Комплементарная днк. Принципы решения типовых задач по молекулярной биологии

В прокариотах . Комплементарная ДНК также образуется ретровирусами (ВИЧ-1 , ВИЧ-2 , Вирусом иммунодефицита обезьян) и затем интегрируется в ДНК хозяина, образуя провирус .

Часто гены эукариот удается экспрессировать в клетках прокариот. В наиболее простом случае, метод предполагает встраивание эукариотической ДНК в геном прокариот, далее транскрипцию ДНК в мРНК и затем трансляцию мРНК в белки. Клетки прокариот не имеют ферментов для вырезания интронов, и поэтому интроны из ДНК эукариот должны быть вырезаны до момента встраивания в геном прокариот. ДНК, комплементарная зрелой мРНК, таким образом, называется комплементарной ДНК - cDNA (кДНК). Для успешной экспрессии белков, закодированных в эукариотической cDNA в прокариотах, требуются также регуляторные элементы прокариотических генов (например, промоторы).

Одним из методов для получения необходимого гена (молекулы ДНК), которая будет подлежать репликации (клонированию) с выходом значительного количества реплик, является конструирование на мРНК комплементарной относительно неё ДНК (кДНК). Этот метод требует применения обратной транскриптазы - фермента, который присутствует в некоторых РНК-содержимых вирусах и обеспечивает синтез ДНК на РНК матрице.

Метод широко применяется для получения кДНК и включает в себя выделение из тотальной мРНК ткани мРНК, которая кодирует трансляцию определенного белка (например, интерферона, инсулина) с дальнейшим синтезом на этой мРНК как на матрице необходимой кДНК с помощью обратной транскриптазы.

Ген, который был получен с помощью вышеуказанной процедуры (кДНК), необходимо ввести в бактериальную клетку таким образом, чтобы он интегрировался в её геном. Для этого формируют рекомбинантную ДНК, которая состоит из кДНК и особенной молекулы ДНК, которая правит как проводник, или вектор, способный проникать реципиенту в клетку. В роли векторов для кДНК применяют вирусы или плазмиды. Плазмиды - это небольшие кольцевые молекулы ДНК, которые находятся отдельно от нуклеоида бактериальной клетки, содержат в своем составе несколько важных для функции всей клетки генов (например, гены стойкости к антибиотикам и могут реплицироваться независимо от основного генома (ДНК) клетки. Биологически важными и практически полезными для генной инженерии свойствами плазмида являются их способность к переходу из одной клетки в другую по механизму трансформации или конъюгации, а также способность включаться в бактериальную хромосому и реплицироваться вместе с ней.

Напишите отзыв о статье "Комплементарная ДНК"

Примечания

Отрывок, характеризующий Комплементарная ДНК

– А эти «ключики», они разве никогда не повторяются у других? – решила продолжить свои расспросы я.
– Нет, но иногда бывает кое-что другое...– почему-то забавно улыбаясь, ответила крошка. – Я в начале именно так и попалась, за что меня очень даже сильно «потрепали»... Ой, это было так глупо!..
– А как? – очень заинтересовавшись, спросила я.
Стелла тут же весело ответила:
– О, это было очень смешно! – и чуть подумав, добавила, – но и опасно тоже... Я искала по всем «этажам» прошлое воплощение своей бабушки, а вместо неё по её «ниточке» пришла совсем другая сущность, которая как-то сумела «скопировать» бабушкин «цветок» (видимо тоже «ключик»!) и, как только я успела обрадоваться, что наконец-то её нашла, эта незнакомая сущность меня безжалостно ударила в грудь. Да так сильно, что у меня чуть душа не улетела!..
– А как же ты от неё избавилась? – удивилась я.
– Ну, если честно, я и не избавлялась... – смутилась девочка. – Я просто бабушку позвала...
– А, что ты называешь «этажами»? – всё ещё не могла успокоиться я.
– Ну, это разные «миры» где обитают сущности умерших... В самом красивом и высоком живут те, которые были хорошими... и, наверное, самыми сильными тоже.
– Такие, как ты? – улыбнувшись, спросила я.
– О, нет, конечно! Я наверное сюда по ошибке попала. – Совершенно искренне сказала девчушка. – А знаешь, что самое интересное? Из этого «этажа» мы можем ходить везде, а из других никто не может попасть сюда... Правда – интересно?..
Да, это было очень странно и очень захватывающе интересно для моего «изголодавшегося» мозга, и мне так хотелось узнать побольше!.. Может быть потому, что до этого дня мне никогда и никто ничего толком не объяснял, а просто иногда кто-то что-то давал (как например, мои «звёздные друзья»), и поэтому, даже такое, простое детское объяснение уже делало меня необычайно счастливой и заставляло ещё яростнее копаться в своих экспериментах, выводах и ошибках... как обычно, находя во всём происходящем ещё больше непонятного. Моя проблема была в том, что делать или создавать «необычное» я могла очень легко, но вся беда была в том, что я хотела ещё и понимать, как я это всё создаю... А именно это пока мне не очень-то удавалось...
– А остальные «этажи»? Ты знаешь, сколько их? Они совсем другие, непохожи на этот?.. – не в состоянии остановиться, я с нетерпением заваливала Стеллу вопросами.
– Ой, я тебе обещаю, мы обязательно пойдём туда погулять! Ты увидишь, как там интересно!.. Только там и опасно тоже, особенно в одном. Там такие чудища гуляют!.. Да и люди не очень приятные тоже.
– Я думаю, я уже видела похожих чудищ, – кое-что вспомнив, не очень уверенно сказала я. – Вот посмотри...
И я попробовала показать ей первых, встреченных в моей жизни, астральных существ, которые нападали на пьяного папу малышки Весты.
– Ой, так это же такие же! А где ты их видела? На Земле?!..
– Ну, да, они пришли, когда я помогала одной хорошей маленькой девочке проститься со своим папой...
– Значит, они приходят и к живым?.. – очень удивилась моя подружка.
– Не знаю, Стелла. Я ещё вообще почти ничего не знаю... А так хотелось бы не ходить в потёмках и не узнавать всё только на «ощупь»... или из своего опыта, когда постоянно за это «бьют по голове»... Как ты думаешь, твоя бабушка не научила бы чему-то и меня?..
– Не знаю... Ты, наверное, должна сама у неё об этом спросить?
Девочка глубоко о чём-то задумалась, потом звонко рассмеялась и весело сказала:
– Это было так смешно, когда я только начала «творить»!!! Ой, ты бы знала, как это было смешно и забавно!.. Вначале, когда от меня «ушли» все, было очень грустно, и я много плакала... Я тогда ещё не знала где они, и мама, и братик... Я не знала ещё ничего. Вот тогда, видимо, бабушке стало меня жалко и она начала понемножку меня учить. И... ой, что было!.. Вначале я куда-то постоянно проваливалась, создавала всё «шиворот навыворот» и бабушке приходилось за мной почти всё время наблюдать. А потом я научилась... Даже жалко, потому что она теперь уже реже приходит... и я боюсь, что может когда-нибудь она не придёт совсем...

В реакции, катализируемой обратной транскриптазой .

кДНК часто используется для клонирования генов эукариот в прокариотах . Комплементарная ДНК также образуется ретровирусами (ВИЧ-1 , ВИЧ-2 , Вирусом иммунодефицита обезьян) и затем интегрируется в ДНК хозяина, образуя провирус .

Часто гены эукариот удается экспрессировать в клетках прокариот. В наиболее простом случае, метод предполагает встраивание эукариотической ДНК в геном прокариот, далее транскрипцию ДНК в мРНК и затем трансляцию мРНК в белки. Клетки прокариот не имеют ферментов для вырезания интронов, и поэтому интроны из ДНК эукариот должны быть вырезаны до момента встраивания в геном прокариот. ДНК, комплементарная зрелой мРНК, таким образом, называется комплементарной ДНК - cDNA (кДНК). Для успешной экспрессии белков, закодированных в эукариотической cDNA в прокариотах, требуются также регуляторные элементы прокариотических генов (например, промоторы).

Одним из методов для получения необходимого гена (молекулы ДНК), которая будет подлежать репликации (клонированию) с выходом значительного количества реплик, является конструирование на мРНК комплементарной относительно неё ДНК (кДНК). Этот метод требует применения обратной транскриптазы - фермента, который присутствует в некоторых РНК-содержимых вирусах и обеспечивает синтез ДНК на РНК матрице.

Метод широко применяется для получения кДНК и включает в себя выделение из тотальной мРНК ткани мРНК, которая кодирует трансляцию определенного белка (например, интерферона, инсулина) с дальнейшим синтезом на этой мРНК как на матрице необходимой кДНК с помощью обратной транскриптазы.

Ген, который был получен с помощью вышеуказанной процедуры (кДНК), необходимо ввести в бактериальную клетку таким образом, чтобы он интегрировался в её геном. Для этого формируют рекомбинантную ДНК, которая состоит из кДНК и особенной молекулы ДНК, которая правит как проводник, или вектор, способный проникать реципиенту в клетку. В роли векторов для кДНК применяют вирусы или плазмиды. Плазмиды - это небольшие кольцевые молекулы ДНК, которые находятся отдельно от нуклеоида бактериальной клетки, содержат в своем составе несколько важных для функции всей клетки генов (например, гены стойкости к антибиотикам и могут реплицироваться независимо от основного генома (ДНК) клетки. Биологически важными и практически полезными для генной инженерии свойствами плазмида являются их способность к переходу из одной клетки в другую по механизму трансформации или конъюгации, а также способность включаться в бактериальную хромосому и реплицироваться вместе с ней.

Самовоспроизведение наследственного материала. Репликация ДНК

Репликация – удвоение молекул ДНК, в результате которого образуются две двойные спирали ДНК. Основано на принципах :

1) Комплементарность – каждая из двух цепей – матрица для синтеза комплементарной цепи. Это свойство обеспечивается особенностями химической организации молекулы ДНК, состоящей из двух комплементарных цепей. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. В итоге из одной двойной спирали ДНК образуются две идентичные двойные спирали.

2) Полуконсервативность – каждая из двух двойных спиралей несет одну нить

материнской ДНК.

3) Антипараллельность – каждая цепь ДНК имеет определенную ориентацию: 5"-конец одной цепи соединяется с 3"-концом другой, и наоборот.

4) Прерывистость – репликация осуществляется фрагментами.

Инициация репликации осуществляется в особых участках ДНК, обозначаемых ori (от англ. origin -начало). Они включают последовательность, состоящую из 300 нуклеотидных пар, узнаваемую специфическими белками. Двойная спираль ДНК в этих локусах разделяется на две цепи, при этом, как правило, по обе стороны от точки начала репликации образуются области расхождения полинуклеотидных цепей - репликационные вилки , которые движутся в противоположных от локуса ori направлениях. Между репликационными вилками образуется структура, называемая репликационным глазком , где на двух цепях материнской ДНК образуются новые полинуклеотидные цепи.

С помощью фермента хеликазы, разрывающего водородные связи, двойная спираль ДНК расплетается в точках начала репликации. Образующиеся при этом одинарные цепи ДНК связываются специальными дестабилизирующими белками, которые растягивают остовы цепей, делая их азотистые основания доступными для связывания с комплементарными нуклеотидами, находящимися в нуклеоплазме. На каждой из цепей, образующихся в области репликационной вилки, при участии фермента ДНК-полимеразы осуществляется синтез комплементарных цепей.

В процессе синтеза репликационные вилки движутся вдоль материнской спирали в противоположных направлениях, захватывая все новые зоны.

Разделение спирально закрученных цепей родительской ДНК ферментом хеликазой вызывает появление супервитков перед репликационной вилкой. Это объясняется тем, что при расхождении каждых 10 пар нуклеотидов, образующих один виток спирали, родительская ДНК должна совершить один полный оборот вокруг своей оси. Следовательно, для продвижения репликационной вилки вся молекула ДНК перед ней должна была бы быстро вращаться, что потребовало бы большой затраты энергии. В действительности это не наблюдается благодаря особому классу белков, называемых ДНК-топоизомеразами . Топоизомераза разрывает одну из цепей ДНК, что дает ей возможность вращаться вокруг второй цепи. Это ослабляет накопившееся напряжение в двойной спирали ДНК.

К высвобождающимся водородным связям нуклеотидных последовательностей разделенных родительских цепей присоединяются свободные нуклеотиды из нуклеоплазмы, где они присутствуют в виде дезоксирибонуклеозидгрифосфатов: дАТФ, дГТФ, дЦТФ, дТТФ. Комплементарный нуклеозидтрифосфат образует водородные связи с определенным основанием материнской цепи ДНК. Затем при участии фермента ДНК-полимеразы он связывается фосфодиэфирной связью с предшествующим нуклеотидом вновь синтезируемой цепи, отдавая при этом неорганический пирофосфат.

Поскольку ДНК-полимераза присоединяет очередной нуклеотид к ОН-группе в 3"-положении предшествующего нуклеотида, цепь постепенно удлиняется на ее 3"-конце.

Особенностью ДНК-полимеразы является ее неспособность начать синтез новой полинуклеотидной цепи путем простого связывания двух нуклеозидтрифосфатов: необходим 3"-ОН-конец какой-либо полинуклеотидной цепи, спаренной с матричной цепью ДНК, к которой ДНК-полимераза может лишь добавлять новые нуклеотиды. Такую полинуклеотидную цепь называют затравкой или праймером.

Роль затравки для синтеза полинуклеотидных цепей ДНК в ходе репликации выполняют короткие последовательности РНК, образуемые при участии фермента РНК-праймазы . Указанная особенность ДНК-полимеразы означает, что матрицей при репликации может служить лишь цепь ДНК, несущая спаренную с ней затравку, которая имеет свободный 3"-ОН-конец.

Способность ДНК-полимеразы осуществлять сборку полинуклеотида в направлении от 5"- к 3" -концу при антипараллельном соединении двух цепей ДНК означает, что процесс репликации должен протекать на них по-разному. Действительно, если на одной из матриц (3" → 5") сборка новой цепи происходит непрерывно от 5"- к 3"-концу и она постепенно удлиняется на 3"-конце, то другая цепь, синтезируемая на матрице (5" → 3"), должна была бы расти от 3"- к 5"-концу. Это противоречит направлению действия фермента ДНК-полимеразы.

В настоящее время установлено, что синтез второй цепи ДНК осуществляется короткими фрагментами (фрагменты Оказаки ) также в направлении от 5"- к 3"-концу (по типу шитья «назад иголкой»). У прокариот фрагменты Оказаки содержат от 1000 до 2000 нуклеотидов, у эукариот они значительно короче (от 100 до 200 нуклеотидов). Синтезу каждого такого фрагмента предшествует образование РНК-затравки длиной около 10 нуклеотидов. Вновь образованный фрагмент с помощью фермента ДНК-лигазы соединяется с предшествующим фрагментом после удаления его РНК-затравки.

В связи с указанными особенностями репликационная вилка является асимметричной. Из двух синтезируемых дочерних цепей одна строится непрерывно, ее синтез идет быстрее и эту цепь называют лидирующей . Синтез другой цепи идет медленнее, так как она собирается из отдельных фрагментов,требующих образования, а затем удаления РНК-затравки. Поэтому такую цепь называют запаздывающей (отстающей). Хотя отдельные фрагменты образуются в направлении 5" → 3", в целом эта цепь растет в направлении 3" → 5".

В виду того, что от локуса oriкак правило начинаются две репликационные вилки, идущие в противоположных направлениях, синтез лидирующих цепей в них идет на разных цепях материнской ДНК.

Конечным результатом процесса репликации является образование двух молекул ДНК, нуклеотидная последовательность которых идентична таковой в материнской двойной спирали ДНК.

Рассмотренная последовательность событий, происходящих в ходе репликативного синтеза, предполагает участие целой системы ферментов: хеликазы, топоизомеразы, дестабилизирующих белков, ДНК-полимеразы и других, совместно действующих в области репликационной вилки.



Репликация ДНК у про- и эукариот в основных чертах протекает сходно, однако, скорость синтеза у эукариот (около 100 нуклеотидов/с) на порядок ниже, чем у прокариот (1000 нуклеотидов/с). Причиной этого может быть образование ДНК эукариот достаточно прочных соединений с белками, что затрудняет ее деспирализацию, необходимую для осуществления репликативного синтеза.

Фрагмент ДНК от точки начала репликации до точки ее окончания образует единицу репликации - репликон . Однажды начавшись в точке начала, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован. Эукариотические хромосомы содержат большое число репликонов. В связи с этим удвоение молекулы ДНК, расположенной вдоль эукариотической хромосомы, начинается в нескольких точках. В разных репликонах удвоение может идти в разное время или одновременно.

Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом: Соответствие А « Т и Г « Ц называют правилом комплементарности , а сами цепи - комплементарными . Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина – количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую.

Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп.

ФУНКЦИЯ НУКЛЕИНОВЫХ КИСЛОТ Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация). Репликация и транскрипция . С химической точки зрения синтез нуклеиновой кислоты – это полимеризация, т.е. последовательное присоединение строительных блоков. Такими блоками служат нуклеозидтрифосфаты; реакцию можно представить следующим образом:
Энергия, необходимая для синтеза, высвобождается при отщеплении пирофосфата, а катализируют реакцию особые ферменты – ДНК-полимеразы.

В результате такого синтетического процесса мы получили бы полимер со случайной последовательностью оснований. Однако большинство полимераз работает только в присутствии уже существующей нуклеиновой кислоты –матрицы, диктующей, какой именно нуклеотид присоединится к концу цепи. Этот нуклеотид должен быть комплементарен соответствующему нуклеотиду матрицы, так что новая цепь оказывается комплементарной исходной. Используя затем комплементарную цепь в качестве матрицы, мы получим точную копию оригинала.

ДНК состоит из двух взаимно комплементарных цепей. В ходе репликации они расходятся, и каждая из них служит матрицей для синтеза новой цепи:

Так образуются две новые двойные спирали с той же последовательностью оснований, что и у исходной ДНК. Иногда в процессе репликации происходит «сбой», и возникают мутации (см. также НАСЛЕДСТВЕННОСТЬ) . В результате транскрипции ДНК образуются клеточные РНК (мРНК, рРНК и тРНК): Они комплементарны одной из цепей ДНК и являются копией другой цепи, за исключением того, что место тимина у них занимает урацил. Таким способом можно получить множество РНК-копий одной из цепей ДНК. В нормальной клетке передача информации осуществляется только в направлении ДНК ® ДНК и ДНК ® РНК. Однако в клетках, инфицированных вирусом, возможны и другие процессы: РНК ® РНК и РНК ® ДНК. Генетический материал многих вирусов представлен молекулой РНК, обычно одноцепочечной. Проникнув в клетку-хозяина, эта РНК реплицируется с образованием комплементарной молекулы, на которой, в свою очередь, синтезируется множество копий исходной вирусной РНК: Вирусная РНК может транскрибироваться ферментом - обратной транскриптазой - в ДНК, которая иногда включается в хромосомную ДНК клетки-хозяина. Теперь эта ДНК несет вирусные гены, и после транскрипции в клетке может появиться вирусная РНК. Таким образом, спустя длительное время, в течение которого никакого вируса в клетке не обнаруживается, он снова в ней появится без повторного заражения. Вирусы, генетический материал которых включается в хромосому клетки-хозяина, часто являются причиной рака.

Молекулярная генетика раздел генетики, который занимается изучением наследственности на молекулярном уровне.

Нуклеиновые кислоты. Репликация ДНК. Реакции матричного синтеза

Нуклеиновые кислоты (ДНК, РНК) были открыты в 1868 году швейцарским биохимиком И.Ф. Мишером. Нуклеиновые кислоты – линейные биополимеры, состоящие из мономеров – нуклеотидов.

ДНК – структура и функции

Химическую структуру ДНК расшифровали в 1953 г. американский биохимик Дж. Уотсон и английский физик Ф. Крик.

Общая структура ДНК. Молекула ДНК состоит из 2 цепей, которые закручены в спираль (рис. 11) одна вокруг другой и вокруг общей оси. Молекулы ДНК могут содержать от 200 до 2х10 8 пар нуклеотидов. Вдоль спирали молекулы ДНК соседние нуклеотиды располагаются на расстоянии 0,34 нм друг от друга. Полный оборот спирали включает 10 пар нуклеотидов. Его длина составляет 3,4 нм.

Рис . 11 . Схема строения ДНК (двойная спираль)

Полимерность молекулы ДНК. Молекула ДНК – биоплоимер состоит из сложных соединений – нуклеотидов.

Строение нуклеотида ДНК. Нуклеотид ДНК состоит из 3 звеньев: одно из азотистых оснований (аденин, гуанин, цитозин, тимин); дезокисирибоза (моносахарид); остаток фосфорной кислоты (рис. 12).

Различают 2 группы азотистых оснований:

    пуриновые – аденин (А), гуанин (Г), содержащие два бензольных кольца;

    пиримидиновые – тимин (Т), цитозин (Ц), содержащие одно бензольное кольцо.

В состав ДНК входят следующие виды нуклеотидов: адениновый (А); гуаниновый (Г); цитозиновый (Ц); тиминовый (Т). Названия нуклеотидов соответствуют названиям азотистых оснований, входящих в их состав: адениновый нуклеотид азотистое основание аденин; гуаниновый нуклеотид азотистое основание гуанин; цитозиновый нуклеотид азотистое основание цитозин; тиминовый нуклеотид азотистое основание тимин.

Соединение двух цепей ДНК в одну молекулу

Нуклеотиды А, Г, Ц и Т одной цепи соединены соответственно с нуклеотидами Т, Ц, Г и А другой цепи водородными связями . Между А и Т формируется две водородные связи, а между Г и Ц – три водородные связи (А=Т, Г≡Ц).

Пары оснований (нуклеотидов) А – Т и Г – Ц называют комплементарными, т. е. взаимно соответствующими. Комплементарность – это химическое и морфологическое соответствие нуклеотидов друг другу в парных цепочках ДНК.

5 3

1 2 3

3’ 5’

Рис. 12 Участок двойной спирали ДНК. Строение нуклеотида (1– остаток фосфорной кислоты; 2– дезоксирибоза; 3– азотистое основание). Соединение нуклеотидов с помощью водородных связей.

Цепи в молекуле ДНК антипараллельны, т. е. направлены в противоположные стороны, так что 3’- конец одной цепи располагается напротив 5’- конца другой цепи. Генетическая информация в ДНК записана в направлении от 5’ конца к 3’ концу. Эта нить называется смысловой ДНК,

поскольку здесь расположены гены. Вторая нить – 3’–5’ служит эталоном хранения генетической информации.

Cоотношение между числом разных оснований в ДНК установлено Э. Чаргаффом в 1949 г. Чаргафф выявил, что у ДНК различных видов количество аденина равно количеству тимина, а количество гуанина – количеству цитозина.

Правило Э. Чаргаффа :

    в молекуле ДНК количество A (адениновых) нуклеотидов всегда равно количеству Т (тиминовых) нуклеотидов или отношение ∑ А к ∑ Т=1. Сумма Г (гуаниновых) нуклеотидов равна сумме Ц (цитозиновых) нуклеотидов или отношение ∑ Г к ∑ Ц=1;

    сумма пуриновых оснований (А+Г) равна сумме пиримидиновых оснований (Т+Ц) или отношение ∑ (А+Г) к ∑ (Т+Ц)=1;

Способ синтеза ДНК – репликация . Репликация – это процесс самоудвоения молекулы ДНК, осуществляемый в ядре под контролем ферментов. Самоудовоение молекулы ДНК происходит на основе комплементарности – строгого соответствия нуклеотидов друг другу в парных цепочках ДНК. В начале процесса репликации молекула ДНК раскручивается (деспирализуется) на определенном участке (рис. 13), при этом освобождаются водородные связи. На каждой из цепей, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимиразы, синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, содержащиеся в цитоплазме клеток. Эти нуклеотиды выстраиваются комплементарно нуклеотидам двух материнских цепей ДНК. Фермент ДНК-полимераза присоединяет комплементарные нуклеотиды к матричной цепи ДНК. Например, к нуклеотиду А матричной цепи полимераза присоединяет нуклеотид Т и, соответственно, к нуклеотиду Г – нуклеотид Ц (рис. 14). Сшивание комплементарных нуклеотидов происходит с помощью фермента ДНК-лигазы . Так путем самоудвоения синтезируются две дочерние цепи ДНК.

Образовавшиеся две молекулы ДНК из одной молекулы ДНК представляют собой полуконсервативную модель , поскольку состоят из старой материнской и новой дочерней цепей и являются точной копией материнской молекулы (рис. 14). Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерней.

Рис . 13 . Деспирализация молекулы ДНК с помощью фермента

1

Рис . 14 . Репликация – образование двух молекул ДНК из одной молекулы ДНК: 1 – дочерняя молекула ДНК; 2 – материнская (родительская) молекула ДНК.

Фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’ –> 5’. Поскольку комплементарные цепи в молекуле ДНК направлены в противоположные стороны, и фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’–>5’, то и синтез новых цепей идет антипараллельно (по принципу антипараллельности ).

Место локализации ДНК . ДНК содержится в ядре клетки, в матриксе митохондрий и хлоропластов.

Количество ДНК в клетке постоянно и составляет 6,6х10 -12 г.

Функции ДНК:

    Хранение и передача в ряду поколений генетической информации молекулам и - РНК;

    Структурная. ДНК является структурной основой хромосом (хромосома на 40% состоит из ДНК).

Видоспецифичность ДНК . Нуклеотидный состав ДНК служит критерием вида.

РНК, строение и функции.

Общая структура .

РНК – линейный биополимер, состоящий из одной полинуклеотидной цепи. Различают первичную и вторичную структуры РНК. Первичная структура РНК представляет собой одноцепочечную молекулу, а вторичная структура имеет форму креста и характерна для т- РНК.

Полимерность молекулы РНК . Молекула РНК может включать от 70 нуклеотидов до 30 000 нуклеотидов. Нуклеотиды, входящие в состав РНК, следующие: адениловый (А), гуаниловый (Г), цитидиловый (Ц), урациловый (У). В составе РНК тиминовый нуклеотид замещен на урациловый (У).

Строение нуклеотида РНК.

Нуклеотид РНК включает 3 звена:

    азотистое основание (аденин, гуанин, цитозин, урацил);

    моносахарид – рибоза (в рибозе присутствует кислород при каждом атоме углерода);

    остаток фосфорной кислоты.

Способ синтеза РНК – транскрипция . Транскрипция, как и репликация, – реакция матричного синтеза. Матрицей является молекула ДНК. Реакция протекает по принципу комплементарности на одной из цепей ДНК (рис. 15). Процесс транскрипции начинается с деспирализации молекулы ДНК на определенном участке. На транскрибируемой цепи ДНК имеется промотор – группа нуклеотидов ДНК, с которой начинается синтез молекулы РНК. К промотору присоединяется фермент РНК-полимераза . Фермент активизирует процесс транскрипции. По принципу комплементарности достраиваются нуклеотиды, поступающие из цитоплазмы клетки к транскрибируемой цепи ДНК. РНК-полимераза активизирует выстраивание нуклеотидов в одну цепь и формирование молекулы РНК.

В процессе транскрипции выделяют четыре стадии: 1) связывание РНК-полимеразы с промотором; 2) начало синтеза (инициация); 3) элонгация – рост цепи РНК, т. е. происходит последовательное присоединение нуклеотидов друг к другу; 4) терминация – завершение синтеза и-РНК.

Рис . 15 . Схема транскрипции

1 – молекула ДНК (двойная цепочка); 2 – молекула РНК; 3–кодоны; 4– промотор.

В 1972 г. американские ученые – вирусолог Х.М. Темин и молекулярный биолог Д. Балтимор на вирусах в опухолевых клетках открыли обратную транскрипцию. Обратная транскрипция – переписывание генетической информации с РНК на ДНК. Процесс протекает с помощью фермента обратной транскриптазы .

Виды РНК по функции

    Информационная, или матричная РНК (и-РНК, или м-РНК) переносит генетическую информацию с молекулы ДНК к месту синтеза белка – в рибосому. Синтезируется в ядре при участии фермента РНК-полимеразы. Она составляет 5% от всех видов РНК клетки. и- РНК включает от 300 нуклеотидов до 30 000 нуклеотидов (самая длинная цепь среди РНК).

    Транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка,– в рибосому. Имеет форму креста (рис. 16) и состоит из 70 – 85 нуклеотидов. Ее количество в клетке составляет 10-15 % РНК клетки.

Рис. 16. Схема строения т-РНК: А–Г – пары нуклеотидов, соединенные с помощью водородных связей; Д – место прикрепления аминокислоты (акцепторный участок); Е – антикодон.

3. Рибосомная РНК (р-РНК) синтезируется в ядрышке и входит в состав рибосом. Включает примерно 3000 нуклеотидов. Составляет 85% РНК клетки. Этот вид РНК содержатся в ядре, в рибосомах, на эндоплазматической сети, в хромосомах, в матриксе митохондрий, а также в пластидах.

Основы цитологии. Решение типовых задач

Задача 1

Сколько тиминовых и адениновых нуклеотидов содержится в ДНК, если в ней обнаружено 50 цитозиновых нуклеотидов, что составляет 10% от всех нуклеотидов.

Решение. По правилу комплементарности в двойной цепи ДНК цитозин всегда комплемпентарен гуанину. 50 цитозиновых нуклеотидов составляют 10%, следовательно, согласно правилу Чаргаффа, 50 гуаниновых нуклеотидов также составляют 10%, или (если ∑Ц =10%, то и ∑Г =10%).

Сумма пары нуклеотидов Ц + Г равна 20%

Сумма пары нуклеотидов Т + А = 100% – 20 % (Ц + Г) = 80 %

Для того, чтобы узнать, сколько тиминовых и адениновых нуклеотидов содержится в ДНК, нужно составить следующую пропорцию:

50 цитозиновых нуклеотидов → 10 %

Х (Т + А) →80 %

Х = 50х80:10=400 штук

Согласно правилу Чаргаффа ∑А= ∑Т, следовательно ∑А=200 и ∑Т=200.

Ответ: количество тиминовых, как и адениновых нуклеотидов в ДНК, равно 200.

Задача 2

Тиминовые нуклеотиды в ДНК составляют 18% от общего количества нуклеотидов. Определите процент остальных видов нуклеотидов, содержащихся в ДНК.

Решение. ∑Т=18%. Согласно правилу Чаргаффа ∑Т=∑А, следовательно на долю адениновых нуклеотидов также приходится 18 % (∑А=18%).

Сумма пары нуклеотидов Т+А равна 36 % (18 % + 18 % = 36 %). На пару нуклеотидов Ги Ц приходится: Г+Ц=100 % –36 %=64 %. Поскольку гуанин всегда комплементарен цитозину, то их содержание в ДНК будет равным,

т. е. ∑ Г= ∑Ц=32%.

Ответ : содержание гуанина, как и цитозина, составляет 32 %.

Задача 3

20 цитозиновых нуклеотидов ДНК составляют 10% от общего количества нуклеотидов. Сколько адениновых нуклеотидов содержится в молекуле ДНК?

Решение. В двойной цепочке ДНК количество цитозина равно количеству гуанина, следовательно, их сумма составляет: Ц+Г=40 нуклеотидов. Находим общее количество нуклеотидов:

20 цитозиновых нуклеотидов → 10 %

Х (общее количество нуклеотидов) →100 %

Х=20х100:10=200 штук

А+Т=200 – 40=160 штук

Так как аденин комплементарен тимину, то их содержание будет равным,

т. е. 160 штук: 2=80 штук, или ∑А=∑Т=80.

Ответ : в молекуле ДНК содержится 80 адениновых нуклеотидов.

Задача 4

Допишите нуклеотиды правой цепи ДНК, если известны нуклеотиды ее левой цепи: АГА – ТАТ – ГТГ – ТЦТ

Решение. Построение правой цепи ДНК по заданной левой цепи производится по принципу комплементарности – строгого соответствия нуклеотидов друг другу: аденонивый – тиминовый (А–Т), гуаниновый – цитозиновый (Г–Ц). Поэтому нуклеотиды правой цепи ДНК должны быть следующие: ТЦТ – АТА – ЦАЦ – АГА.

Ответ : нуклеотиды правой цепи ДНК: ТЦТ – АТА – ЦАЦ – АГА.

Задача 5

Запишите транскрипцию, если транскрибируемая цепочка ДНК имеет следующий порядок нуклеотидов: АГА – ТАТ – ТГТ – ТЦТ.

Решение . Молекула и-РНК синтезируется по принципу комплеиентарности на одной из цепей молекулы ДНК. Нам известен порядок нуклеотидов в транскрибируемой цепи ДНК. Следовательно, надо построить комплементарную цепь и-РНК. Следует помнить, что вместо тимина в молекулу РНК входит урацил. Следовательно:

Цепь ДНК: АГА – ТАТ – ТГТ – ТЦТ

Цепь и-РНК: УЦУ – АУА –АЦА –АГА.

Ответ : последовательность нуклеотидов и-РНК следующая: УЦУ – АУА – АЦА –АГА.

Задача 6

Запишите обратную транскрипцию, т. е. постройте фрагмент двухцепочечной молекулы ДНК по предложенному фрагменту и-РНК, если цепочка и- РНК имеет следующую последовательность нуклеотидов:

ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА

Решение. Обратная транскрипция – это синтез молекулы ДНК на основе генетического кода и-РНК. Кодирующая молекулу ДНК и-РНК имеет следующий порядок нуклеотидов: ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА. Комплементарная ей цепочка ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА – ТЦТ. Вторая цепочка ДНК: ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Ответ : в результате обратной транскрипции синтезированы две цепочки молекулы ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА и ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Генетический код. Биосинтез белка.

Ген – участок молекулы ДНК, содержащий генетическую информацию о первичной структуре одного определенного белка.

Экзон-интронная структура гена эукариот

    промотор – участок ДНК (длиной до 100 нуклеотидов), к которому присоединяется фермент РНК-полимераза , необходимый для осуществления транскрипции;

2) регуляторная зона – зона, влияющая на активность гена;

3) структурная часть гена – генетическая информация о первичной структуре белка.

Последовательность нуклеотидов ДНК, несущая генетическую информацию о первичной структуре белка – экзон . Они также входят в состав и-РНК. Последовательность нуклеотидов ДНК, не несущая генетическую информацию о первичной структуре белка – интрон . Они не входят в состав и-РНК. В ходе транскрипции с помощью специальных ферментов происходит вырезание копий интронов из и-РНК и сшивание копий экзонов при образовании молекулы и-РНК (рис. 20). Этот процесс называется сплайсинг .

Рис . 20 . Схема сплайсинга (формирование зрелой и-РНК у эукариот)

Генетический код – система последовательности нуклеотидов в молекуле ДНК, или и-РНК, которая соответствует последовательности аминокислот в полипептидной цепи.

Свойства генетического кода:

    Триплетность (АЦА – ГТГ – ГЦГ…)

Генетический код является триплетным, так как каждая из 20 аминокислот кодируется последовательностью трех нуклеотидов (триплетом , кодоном) .

Существует 64 вида триплетов нуклеотидов (4 3 =64).

    Однозначность (специфичность)

Генетический код является однозначным, так как каждый отдельный триплет нуклеотидов (кодон) кодирует только одну аминокислоту, или один кодон всегда соответствует одной аминокислоте (таблица 3).

    Множественность (избыточность, или вырожденность)

Одна и та же аминокислота может кодироваться несколькими триплетами (от 2 до 6), т. к. белокобразующих аминокислот –20, а триплетов – 64.

    Непрерывность

Считывание генетической информации происходит в одном направлении, слева направо. Если произойдет выпадение одного нуклеотида, то при считывании его место займет ближайший нуклеотид из соседнего триплета, что приведет к изменению генетической информации.

    Универсальность

Генетический код характерен для всех живых организмов, и одинаковые триплеты кодируют одну и ту же аминокислоту у всех живых организмов.

    Имеет стартовые и терминальные триплеты (стартовый триплет – АУГ, терминальные триплеты УАА, УГА, УАГ). Эти виды триплетов не кодируют аминокислоты.

    Неперекрываемость (дискретность)

Генетический код является неперекрывающимся, так как один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов. Нуклеотиды могут принадлежать только одному триплету, а если переставить их в другой триплет, то произойдет изменение генетической информации.

Таблица 3 – Таблица генетического кода

Основания кодонов

Примечание: сокращенные названия аминокислот даны в соответствии с международной терминологией.

Биосинтез белка

Биосинтез белка – вид пластического обмена веществ в клетке, происходящий в живых организмах под действием ферментов. Биосинтезу белка предшествуют реакции матричного синтеза (репликация – синтез ДНК; транскрипция – синтез РНК; трансляция – сборка молекул белка на рибосомах). В процессе биосинтеза белка выделяют 2 этапа:

    транскрипция

    трансляция

В ходе транскрипции генетическая информация, заключенная в ДНК, находящейся в хромосомах ядра, передается молекуле РНК. По завершении процесса транскрипции и-РНК выходит в цитоплазму клетки через поры в мембране ядра, располагается между 2 субъединицами рибосомы и участвует в биосинтезе белка.

Трансляция – процесс перевода генетического кода в последовательность аминокислот. Трансляция осуществляется в цитоплазме клетки на рибосомах, которые располагаются на поверхности ЭПС (эндоплазматической сети). Рибосомы – сферические гранулы, диаметром, в среднем, 20 нм, состоящие из большой и малой субъединиц. Молекула и-РНК располагается между двумя субъединицами рибосомы. В процессе трансляции участвуют аминокислоты, АТФ, и-РНК, т-РНК, фермент амино-ацил т-РНК-синтетаза.

Кодон – участок молекулы ДНК, или и-РНК, состоящий из трех последовательно расположенных нуклеотидов, кодирующий одну аминокислоту.

Антикодон – участок молекулы т-РНК, состоящий из трех последовательно расположенных нуклеотидов и комплементарный кодону молекулы и-РНК. Кодоны комплементарны соответствующим антикодонам и соединяются с ними с помощью водородных связей (рис. 21).

Синтез белка начинается со стартового кодона АУГ . От него рибосома

перемещается по молекуле и-РНК, триплет за триплетом. Аминокислоты поступают по генетическому коду. Встраивание их в полипептидную цепь на рибосоме происходит с помощью т-РНК. Первичная структура т-РНК (цепочка) переходит во вторичную структуру, напоминающую по форме крест, и при этом в ней сохраняется комплементарность нуклеотидов. В нижней части т-РНК имеется акцепторный участок, к которому присоединяется аминокислота (рис.16). Активизация аминокислоты осуществляется при помощи фермента аминоацил т-РНК-синтетазы . Суть этого процесса состоит в том, что данный фермент взаимодействует с аминокислотой и с АТФ. При этом формируется тройной комплекс, представленный данным ферментом, аминокислотой и АТФ. Аминокислота обогащается энергией, активизируется, приобретает способность образовывать пептидные связи с соседней аминокислотой. Без процесса активизации аминокислоты полипептидная цепь из аминокислт сформироваться не может.

В противоположной, верхней части молекулы т-РНК содержится триплет нуклеотидов антикодон , с помощью которого т-РНК прикрепляется к комплементарному ему кодону (рис. 22).

Первая молекула т-РНК, с присоединенной к ней активизированной аминокислотой, своим антикодоном прикрепляется к кодону и-РНК, и в рибосоме оказывается одна аминокислота. Затем прикрепляется вторая т-РНК своим антикодоном к соответствующему кодону и-РНК. При этом в рибосоме оказываются уже 2 аминокислоты, между которыми формируется пептидная связь. Первая т-РНК покидает рибосому, как только отдаст аминокислоту в полипептидную цепь на рибосоме. Затем к дипептиду присоединяется 3-я аминокислота, ее приносит третья т-РНК и т. д. Синтез белка останавливается на одном из терминальных кодонов – УАА, УАГ, УГА (рис. 23).

1 – кодон и-РНК; кодоны UCG – УЦГ ; CUA – ЦУА ; CGU – ЦГУ ;

2– антикодон т-РНК; антикодон GAT – ГАТ

Рис . 21 . Фаза трансляции: кодон и-РНК притягивается к антикодону т-РНК соответствующими комплементарными нуклеотидами (основаниями)