f(z)
также не однозначна. Часто рассматривают ее главное значение
.
Разложение в ряд
.
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Найдем значение выражения при различных рациональных значениях переменной х=2; 0; -3; -
Заметим, какое бы число вместо переменной икс мы не подставили, всегда можно найти значение данного выражения. Значит, мы рассматриваем показательную функцию (игрек равен три в степени икс), определенную на множестве рациональных чисел: .
Построим график данной функции, составив таблицу ее значений.
Проведем плавную линию, проходящую через данные точки (рис 1)
Используя график данной функции, рассмотрим ее свойства:
3.Возрастает на всей области определения.
- область значения от нуля до плюс бесконечности.
8. Функция выпукла вниз.
Если в одной системе координат построить графики функций; у=(игрек равен два в степени икс, игрек равен пять в степени икс, игрек равен семь в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен трем в степени икс) (рис.2), то есть такими свойствами будут обладать все функции вида у=(игрек равен а в степени икс, при а большем единицы)
Построим график функции:
1. Составив таблицу ее значений.
Отметим полученные точки на координатной плоскости.
Проведем плавную линию, проходящую через данные точки (рис 3).
Используя график данной функции, укажем ее свойства:
1. Область определения - множество всех действительных чисел.
2.Не является ни четной, ни нечетной.
3.Убывает на всей области определения.
4.Не имеет ни наибольшего, ни наименьшего значений.
5.Ограничена снизу, но не ограничена сверху.
6.Непрерывна на всей области определения.
7. область значения от нуля до плюс бесконечности.
8. Функция выпукла вниз.
Аналогично, если в одной системе координат построить графики функций; у=(игрек равен одна вторая в степени икс, игрек равен одна пятая в степени икс, игрек равен одна седьмая в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен одна третья в степени икс)(рис.4), то есть такими свойствами будут обладать все функции вида у=(игрек равен единица, деленная на а в степени икс, при а большем нуля, но меньшем единицы)
Построим в одной системе координат графики функций
значит, будут симметричны и графики функций у=у= (игрек равен а в степени икс и игрек равен единице, деленной на а в степени икс) при одном и том же значении а.
Обобщим сказанное, дав определение показательной функции и указав ее основные свойства:
Определение: Функция вида у=, где (игрек равен а в степени икс, где а положительно и отлично от единицы), называют показательной функцией.
Необходимо запомнить различия между показательной функцией у= и степенной функцией у=, а=2,3,4,…. как на слух, так и зрительно. У показательной функции х является степенью, а у степенной функции х является основанием.
Пример1: Решите уравнение (три в степени икс равно девяти)
(игрек равняется три в степени икс и игрек равняется девяти) рис.7
Заметим, что они имеют одну общую точку М (2;9) (эм с координатами два; девять), значит, абсцисса точки будет являться корнем данного уравнения. То есть, уравнение имеет единственный корень х= 2.
Пример 2: Решите уравнение
В одной системе координат построим два графика функции у= (игрек равен пяти в степени икс и игрек равен одна двадцать пятая) рис.8. Графики пересекаются в одной точке Т (-2;(тэ с координатами минус два; одна двадцать пятая). Значит, корнем уравнения является х=-2(число минус два).
Пример 3: Решите неравенство
В одной системе координат построим два графика функции у=
(игрек равен три в степени икс и игрек равен двадцати семи).
Рис.9 График функции расположен выше графика функции у=при
х Следовательно, решением неравенства является интервал (от минус бесконечности до трех)
Пример 4: Решите неравенство
В одной системе координат построим два графика функции у= (игрек равен одна четвертая в степени икс и игрек равен шестнадцати). (рис.10). Графики пересекаются в одной точке К (-2;16). Значит, решением неравенства является промежуток (-2;(от минус двух до плюс бесконечности), т.к. график функции у=расположен ниже графика функции при х
Наши рассуждения позволяют убедиться в справедливости следующих теорем:
Терема 1: Если справедливо тогда и только тогда, когда m=n.
Теорема 2: Если справедливо тогда и только тогда, когда, неравенство справедливо тогда и только тогда, когда (рис. *)
Теорема 4: Если справедливо тогда и только тогда, когда (рис.**), неравенство справедливо тогда и только тогда, когда.Теорема 3: Если справедливо тогда и только тогда, когда m=n.
Пример 5: Построить график функции у=
Видоизменим функцию, применив свойство степени у=
Построим дополнительную систему координат и в новой системе координат построим график функции у= (игрек равен два в степени икс) рис.11.
Пример 6: Решите уравнение
В одной системе координат построим два графика функции у=
(игрек равен семи в степени икс и игрек равен восемь минус икс) рис.12.
Графики пересекаются в одной точке Е (1;(е с координатами один; семь). Значит, корнем уравнения является х=1(икс равный единице).
Пример 7: Решите неравенство
В одной системе координат построим два графика функции у=
(игрек равен одна четвертая в степени икс и игрек равен икс плюс пять). График функции у=расположен ниже графика функции у=х+5 при, решением неравенства является интервал х(от минус единицы до плюс бесконечности).