Квантовая телепортация является одним из наиболее важных протоколов в квантовой информации. Основываясь на физическом ресурсе запутанности, она служит главным элементом различных информационных задач и представляет собой важную составную часть квантовых технологий, играя ключевую роль в дальнейшем развитии квантовых вычислений, сетей и коммуникации.

От научной фантастики до открытия ученых

Прошло уже более двух десятилетий с момента открытия квантовой телепортации, которая, возможно, является одним из самых интересных и захватывающих следствий «странности» квантовой механики. До того как были сделаны эти великие открытия, данная идея принадлежала области научной фантастики. Впервые придуманный в 1931 г. Чарльзом Х. Фортом термин «телепортация» с тех пор используется для обозначения процесса, посредством которого тела и объекты передаются из одного места в другое, на самом деле не преодолевая расстояние между ними.

В 1993 году была опубликована статья с описанием протокола квантовой информации, получившего название «квантовая телепортация», который разделил несколько из перечисленных выше признаков. В нем неизвестное состояние физической системы измеряется и впоследствии воспроизводится или «повторно собирается» в удаленном месте (физические элементы исходной системы остаются в месте передачи). Этот процесс требует классических средств связи и исключает сверхсветовую коммуникацию. Для него необходим ресурс запутанности. На самом деле телепортацию можно рассматривать как протокол квантовой информации, который наиболее четко демонстрирует характер запутанности: без его присутствия такое состояние передачи не было бы возможным в рамках законов, которыми описывается квантовая механика.

Телепортация играет активную роль в развитии науки об информации. С одной стороны, протокол, играющий решающую роль в развитии формальной квантовой теории информации, а с другой он является фундаментальной составляющей многих технологий. Квантовый повторитель — ключевой элемент коммуникации на большие расстояния. Телепортация квантовых переключателей, вычисления на основе измерений и квантовые сети — все являются ее производными. Она используется и в качестве простого инструмента для изучения «экстремальной» физики, касающейся временных кривых и испарения

Сегодня квантовая телепортация подтверждена в лабораториях во всем мире с использованием множества различных субстратов и технологий, в том числе фотонных кубитов, ядерного магнитного резонанса, оптических мод, групп атомов, захваченных атомов и полупроводниковых систем. Выдающиеся результаты были достигнуты в области дальности телепортации, предстоят эксперименты со спутниками. Кроме того, начались попытки масштабирования до более сложных систем.

Телепортация кубитов

Квантовая телепортация была впервые описана для двухуровневых систем, так называемых кубитов. Протокол рассматривает две удаленные стороны, именуемые Алисой и Бобом, которые разделяют 2 кубита, А и В, находящиеся в чистом запутанном состоянии, также называемые парой Белла. На входе Алисе дается еще один кубит а, чье состояние ρ неизвестно. Затем она выполняет совместное квантовое измерение, называемое обнаружением Белла. Оно переносит а и А в одно из четырех состояний Белла. В результате состояние входного кубита Алисы при измерении исчезает, а кубит Боба B одновременно проецируется на Р † k ρP k . На последнем этапе протокола Алиса передает классический результат ее измерения Бобу, который применяет оператор Паули P k для восстановления исходного ρ.

Начальное состояние кубита Алисы считается неизвестным, так как в противном случае протокол сводится к его удаленному измерению. Кроме того, оно само по себе может быть частью более крупной составной системы, разделенной с третьей стороной (в этом случае успешная телепортация требует воспроизведения всех корреляций с этой третьей стороной).

Типичный эксперимент по квантовой телепортации принимает исходное состояние чистым и принадлежащим к ограниченному алфавиту, например, шести полюсам сферы Блоха. В присутствии декогеренции качество реконструированного состояния может быть количественно выражено точностью телепортации F ∈ . Это точность между состояниями Алисы и Боба, усредненные по всем результатами обнаружения Белла и исходному алфавиту. При малых значениях точности существуют методы, позволяющие провести несовершенную телепортацию без использования запутанного ресурса. Например, Алиса может напрямую измерить свое исходное состояние, посылая результаты Бобу для подготовки результирующего состояния. Такую стратегию измерения-подготовки называют «классической телепортацией». Она имеет максимальную точность F class = 2/3 для произвольного входного состояния, что эквивалентно алфавиту взаимно несмещенных состояний, таких как шесть полюсов сферы Блоха.

Таким образом, четким признаком использования квантовых ресурсов является значение точности F> F class .

Не кубитом единым

Как утверждает телепортация не ограничивается кубитами, она может включать многомерные системы. Для каждого конечного измерения d можно сформулировать идеальную схему телепортации, используя базис максимально запутанных векторов состояния, который может быть получен из заданного максимально запутанного состояния и базиса {U k } унитарных операторов, удовлетворяющих tr(U † j U k) = dδ j,k . Такой протокол можно построить для любого конечноразмерного гильбертового пространства т. н. дискретно-переменных систем.

Кроме того, квантовая телепортация может распространяться и на системы с бесконечномерным гильбертовым пространством, называемыми непрерывно-переменными системами. Как правило, они реализуются оптическими бозонными модами, электрическое поле которых можно описать квадратурными операторами.

Скорость и принцип неопределенности

Какова скорость при квантовой телепортации? Информация передается на скорости, аналогичной скорости передачи того же количества классической — возможно, со Теоретически она может быть использована таким образом, каким классическая не может — например, в квантовых вычислениях, где данные доступны только получателю.

Нарушает ли квантовая телепортация В прошлом идея телепортации не очень серьезно воспринималась учеными, потому что считалось, что она нарушает принцип, запрещающий любому измерительному или сканирующему процессу извлекать всю информацию атома или другого объекта. В соответствии с принципом неопределенности, чем точнее объект сканируется, тем больше на него влияет процесс сканирования, пока не будет достигнута точка, когда исходное состояние объекта нарушится до такой степени, что больше нельзя будет получить достаточного количества информации для создания точной копии. Это звучит убедительно: если человек не может извлечь сведения из объекта для создания идеальной копии, то последняя сделана быть не может.

Квантовая телепортация для чайников

Но шесть ученых Жиль Брассар, Клод Крепо, Ричард Джоса, Ашер Перес и Уильям Вутерс) нашли способ обойти эту логику, используя знаменитую и парадоксальную особенность квантовой механики, известную как эффект Эйнштейна-Подольского-Розена. Они нашли способ отсканировать часть информации телепортируемого объекта А, а остальную непроверенную часть посредством упомянутого эффекта передать другому объекту С, в контакте с А никогда не пребывавшему.

В дальнейшем, путем применения к C воздействия, зависящего от отсканированной информации, можно ввести С в состояние А до сканирования. Сам А уже не в том состоянии, так как полностью изменен процессом сканирования, поэтому достигнутое является телепортацией, а не репликацией.

Борьба за дальность

  • Первая квантовая телепортация была проведена в 1997 г. почти одновременно учеными из Университета Инсбрука и Университета Рима. Во время эксперимента исходный фотон, обладающий поляризацией, и один из пары запутанных фотонов подверглись изменению таким образом, что второй фотон получил поляризацию исходного. При этом оба фотона находились на расстоянии друг от друга.
  • В 2012 г. состоялась очередная квантовая телепортация (Китай, Университет науки и технологии) через высокогорное озеро на расстояние 97 км. Команде ученых из Шанхая во главе с Хуаном Иинем удалось разработать наводящий механизм, который позволил точно нацелить пучок.
  • В сентябре того же года была проведена рекордная квантовая телепортация на 143 км. Австрийские ученые из Академии наук Австрии и Университета Вены под руководством Антона Цайлингера успешно передали квантовые состояния между двумя Канарскими островами Ла Палма и Тенерифе. В эксперименте использовались две оптические линии связи на открытом пространстве, квантумная и классическая, частотно некоррелированная поляризационно запутанная пара фотонов-источников, сверхнизкошумные однофотонные детекторы и сцепленная тактовая синхронизация.
  • В 2015 г. исследователи из американского Национального института стандартов и технологии впервые произвели передачу информации на расстояние более 100 км по оптоволокну. Это стало возможным благодаря созданным в институте однофотонным детекторам, использующим сверхпроводящие нанопровода из силицида молибдена.

Понятно, что идеальной квантовой системы или технологии пока не существует и великие открытия будущего еще впереди. Тем не менее можно попытаться определить возможных кандидатов в конкретных областях применения телепортации. Подходящая их гибридизация при условии совместимой базы и методов может обеспечить наиболее перспективное будущее для квантовой телепортации и ее применений.

Короткие дистанции

Телепортация на короткие расстояния (до 1 м) как подсистема квантовых вычислений перспективна на полупроводниковых устройствах, лучшим из которых является схема QED. В частности, сверхпроводящие трансмоновые кубиты могут гарантировать детерминированную и высокоточную телепортацию на чипе. Они также позволяют прямую подачу в режиме реального времени, которая выглядит проблематичной на фотонных чипах. К тому же они обеспечивают более масштабируемую архитектуру и лучшую интеграцию существующих технологий по сравнению с предыдущими подходами, такими как захваченные ионы. В настоящее время единственным недостатком этих систем, по-видимому, является их ограниченное время когерентности (

Городская связь

Телепортационная связь в масштабе города (несколько километров) могла бы разрабатываться с использованием оптических мод. При достаточно низких потерях эти системы обеспечивают высокие скорости и ширину полосы. Они могут быть расширены от настольных реализаций до систем средней дальности, действующих через эфир или оптоволокно, с возможной интеграцией с ансамблевой квантовой памятью. Более дальние расстояния, но с более низкими скоростями могут быть достигнуты с помощью гибридного подхода или путем разработки хороших ретрансляторов, основанных на негауссовских процессах.

Дальняя связь

Междугородняя квантовая телепортация (более 100 км) является активной областью, но по-прежнему страдает от открытой проблемы. Кубиты поляризации — лучшие носители для низкоскоростной телепортации по длинным оптоволоконным линиям связи и через эфир, но в настоящее время протокол является вероятностным из-за неполного обнаружения Белла.

Хотя вероятностная телепортация и запутанности приемлемы для таких задач, как дистилляция запутывания и квантовая криптография, но это явно отличается от коммуникации, в которой входная информация должны быть полностью сохранена.

Если принять этот вероятностный характер, то спутниковые реализации находятся в пределах досягаемости современных технологий. Кроме интеграции методов отслеживания, основной проблемой становятся высокие потери, вызванные расплыванием пучка. Это может быть преодолено в конфигурации, где запутанность распределена от спутника до наземных телескопов с большой апертурой. Предполагая апертуру спутника в 20 см при 600-км высоте и 1-м диафрагму телескопа на земле, можно ожидать около 75 дБ потерь в канале нисходящей линии связи, что меньше, чем 80 дБ потерь на уровне земли. Реализации «земля-спутник» или «спутник-спутник» являются более сложными.

Квантовая память

Будущее использование телепортации в качестве составной части масштабируемой сети прямо зависит от ее интеграции с квантовой памятью. Последняя должна обладать превосходным, с точки зрения эффективности конверсии, интерфейсом «излучение-материя», точностью записи и считывания, временем хранения и пропускной способностью, высокой скоростью и емкостью запоминающего устройства. В первую очередь это позволит использовать ретрансляторы для расширения коммуникации далеко за рамки прямой передачи с использованием кодов коррекции ошибок. Развитие хорошей квантовой памяти позволило бы не только распределить запутывание по сети и телепортационную коммуникацию, но и связно обрабатывать хранимую информацию. В конечном итоге, это может превратить сеть во всемирно распределенный или основу для будущего квантового интернета.

Перспективные разработки

Атомные ансамбли традиционно считались привлекательными из-за их эффективного преобразования «свет-материя» и их миллисекундных сроков хранения, которые могут достигать 100 мс, необходимых для передачи света в глобальном масштабе. Тем не менее более перспективные разработки сегодня ожидаются на основе полупроводниковых систем, где отличная спин-ансамблевая квантовая память прямо интегрируется с масштабируемой архитектурой схемы QED. Эта память не только может продлить время когерентности цепи QED, но и обеспечить оптико-микроволновой интерфейс для взаимопревращения оптико-телекоммуникационных и чиповых микроволновых фотонов.

Таким образом, будущие открытия ученых в области квантового интернета, вероятно, будут основаны на дальней оптической связи, сопряженной с полупроводниковыми узлами для обработки квантовой информации.

В июне 2013 года группе физиков подруководством Юджина Ползика удалось провести эксперимент подетерминистской телепортации коллективного спина 10 12 атомов цезия на полметра. Эта работа попала на обложку Nature Physics. Почему это действительно важный результат, в чем заключалисьэкспериментальные сложности и, наконец, что такое «детерминистскаяквантовая телепортация» «Ленте.ру» рассказал сам профессор и членисполнительного комитета Российского квантового центра (РКЦ) Юджин Ползик.

«Лента.ру»: Что такое «квантовая телепортация»?

Чтобы понять, чем квантовая телепортация отличается от того, что мывидим, например, в сериале Star Trek, нужно понимать одну простую вещь.Наш мир устроен таким образом, что, если мы хотим что-то узнать о чемугодно, то в мельчайших деталях мы всегда будем делать ошибки. Если мы,допустим, возьмем обычный атом, то одновременно измерить скоростьдвижения и позицию электронов в нем не удастся (это то, что называетсяпринципом неопределенности Гейзенберга). То есть нельзя представитьрезультат в виде последовательности нулей и единиц.

В квантовой механике, однако, уместно задать такой вопрос: даже еслирезультат нельзя записать, то, может быть, его все равно можнопереслать? Этот процесс пересылки информации за пределами точности,допустимой классическими измерениями, и называется квантовойтелепортацией.

Когда впервые появилась квантовая телепортация?

Юджин Ползик, Профессор института НильсаБора, Университет Копенгагена (Дания), член исполнительного комитетаРоссийского квантового центра

B 1993 году шесть физиков — Беннет, Броссар и другие — написали в Physical Review Letters статью (pdf), в которой и придумали замечательную терминологию для квантовойтелепортации. Замечательную еще и потому, что на публику этатерминология с тех пор оказывает исключительно положительное влияние. Вих работе протокол передачи квантовой информации был описан чистотеоретически.

В 1997 году была осуществлена первая квантовая телепортация фотонов(на самом деле экспериментов было два — группы Заиллингера и Де Mартини; Заиллингера просто больше цитируют). В работе они телепортировалиполяризацию фотонов — направление этой поляризации суть квантоваявеличина, то есть такая величина, которая принимает различные значения с разной вероятностью. Как оказалось, измерить эту величину нельзя, а вот телепортировать можно.

Тут надо вот что учесть: в экспериментах Заиллингера и Де Mартинителепортация была вероятностной, то есть работала с некоторойвероятностью успеха. Им удалось достичь вероятности не меньше 67 (2/3)процентов — то, что по-русски уместно назвать классическим пределом.

Телепортация, о которой идет речь, получила название вероятностной. В 1998 году мы в Калифорнийском технологическом институте сделали такназываемую детерминистскую телепортацию. У нас телепортировались фаза иамплитуда светового импульса. Они, как говорят физики, так же какскорость и местоположение электрона, являются «некоммутирующимипеременными», поэтому подчиняются уже упоминавшемуся принципуГейзенберга. То есть не допускают одновременное измерение.

Атом можно представить себе в виде маленького магнита. Направлениеэтого магнита и есть направление спина. Управлять ориентацией такого«магнита» можно с помощью магнитного поля и света. У фотонов — частицсвета — тоже есть спин, который еще называют поляризацией.

В чем разница между вероятностной и детерминистской телепортациями?

Чтобы ее объяснить, сперва надо чуть подробнее поговорить протелепортацию. Представьте, что в пунктах A и B расположены атомы, дляудобства — по одной штуке. Мы хотим телепортировать, скажем, спин атомаиз A в B, то есть привести атом в пункте B в такое же квантовоесостояние, что и атом A. Как я говорил уже, для этого одногоклассического канала связи недостаточно, поэтому потребуются два канала — один классический, другой квантовый. В качестве переносчика квантовойинформации у нас выступают кванты света.

Сначала мы пропускаем свет через атом B. Происходит процессзапутывания, в результате чего между светом и спином атомаустанавливается связь. Когда свет приходит в А, то можно считать, чтомежду двумя пунктами установился квантовый канал связи. Свет, проходячерез A, считывает информацию с атома и после этого свет ловитсядетекторами. Именно этот момент можно считать моментом передачиинформации по квантовому каналу.

Теперь остается передать результат измерений по классическому каналу в B, чтобы там, на основе этих данных, выполнили некоторые преобразования над спином атома (например, поменяли магнитное поле). В результате, вточке B атом получает спиновое состояние атома A. Телепортациязавершена.

В реальности, однако, фотоны, путешествуя по квантовому каналу,теряются (например, если этот канал — обычное оптоволокно). Главноеотличие между вероятностной и детерминистской телепортациями как раз изаключается в отношении к этим потерям. Вероятностной все равно, сколько там потерялось — если из миллиона фотонов хотя бы один дошел, то ужехорошо. В этом смысле, конечно, она больше подходит для пересылкифотонов на большие расстояния (в настоящее время рекорд составляет 143 километра — прим. «Ленты.ру»). Детерминистская же телепортация к потерям относится хуже — вообщеговоря, чем выше потери, тем хуже качество телепортации, то есть напринимающем конце провода получается не совсем исходное квантовоесостояние — но зато она работает каждый раз, когда, если сказать грубо,нажимаешь на кнопку.

Запутанное состояние света и атомов по сути представляет собойзапутанное состояние их спинов. Если спины, скажем, атома и фотоназапутаны, то измерения их параметров, как говорят физики, коррелируют.Это означает, что, например, если измерение спина фотона показало, чтоон направлен вверх, то спин атома будет направлен вниз; если спин фотона оказался направлен вправо, то спин атома будет направлен влево и такдалее. Фокус заключается в том, что до измерения ни у фотона, ни у атома определенного направления спина нет. Как получается, что, несмотря наэто, они коррелируют? Тут как раз и должна начать «кружиться голова отквантовой механики», как говорил Нильс Бор.

Юджин Ползик

И как у них различаются сферы применения?

Вероятностная, как я говорил, подходит для передачи данных на большие расстояния. Скажем, если в будущем мы захотим построить квантовыйинтернет, то нам потребуется именно телепортация такого типа. Чтокасается детерминистской, то она может быть полезна для телепортациикаких-нибудь процессов.

Тут сразу надо пояснить: сейчас такой прямо уж четкой границы междуэтими двумя видами телепортации нет. Например, в Российском квантовомцентре (и не только в нем), разрабатываются «гибридные» системыквантовых коммуникаций, где частично используется вероятностный, ачастично — детерминистский подходы.

В нашей же работе телепортация процесса была такой, знаете, стробоскопической — речь о непрерывной телепортации пока не идет.

То есть это дискретный процесс?

Да. На самом деле телепортация состояния, она, естественно, можетпроизойти только один раз. Одна из вещей, которые квантовая механиказапрещает, — это клонирование состояний. То есть если вы телепортировали что-то, то вы это уничтожили.

Расскажите о том, что удалось сделать вашей группе.

У нас был ансамбль атомов цезия, и телепортировали мы коллективный спинсистемы. Газ у нас находился под воздействием лазера и магнитного поля,поэтому спины атомов были ориентированы примерно одинаково.Неподготовленный читатель может это представлять себе так — нашколлектив есть большая магнитная стрелка.

У стрелки есть неопределенность направления (это и значит, что спиныориентированы «примерно» одинаково), та самая гейзенбергова. Измеритьнаправление этой неопределенности точнее невозможно, а воттелепортировать положение — вполне. Величина этой неопределенностисоставляет единицу на квадратный корень из числа атомов.

Тут важно сделать вот какое отступление. Моя любимая система — этогаз атомов при комнатной температуре. Проблема с этой системой такая:при комнатных температурах квантовые состояния быстро разваливаются. Унас же, однако, эти спиновые состояния живут очень долго. И удалосьэтого добиться благодаря сотрудничеству с учеными из Санкт-Петербурга.

Они разработали покрытия, которые по-научному называются алкеновыми.По сути это что-то очень похожее на парафин. Если напылить такоепокрытие на внутреннюю часть стеклянной ячейки с газом, то молекулы газа летают (со скоростью 200 метров в секунду) и сталкиваются со стенками,но ничего с их спином не происходит. Порядка миллиона столкновений онитак могут выдержать. У меня такое визуальное представление этогопроцесса: покрытие — это как целый лес лиан, очень больших, а спину длятого, чтобы испортиться, нужно свой спин кому-то передать. А там это все такое большое и связанное, что передавать некому, поэтому он тудазаходит, побарахтается и вылетает обратно, и ничего с ним не происходит. С этими покрытиями мы начали работать лет 10 назад. Сейчас ихусовершенствовали и доказали, что с ними можно работать и в квантовойобласти.

Так вот, вернемся к нашим атомам цезия. Они были при комнатнойтемпературе (это хорошо еще и потому, что алкеновые покрытия высокихтемператур не выдерживают, а чтобы получить газ, обычно надо что-тоиспарить, то есть нагреть).

Вы телепортировали спин на полметра. Такое небольшое расстояние — принципиальное ограничение?

Нет, конечно. Как я говорил, детерминистская телепортация не терпитпотерь, поэтому лазерные импульсы у нас шли по открытому пространству -если бы мы загоняли их обратно в оптоволокно, то неизменно были быкакие-то потери. Вообще говоря, если там футуризмом заниматься, товполне можно таким же лучом стрелять в спутник, который будетпереправлять сигнал куда надо.

Вы говорили, что в планах у вас непрерывная телепортация?

Да. Только тут непрерывность следует понимать в нескольких смыслах. С одной стороны у нас в работе 10 12 атомов, поэтому дискретность направления коллективного спина настолькокрошечная, что можно описывать спин непрерывными переменными. В этомсмысле и наша телепортация была непрерывной.

С другой стороны, если процесс меняется во времени, то можно говорить о его непрерывности во времени. Значит, я могу делать следующее. Уэтого процесса есть, допустим, какая-то временная постоянная — допустим, он происходит за миллисекунды, и вот я взял и разбил его намикросекунды, и «бум» после первой микросекунды телепортировал; потомпридется вернуть в начальное состояние.

Каждая такая телепортация, конечно, уничтожает телепортируемоесостояние, однако внешнее возбуждение, которое этот процесс вызывает,не трогает. Поэтому по сути мы телепортируем некий интеграл. Этотинтеграл мы можем «развернуть» и узнать что-то о внешних возбуждениях.Теоретическая работа, в которой все это предлагается, только что вышла в Physical Review Letters.

На самом деле такое телепортирование туда-сюда можно использовать для очень глубоких вещей. У меня здесь чего-то происходит, и здесь чего-топроисходит, и с помощью телепортационного канала я могу симулироватьвзаимодействие — как будто бы эти два спина, которые никогда между собой не взаимодействовали, в действительности взаимодействуют. То естьтакая квантовая симуляция.

А квантовая симуляция — это то, отчего все сейчас прыгают. Вместотого чтобы факторизовать миллионные цифры, можно просто симулировать.Вспомнить тот же D-wave.

Детерминистская телепортация может использоваться в квантовых компьютерах?

Может, но тогда необходимо будет телепортировать кубиты. Тут ужепотребуются всякие алгоритмы коррекции ошибок. А их сейчас тольконачинают разрабатывать.

teleporting) и чем оно отличается от популярной в научной фантастике «телепортации ».

Квантовая телепортация не передаёт энергию или вещество на расстояние.Фантастическое понятие телепортации происходит из специфичной интерпретации эксперимента: «исходное состояние частицы A после всего произошедшего разрушается. То есть состояние было не скопировано, а перенесено из одного места в другое».

Описание эксперимента

См. также

Примечания

  1. Bennett C. H. , Brassard G. , Crépeau C. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels // Phys. Rev. Lett. — American Physical Society , 1993. — Vol. 70, Iss. 13. — P. 1895–1899. — ISSN 0031-9007 ; 1079-7114 ; 1092-0145 — doi:10.1103/PHYSREVLETT.70.1895 — PMID:10053414
  2. Nature 390
  3. Phys.Rev.Lett. 80, 1121-1125 (1998) (arXiv :quant-ph/9710013)
  4. First quantum teleportation between light and matter (англ.) (5 October 2006). Архивировано 5 июня 2011 года.
  5. Физики впервые телепортировали ионы на метр. Lenta.ru (англ.) (26 January 2009).
  6. (англ.) (23 January 2009).
  7. Осуществлена квантовая телепортация на 16 километров. Compulenta.ru (рус.) (20 мая 2010).
  8. Experimental free-space quantum teleportation (англ.) (16 May 2010). Архивировано 22 августа 2011 года.
  9. Фотоны телепортировали на рекордное расстояние Lenta.ru (рус.) (12 мая 2012).(arXiv :quant-ph/1205.2024)
  10. Juan Yin et al.

А. ШИШЛОВА. По материалам журналов «Nature» и «Science news».

В тонких физических экспериментах удалось, кажется, сделать то, что самые смелые фантасты считали не более чем нереалистичной фантастикой: исследуя одну из связанных когда-то частиц, можно мгновенно (со сверхсветовой скоростью!) с любых расстояний получать информацию о состоянии другой частицы.

Герои научно-фантастических фильмов и романов давно освоили телепортацию — удобный способ мгновенного перемещения во времени и в пространстве. Что же касается реальной жизни, то здесь подобное продолжает оставаться лишь мечтой.

Тем не менее еще в 1935 году Альберт Эйнштейн совместно со своими коллегами Б. Подольским и Н. Розеном предложил эксперимент по телепортации если не вещества, то информации. Этот способ сверхсветовой связи получил название «Парадокс ЭПР».

Суть парадокса состоит в следующем. Есть две частицы, которые какое-то время взаимодействуют, образуя единую систему. С позиций квантовой механики эту связанную систему можно описать некоей волновой функцией. Когда взаимодействие прекращается и частицы разлетаются очень далеко, их по-прежнему будет описывать та же функция. Но состояние каждой отдельной частицы неизвестно в принципе: это вытекает из соотношения неопределенностей. И только когда одна из них попадает в приемник, регистрирующий ее параметры, у другой появляются (именно появляются, а не становятся известными!) соответствующие характеристики. То есть возможна мгновенная «пересылка» квантового состояния частицы на неограниченно большое расстояние. Телепортации самой частицы, передачи массы при этом не происходит.

Похожим образом ведет себя разорвавшийся на две части снаряд: если до взрыва он был неподвижен, суммарный импульс его осколков равен нулю. «Поймав» один осколок и измерив его импульс, можно мгновенно назвать величину импульса второго осколка, как бы далеко он ни улетел.

Сегодня по крайней мере две научные группы — австрийские исследователи из университета в Инсбруке и итальянские из университета «La Sapienza» в Риме — утверждают, что им удалось осуществить телепортацию характеристик фотона в лабораторных условиях.

Эксперименты в Инсбруке передавали «послания» в виде поляризации фотона ультрафиолетового излучения. Этот фотон взаимодействовал в оптическом смесителе с одним из пары связанных фотонов. Между ними в свою очередь возникала квантово-механическая связь, приводящая к поляризации новой пары. Таким образом экспериментаторы добились очень интересного результата: они научились связывать фотоны, не имеющие общего происхождения. Это открывает возможность для проведения целого класса принципиально новых экспериментов.

В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния «фотона-посланника» передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого необходимо точно знать, как установлены детекторы при измерении общей поляризации, и потребовалось тщательно синхронизовать их.

Вместо того чтобы использовать отдельный «фотон-посланник», итальянские исследователи предложили рассматривать одновременно две характеристики каждой связанной частицы: поляризацию и направление движения. Это позволяет теоретически описывать их как отдельные частицы и в то же самое время, проводя измерения только с первой частицей, получать характеристики второй, не трогая ее, — осуществлять телепортацию.

Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами — электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды.

После создания надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем (см. «Наука и жизнь» № 6, 1996 г.). Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий.

Группа ученых из Китайской академии наук провела спутниковый эксперимент по передаче квантовых состояний между парами запутанных фотонов (так называемая квантовая телепортация) на рекордное расстояние — более 1200 км.

Явление (или спутанности) возникает при взаимозависимости (коррелированности) состояний двух или большего числа частиц, которые можно разнести на сколь угодно далекие расстояния, но при этом они продолжают «чувствовать» друг друга. Измерение параметра одной частицы приводит к моментальному разрушению запутанного состояния другой, что сложно представить без понимания принципов квантовой механики, тем более что частицы (это было специально показано в экспериментах по нарушению так называемых неравенств Белла) не обладают никакими скрытыми параметрами, в которых бы сохранялась информация о состоянии «компаньона», и при этом мгновенное изменение состояния не приводит к нарушению принципа причинности и не позволяет передавать таким образом полезную информацию.

Для передачи реальной информации дополнительно необходимо участие частиц, движущихся со скоростью, не превышающей световую. В качестве запутанных частиц могут выступать, например, фотоны, имеющие общего прародителя, а в качестве зависимого параметра используется, скажем, их спин.

К передаче состояний запутанных частиц на все более дальние расстояния и в самых экстремальных условиях проявляют интерес не только ученые, занимающиеся фундаментальной физикой, но и инженеры, проектирующие защищенные коммуникации. Считается, что явление запутанности частиц в перспективе предоставит нам в принципе невзламываемые каналы связи. «Защитой» в этом случае послужит неизбежное уведомление участников разговора о том, что в их связь вмешался некто третий.

Свидетельством этому станут нерушимые законы физики — необратимый коллапс волновой функции.

Прототипы устройств для осуществления подобной защищенной квантовой связи уже созданы, однако возникают и идеи по компрометации работы всех этих «абсолютно защищенных каналов», например путем обратимых слабых квантовых измерений, поэтому до сих пор неясно, сможет ли квантовая криптография выйти из стадии испытания прототипов, не окажутся ли все разработки заранее обреченными и непригодными для практического применения.

Еще один момент: передача запутанных состояний осуществлялась до сих пор лишь на расстояния, не превышающие 100 км, из-за потерь фотонов в оптоволокне или в воздухе, поскольку вероятность того, что хотя бы часть фотонов доберется до детектора, становится исчезающе малой. Время от времени появляются сообщения об очередном достижении на этом пути, но охватить подобной связью весь земной шар пока не представляется возможным.

Так, в начале этого месяца канадские физики объявили об успешных попытках связаться по защищенному квантовому каналу с самолетом, но он находился лишь в 3-10 км от передатчика.

Одним из способов кардинального улучшения распространения сигнала признан так называемый протокол квантовых повторителей, но и его практическая ценность остается под вопросом из-за необходимости решения целого ряда сложных технических моментов.

Другой подход как раз и заключается в использовании спутниковых технологий, поскольку спутник может оставаться в прямой видимости одновременно для разных весьма отдаленных мест на Земле. Основным преимуществом такого подхода может быть то, что большая часть пути прохождения фотонов окажется практически в вакууме с почти нулевым поглощением и исключением декогеренции (нарушение когерентности, обусловленное взаимодействием частиц с окружающей средой).

Чтобы продемонстрировать целесообразность спутниковых экспериментов, китайские специалисты проводили предварительные наземные испытания, которые продемонстрировали успешное двунаправленное распространение запутанных пар фотонов через открытую среду на расстояния 600 м, 13 и 102 км с эффективной потерей канала 80 дБ. Были также проведены эксперименты по передаче квантовых состояний на движущихся платформах в условиях высоких потерь и турбулентности.

После подробных технико-экономических обоснований при участии австрийских ученых был разработан спутник стоимостью $100 млн, запущенный 16 августа 2016 года с космодрома Цзюцюань в пустыне Гоби с помощью ракеты-носителя «Чанчжэн-2D» на орбиту высотой 500 км.

Спутник получил наименование «Мо-цзы» в честь древнекитайского философа V века до н.э., основателя моизма (учение о всеобщей любви и государственном консеквенциализме). На протяжении нескольких столетий в Китае моизм успешно конкурировал с конфуцианством, пока последний не был принят в качестве государственной идеологии.

Поддержку миссии «Мо-цзы» обеспечивают три наземные станции: в Дэлинхе (провинция Цинхай), Наньшань в Урумчи (Синьцзян) и обсерватория GaoMeiGu (GMG) в Лицзяне (провинция Юньнань). Расстояние между Дэлинхе и Лицзянем составляет 1203 км. Расстояние между орбитальным спутником и этими наземными станциями колеблется в пределах 500-2000 км.

Из-за того что запутанные фотоны не могут быть просто «усилены», как классические сигналы, необходимо было разработать новые методы для уменьшения затухания в каналах передачи между Землей и спутниками. Чтобы добиться нужной эффективности связи, потребовалось достичь одновременно и минимальной расходимости пучков, и высокоскоростного и высокоточного наведения на детекторы.

Разработав ультраяркий космический источник двухфотонных запутываний и высокоточную технологию APT (acquiring, pointing, and tracking), группа установила «квантовое сцепление» между парами фотонов, разделенных 1203 км, ученые провели так называемое тестирование Белла для проверки нарушений локальности (возможность мгновенно повлиять на состояние удаленной частицы) и получили результат со статистической значимостью четыре сигма (среднеквадратических отклонения).

Схема источника фотонов на спутнике. Толщина кристалла KTiOPO4 (PPKTP) составляет 15 мм. Пара внеосевых вогнутых зеркал фокусирует лазер накачки (PL) в центре кристалла PPKTP. На выходе интерферометра Саньяка используются два дихроматических зеркала (DM) и фильтры для отделения сигнальных фотонов от лазера накачки. Два дополнительных зеркала (PI), дистанционно управляемые с Земли, используются для точной регулировки направления луча для оптимальной эффективности сбора пучка. QWP — четвертьволновая фазовая секция; HWP — полуволновая фазовая секция; PBS — поляризационный светоделитель.

По сравнению с предыдущими методами с использованием самых распространенных коммерческих образцов телекоммуникационного оптоволокна эффективность спутникового соединения оказалась на много порядков выше, что, по мнению авторов исследования, открывает ему путь к практическим применениям, ранее недоступным на Земле.

От admin