Какое квадратное уравнение называется неполным. Как решать квадратные уравнения
5х (х - 4) = 0
5 х = 0 или х - 4 = 0
х = ± √ 25/4
Научившись решать уравнения первой степени, безусловно, хочется работать с другими, в частности, с уравнениями второй степени, которые по-другому называются квадратными.
Квадратные уравнения - это уравнения типа ах ² + bx + c = 0, где переменной является х, числами будут - а, b, с, где а не равняется нулю.
Если в квадратном уравнении один или другой коэффициент (с или b) будет равняться нулю, то это уравнение будет относиться к неполному квадратному уравнению.
Как решить неполное квадратное уравнение, если ученики до сих пор умели решать только уравнения первой степени? Рассмотрим неполные квадратные уравнения разных видов и несложные способы их решения.
а) Если коэффициент с будет равен 0, а коэффициент b не будет равен нулю, то ах ² + bх + 0 = 0 сводится к уравнению вида ах ² + bх = 0.
Чтобы решить такое уравнение, нужно знать формулу решения неполного квадратного уравнения, которая заключается в том, чтобы левую часть его разложить на множители и позже использовать условие равенства произведения нулю.
Например, 5х ² - 20х = 0. Раскладываем левую часть уравнения на множители, при этом совершая обычную математическую операцию: вынос общего множителя за скобки
5х (х - 4) = 0
Используем условие, гласящее, что произведения равны нулю.
5 х = 0 или х - 4 = 0
Ответом будет: первый корень - 0; второй корень - 4.
б) Если b = 0, а свободный член не равен нулю, то уравнение ах ² + 0х + с = 0 сводится к уравнению вида ах ² + с = 0. Решают уравнения двумя способами: а) раскладывая многочлен уравнения в левой части на множители; б) используя свойства арифметического квадратного корня. Такое уравнение решается одним из методов, например:
х = ± √ 25/4
х = ± 5/2. Ответом будет: первый корень равен 5/2; второй корень равен - 5/2.
в) Если b будет равен 0 и с будет равен 0, то ах ² + 0 + 0 = 0 сводится к уравнению вида ах ² = 0. В таком уравнении x будет равен 0.
Как видите, неполные квадратные уравнения могут иметь не более двух корней.
Более простым способом. Для этого вынесите z за скобки. Вы получите : z(аz + b) = 0. Множители можно расписать: z=0 и аz + b = 0, так как оба могут давать в результате ноль. В записи аz + b = 0 перенесем второй вправо с другим знаком. Отсюда получаем z1 = 0 и z2 = -b/а. Это и есть корни исходного .
Если же имеется неполное уравнение вида аz² + с = 0, в данном случае находятся простым переносом свободного члена в правую часть уравнения. Также поменяйте при этом его знак. Получится запись аz² = -с. Выразите z² = -с/а. Возьмите корень и запишите два решения - положительное и отрицательное значение корня квадратного.
Обратите внимание
При наличии в уравнении дробных коэффициентов помножьте все уравнение на соответствующий множитель так, чтобы избавиться от дробей.
Знание о том, как решать квадратные уравнения, необходимо и школьникам, и студентам, иногда это может помочь и взрослому человеку в обычной жизни. Существует несколько определенных методов решений.
Решение квадратных уравнений
Квадратным уравнение вида a*x^2+b*x+c=0. Коэффициент х является искомой переменной, a, b, c - числовые коэффициенты. Помните, что знак «+» может меняться на знак «-».Для того чтобы решить данное уравнение, необходимо воспользоваться теоремой Виета или найти дискриминант. Самым распространенным способом является нахождение дискриминанта, так как при некоторых значениях a, b, c воспользоваться теоремой Виета не представляется возможным.
Чтобы найти дискриминант (D), необходимо записать формулу D=b^2 - 4*a*c. Значение D может быть больше, меньше или равно нулю. Если D больше или меньше нуля, то корня будет два, если D=0, то остается всего один корень, более точно можно сказать, что D в этом случае имеет два равнозначных корня. Подставьте известные коэффициенты a, b, c в формулу и вычислите значение.
После того как вы нашли дискриминант, для нахождения х воспользуйтесь формулами: x(1) = (- b+sqrt{D})/2*a; x(2) = (- b-sqrt{D})/2*a, где sqrt - это функция, означающая извлечение квадратного корня из данного числа. Посчитав эти выражения, вы найдете два корня вашего уравнения, после чего уравнение считается решенным.
Если D меньше нуля, то он все равно имеет корни. В школе данный раздел практически не изучается. Студенты вузов должны знать о том, что появляется отрицательное число под корнем. От него избавляются выделяя мнимую часть, то есть -1 под корнем всегда равно мнимому элементу «i», который умножается на корень с таким же положительным числом. К примеру, если D=sqrt{-20}, после преобразования получается D=sqrt{20}*i. После этого преобразования, решение уравнения сводится к такому же нахождению корней, как было описано выше.
Теорема Виета заключается в подборе значений x(1) и x(2). Используется два тождественных уравнения: x(1) + x(2)= -b; x(1)*x(2)=с. Причем очень важным моментом является знак перед коэффициентом b, помните, что этот знак противоположен тому, который стоит в уравнении. С первого взгляда кажется, что посчитать x(1) и x(2) очень просто, но при решении вы столкнетесь с тем, что числа придется именно подбирать.
Элементы решения квадратных уравнений
По правилам математики некоторые можно разложить на множители: (a+x(1))*(b-x(2))=0, если вам посредством формул математики удалось преобразовать подобным образом данное квадратное уравнение, то смело записывайте ответ. x(1) и x(2) будут равны рядом стоящим коэффициентам в скобках, но с противоположным знаком.Также не стоит забывать про неполные квадратные уравнения. У вас может отсутствовать какое-то из слагаемых, если это так, то все его коэффициенты просто равны нулю. Если перед x^2 или x ничего не стоит, то коэффициенты а и b равны 1.
Пусть дано квадратное уравнение ах 2 + bх + с = 0.
Применим к квадратному трехчлену ах 2 + bх + с те же преобразования, которые мы выполняли в § 13, когда доказывали теорему о том, что графиком функции у = ах 2 + bх + с является парабола.
Имеем
Обычно выражение b 2 - 4ас обозначают буквой D и называют дискриминантом квадратного уравнения ах 2 + bх + с = 0 (или дискриминантом квадратного трехчлена ах + bх + с).
Таким образом
Значит, квадратное уравнение ах 2 + их + с = О можно переписать в виде
Любое квадратное уравнение можно преобразовать к виду (1), удобному, как мы сейчас убедимся, для того, чтобы определять число корней квадратного уравнения и находить эти корни.
Доказательство. Если D < 0, то правая часть уравнения (1) — отрицательное число; в то же время левая часть уравнения (1) при любых значениях х принимает неотрицательные значения. Значит, нет ни одного значения х, которое удовлетворяло бы уравнению (1), а потому уравнение (1) не имеет корней.
Пример 1.
Решить уравнение 2x 2 + 4х + 7 = 0.
Решение. Здесь а = 2, b = 4, с = 7,
D = b 2 -4ac = 4 2 .
4.
2.
7 = 16-56 = -40.
Так как D < 0, то по теореме 1 данное квадратное уравнение не имеет корней.
Доказательство. Если D = 0, то уравнение (1) принимает вид
— единственный корень уравнения.
Замечание 1.
Помните ли вы, что х = - — абсцисса вершины параболы, которая служит графиком функции у = ах 2 + их + с? Почему именно это
значение оказалось единственным корнем квадратного уравнения ах 2 + их + с — 0? «Ларчик» открывается просто: если D — 0, то, как мы установили ранее,
Графиком же функции является парабола с вершиной в точке (см., например, рис. 98). Значит, абсцисса вершины параболы и единственный корень квадратного уравнения при D = 0 — одно и то же число.
Пример 2.
Решить уравнение 4x 2 - 20x + 25 = 0.
Решение. Здесь а = 4, b = -20, с = 25, D = b 2 - 4ас = (-20) 2 - 4 . 4 . 25 = 400 - 400 = 0.
Так как D = 0, то по теореме 2 данное квадратное уравнение имеет один корень. Этот корень находится по формуле
Ответ: 2,5.
Замечание 2.
Обратите внимание, что 4х 2 - 20х +25 — полный квадрат: 4х 2 - 20х + 25 = (2х - 5) 2 .
Если бы мы это заметили сразу, то решили бы уравнение так: (2х - 5) 2 = 0, значит, 2х - 5 = 0, откуда получаем х = 2,5. Вообще, если D = 0, то
ах 2 + bх + с = — это мы отметили ранее в замечании 1.
Если D > 0, то квадратное уравнение ах 2 + bх + с = 0 имеет два корня, которые находятся по формулам
Доказательство . Перепишем квадратное уравнение ах 2 + Ь х + с = 0 в виде (1)
Положим
По условию, D > 0, значит, правая часть уравнения положительное число. Тогда из уравнения (2) получаем, что
Итак, заданное квадратное уравнение имеет два корня:
Замечание 3.
В математике довольно редко бывает так, чтобы введенный термин не имел, образно выражаясь, житейской подоплеки. Возьмем новое
понятие — дискриминант. Вспомните слово «дискриминация». Что оно означает? Оно означает унижение одних и возвышение других, т.е. различное отноше-
ние к различным пюдям. Оба слова (и дискриминант, и дискриминация) происходят от латинского discriminans — «различающий». Дискриминант различает квадратные уравнения по числу корней.
Пример 3.
Решить уравнение Зх 2 + 8х - 11 = 0.
Решение. Здесь а = 3, b = 8, с = - 11,
D = b 2 - 4ас = 8 2 - 4 . 3 . (-11) = 64 + 132 = 196.
Так как D > 0, то по теореме 3 данное квадратное уравнение имеет два корня. Эти корни находятся по формулам (3)
Фактически мы с вами выработали следующее правило:
Правило решения уравнения
ах 2 + bх + с = 0
Это правило универсально, оно применимо как к полным, так и к неполным квадратным уравнениям. Однако неполные квадратные уравнения обычно по этому правилу не решают, их удобнее решать так, как мы это делали в предыдущем параграфе.
Пример 4. Решить уравнения:
а) х 2 + Зх - 5 = 0; б) - 9x 2 + 6х - 1 = 0; в) 2х 2 -х + 3,5 = 0.
Р е ш е н и е. а) Здесь а = 1, b = 3, с = - 5,
D = b 2 - 4ас = З 2 - 4 . 1 . (- 5) = 9 + 20 = 29.
Так как D > 0, то данное квадратное уравнение имеет два корня. Эти корни находим по формулам (3)
Б) Как показывает опыт, удобнее иметь дело с квадратными уравнениями, у которых старший коэффициент положителен. Поэтому сначала умножим обе части уравнения на -1, получим
9x 2 - 6x + 1 = 0.
Здесь а = 9, b = -6, с = 1, D = b 2 - 4ас = 36 - 36 = 0.
Так как D = 0, то данное квадратное уравнение имеет один корень. Этот корень находится по формуле х = - . Значит,
Это уравнение можно было решить по-другому: так как
9х 2 - 6x + 1 = (Зх - IJ, то получаем уравнение (Зх - I) 2 = 0, откуда находим Зх - 1 = 0, т. е. х = .
в) Здесь а = 2, b = - 1, с = 3,5, D = b 2 - 4ас = 1 - 4 . 2 . 3,5= 1 - 28 = - 27. Так как D < 0, то данное квадратное уравнение не имеет корней.
Математики — люди практичные, экономные. Зачем, говорят они, пользоваться таким длинным правилом решения квадратного уравнения, лучше сразу написать общую формулу:
Если окажется, что дискриминант D = b 2 - 4ас — отрицательное число, то записанная формула не имеет смысла (под знаком квадратного корня находится отрицательное число), значит, корней нет. Если же окажется, что дискриминант равен нулю, то получаем
Т. е. один корень (говорят также, что квадратное уравнение в этом случае имеет два одинаковых корня:
Наконец, если окажется, что b 2 - 4ас > 0, то получаются два корня х 1 и х 2 , которые вычисляются по тем же формулам (3), что указаны выше.
Само число в этом случае положительно (как всякий квадратный корень из положительного числа), а двойной знак перед ним означает, что в одном случае (при отыскании х 1) это положительное число прибавляется к числу - b, а в другом случае (при отыскании х 2) это положительное число вы-
читается из числа - b.
У вас есть свобода выбора. Хотите —- решайте квадратное уравнение подробно, используя сформулированное выше правило; хотите — запишите сразу формулу (4) и с ее помощью делайте необходимые выводы.
Пример 5
. Решить уравнения:
Решение, а) Конечно, можно использовать формулы (4) или (3), учитывая, что в данном случае Но зачем выполнять действия с дробями, когда проще и, главное, приятнее иметь дело с целыми числами? Давайте освободимся от знаменателей. Для этого нужно умножить обе части уравнения на 12, т. е. на наименьший общий знаменатель дробей, служащих коэффициентами уравнения. Получим
откуда 8х 2 + 10x - 7 = 0.
А теперь воспользуемся формулой (4)
Б) Мы снова имеем уравнение с дробными коэффициентами: а = 3, b = - 0,2, с = 2,77. Умножим обе части уравнения на 100, тогда получим уравнение с целыми коэффициентами:
300x 2 - 20x + 277 = 0.
Далее воспользуемся формулой (4):
Простая прикидка показывает, что дискриминант (подкоренное выражение) — отрицательное число. Значит, уравнение не имеет корней.
Пример 6.
Решить уравнение
Решение. Здесь, в отличие от предыдущего примера, предпочтительнее действовать по правилу, а не по сокращенной формуле (4).
Имеем а = 5, b = -, с = 1, D = b 2 - 4ас = (- ) 2 - 4 . 5 . 1 = 60 - 20 = 40. Так как D > 0, то квадратное уравнение имеет два корня, которые будем искать по формулам (3)
Пример 7.
Решить уравнение
х 2 - (2р + 1)x +(р 2 +р-2) = 0
Решение. Это квадратное уравнение отличается от всех рассмотренных до сих пор квадратных уравнений тем, что в роли коэффициентов выступают не конкретные числа, а буквенные выражения. Такие уравнения называют уравнениями с буквенными коэффициентами или уравнениями с параметрами. В данном случае параметр (буква) р входит в состав второго коэффициента и свободного члена уравнения.
Найдем дискриминант:
Пример 8
. Решить уравнение рx 2 + (1 - р) х - 1 = 0.
Решение. Это также уравнение с параметром р, но, в отличие от предыдущего примера, его нельзя сразу решать по формулам (4) или (3). Дело в том, что указанные формулы применимы к квадратным уравнениям, а про заданное уравнение мы этого пока сказать не можем. В самом деле, а вдруг р = 0? Тогда
уравнение примет вид 0 . x 2 + (1-0)x- 1 = 0, т. е. х - 1 = 0, откуда получаем х = 1. Вот если точно известно, что , то можно применять формулы корней квадратного уравнения:
Рассмотрим квадратное уравнение:
(1)
.
Корни квадратного уравнения
(1) определяются по формулам:
;
.
Эти формулы можно объединить так:
.
Когда корни квадратного уравнения известны, то многочлен второй степени можно представить в виде произведения сомножителей (разложить на множители):
.
Далее считаем, что - действительные числа.
Рассмотрим дискриминант квадратного уравнения
:
.
Если дискриминант положителен, ,
то квадратное уравнение (1) имеет два различных действительных корня:
;
.
Тогда разложение квадратного трехчлена на множители имеет вид:
.
Если дискриминант равен нулю, ,
то квадратное уравнение (1) имеет два кратных (равных) действительных корня:
.
Разложение на множители:
.
Если дискриминант отрицателен, ,
то квадратное уравнение (1) имеет два комплексно сопряженных корня:
;
.
Здесь - мнимая единица, ;
и - действительная и мнимая части корней:
;
.
Тогда
.
Графическая интерпретация
Если построить график функции
,
который является параболой, то точки пересечения графика с осью будут корнями уравнения
.
При ,
график пересекает ось абсцисс (ось ) в двух точках.
При ,
график касается оси абсцисс в одной точке.
При ,
график не пересекает ось абсцисс.
Ниже приводятся примеры таких графиков.
Полезные формулы, связанные с квадратным уравнением
(f.1)
;
(f.2)
;
(f.3)
.
Вывод формулы для корней квадратного уравнения
Выполняем преобразования и применяем формулы (f.1) и (f.3):
,
где
;
.
Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение
выполняется при
и .
То есть и являются корнями квадратного уравнения
.
Примеры определения корней квадратного уравнения
Пример 1
(1.1)
.
Решение
.
Сравнивая с нашим уравнением (1.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант положителен, ,
то уравнение имеет два действительных корня:
;
;
.
Отсюда получаем разложение квадратного трехчлена на множители:
.
График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.
Построим график функции
.
График этой функции является параболой. Она пересевает ось абсцисс (ось ) в двух точках:
и .
Эти точки являются корнями исходного уравнения (1.1).
Ответ
;
;
.
Пример 2
Найти корни квадратного уравнения:
(2.1)
.
Решение
Запишем квадратное уравнение в общем виде:
.
Сравнивая с исходным уравнением (2.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант равен нулю, ,
то уравнение имеет два кратных (равных) корня:
;
.
Тогда разложение трехчлена на множители имеет вид:
.
График функции y = x 2 - 4 x + 4 касается оси абсцисс в одной точке.
Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.
Ответ
;
.
Пример 3
Найти корни квадратного уравнения:
(3.1)
.
Решение
Запишем квадратное уравнение в общем виде:
(1)
.
Перепишем исходное уравнение (3.1):
.
Сравнивая с (1), находим значения коэффициентов:
.
Находим дискриминант:
.
Дискриминант отрицателен, .
Поэтому действительных корней нет.
Можно найти комплексные корни:
;
;
Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.
Ответ
Действительных корней нет. Корни комплексные:
;
;
.
Известно, что оно является частным вариантом равенства ах 2 +вх+с = о, где а, в и с - вещественные коэффициенты при неизвестном х, и где а ≠ о, а в и с будут нулями - одновременно или порознь. Например, с = о, в ≠ о или наоборот. Мы почти вспомнили определение квадратного уравнения.
Трехчлен второй степени равен нулю. Первый его коэффициент а ≠ о, в и с могут принимать любые значения. Значение переменной х тогда будет когда при подстановке обратит его в верное числовое равенство. Остановимся на вещественных корнях, хотя решениями уравнения могут быть и Полным принято называть уравнение, в котором ни один из коэффициентов не равен о, а ≠ о, в ≠ о, с ≠ о.
Решим пример. 2х 2 -9х-5 = о, находим
D = 81+40 = 121,
D положительный, значит корни имеются, х 1 = (9+√121):4 = 5, а второй х 2 = (9-√121):4 = -о,5. Проверка поможет убедиться, что они верные.
Вот поэтапное решение квадратного уравнения
Через дискриминант можно решить любое уравнение, в левой части которого известный квадратный трехчлен при а ≠ о. В нашем примере. 2х 2 -9х-5 = 0 (ах 2 +вх+с = о)
Рассмотрим, какие бывают неполные уравнения второй степени
- ах 2 +вх = o. Свободный член, коэффициент с при х 0 , здесь равен нулю, в ≠ o.
Как решать неполное квадратное уравнение такого вида? Выносим х за скобки. Вспоминаем, когда произведение двух множителей равно нулю.
x(ax+b) = o, это может быть, когда х = о или когда ax+b = o.
Решив 2-е имеем x = -в/а.
В результате имеем корни х 1 = 0, по вычислениям x 2 = -b/a . - Теперь коэффициент при х равен о, а с не равен (≠) о.
x 2 +с = о. Перенесем с в правую часть равенства, получим x 2 = -с. Это уравнение только тогда имеет вещественные корни, когда -с положительное число (с ‹ о),
х 1 тогда равен √(-с), соответственно х 2 ― -√(-с). В противном случае уравнение совсем не имеет корней. - Последний вариант: b = c= o, то есть ах 2 = о. Естественно, такое простенькое уравнение имеет один корень, x = о.
Частные случаи
Как решать неполное квадратное уравнение рассмотрели, а теперь возмем любые виды.
- В полном квадратном уравнении второй коэффициент при х ― четное число.
Пусть k = o,5b. Имеем формулы для вычисления дискриминанта и корней.
D/4 = k 2 - ас, корни вычисляются так х 1,2 = (-k±√(D/4))/а при D › o.
x = -k/a при D = o.
Нет корней при D ‹ o. - Бывают приведенные квадратные уравнения, когда коэффициент при х в квадрате равен 1, их принято записывать x 2 +рх+ q = o. На них распространяются все вышеприведенные формулы, вычисления же несколько проще.
Пример, х 2 -4х-9 = 0. Вычисляем D: 2 2 +9, D = 13.
х 1 = 2+√13, х 2 = 2-√13. - Кроме того, к приведенным легко применяется В ней говорится, что сумма корней уравнения равна -p, второму коэффициенту с минусом (имеется ввиду противоположный знак), а произведение этих же корней будет равно q, свободному члену. Проверьте, как легко можно было бы устно определить корни этого уравнения. Для неприведенных (при всех коэффициентах, не равных нулю) эта теорема применима так: сумма x 1 +x 2 равна -в/а, произведение х 1 ·х 2 равно с/a.
Сумма свободного члена с и первого коэффициента а равна коэффициенту b. В этой ситуации уравнение имеет не менее чем один корень (легко доказывается), первый обязательно равен -1, а второй -с/а, если он существует. Как решать неполное квадратное уравнение, можно проверить самостоятельно. Проще простого. Коэффициенты могут находиться в некоторых соотношениях между собой
- x 2 +x = o, 7х 2 -7 = o.
- Сумма всех коэффициентов равна о.
Корни у такого уравнения - 1 и с/а. Пример, 2х 2 -15х+13 = o.
x 1 = 1, х 2 = 13/2.
Существует ряд других способов решения разных уравнениий второй степени. Вот, например, метод выделения из данного полинома полного квадрата. Графических способов несколько. Когда часто имеешь дело с такими примерами, научишься «щелкать» их, как семечки, ведь все способы приходят на ум автоматически.