Понятие параллелограмма
Определение 1
Параллелограмм — это четырехугольник, в котором противоположные стороны параллельны между собой (рис. 1).
Рисунок 1.
Параллелограмм имеет два основных свойства. Рассмотрим их без доказательства.
Свойство 1: Противоположные стороны и углы параллелограмма равны, соответственно, между собой.
Свойство 2: Диагонали, проведенные в параллелограмме, делятся пополам их точкой пересечения.
Признаки параллелограмма
Рассмотрим три признака параллелограмма и представим их в виде теорем.
Теорема 1
Если две стороны четырехугольника равны между собой, а также параллельны, то этот четырехугольник будет параллелограммом.
Доказательство.
Пусть нам дан четырехугольник $ABCD$. В котором $AB||CD$ и $AB=CD$ Проведем в нем диагональ $AC$ (рис. 2).

Рисунок 2.
Рассмотрим параллельные прямые $AB$ и $CD$ и их секущую $AC$. Тогда
[angle CAB=angle DCA]
как накрест лежащие углы.
По $I$ признаку равенства треугольников,
так как $AC$ — их общая сторона, а $AB=CD$ по условию. Значит
[angle DAC=angle ACB]
Рассмотрим прямые $AD$ и $CB$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AD||CB$.}Следовательно, по определению $1$, данный четырехугольник является параллелограммом.
Теорема доказана.
Теорема 2
Если противоположные стороны четырехугольника равны между собой, то он является параллелограммом.
Доказательство.
Пусть нам дан четырехугольник $ABCD$. В котором $AD=BC$ и $AB=CD$. Проведем в нем диагональ $AC$ (рис. 3).

Рисунок 3.
Так как $AD=BC$, $AB=CD$, а $AC$ — общая сторона, то по $III$ признаку равенства треугольников,
[triangle DAC=triangle ACB]
[angle DAC=angle ACB]
Рассмотрим прямые $AD$ и $CB$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AD||CB$.Следовательно, по определению $1$, данный четырехугольник является параллелограммом.
[angle DCA=angle CAB]
Рассмотрим прямые $AB$ и $CD$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AB||CD$.Следовательно, по определению 1, данный четырехугольник является параллелограммом.
Теорема доказана.
Теорема 3
Если диагонали, проведенные в четырехугольнике, своей точкой пересечения делятся на две равные части, то этот четырехугольник является параллелограммом.
Доказательство.
Пусть нам дан четырехугольник $ABCD$. Проведем в нем диагонали $AC$ и $BD$. Пусть они пересекаются в точке $O$ (рис. 4).

Рисунок 4.
Так как, по условию $BO=OD, AO=OC$, а углы $angle COB=angle DOA$ как вертикальные, то, по $I$ признаку равенства треугольников,
[triangle BOC=triangle AOD]
[angle DBC=angle BDA]
Рассмотрим прямые $BC$ и $AD$ и их секущую $BD$, по последнему равенству накрест лежащих углов получим, что $BC||AD$. Также $BC=AD$. Следовательно, по теореме $1$, данный четырехугольник является параллелограммом.
Муниципальное бюджетное общеобразовательное учреждение
Савинская средняя общеобразовательная школа
Параллелограмм и его новые свойства
Выполнила: ученица 8Б класса
МБОУ Савинская СОШ
Кузнецова Светлана,14 лет
Руководитель: учитель математики
Тульчевская Н.А.
п. Савино
Ивановская область, Россия
2016г.
I. Введение __________________________________________________стр 3
II. Из истории параллелограмма ___________________________________стр 4
III Дополнительные свойства параллелограмма ______________________стр 4
IV. Доказательство свойств _____________________________________ стр 5
V. Решение задач с использованием дополнительных свойств __________стр 8
VI. Применение свойств параллелограмма в жизни ___________________стр 11
VII. Заключение _________________________________________________стр 12
VIII. Литература _________________________________________________стр 13
Введение
«Среди равных умов
при одинаковости прочих условий
превосходит тот, кто знает геометрию»
(Блез Паскаль).
Во время изучения темы «Параллелограмм» на уроках геометрии мы рассмотрели два свойства параллелограмма и три признака, но когда мы начали решать задачи, то оказалось, что этого недостаточно.
У меня возник вопрос, а есть ли у параллелограмма еще свойства, и как они помогут при решении задач.
И я решила изучить дополнительные свойства параллелограмма и показать, как их можно применить для решения задач.
Предмет исследования: параллелограмм
Объект исследования: свойства параллелограммаЦель работы:
формулировка и доказательство дополнительных свойств параллелограмма, которые не изучаются в школе;
применение этих свойств для решения задач.
Задачи:
Изучить историю возникновения параллелограмма и историю развития его свойств;
Найти дополнительную литературу по исследуемому вопросу;
Изучить дополнительные свойства параллелограмма и доказать их;
Показать применение этих свойств для решения задач;
Рассмотреть применение свойств параллелограмма в жизни.Методы исследования:
Работа с учебной и научно – популярной литературой, ресурсами сети Интернет;
Изучение теоретического материала;
Выделение круга задач, которые можно решать с использованием дополнительных свойств параллелограмма;
Наблюдение, сравнение, анализ, аналогия.
Продолжительность исследования: 3 месяца: январь-март 2016г
-
Из истории параллелограмма
В учебнике геометрии мы читаем следующее определение параллелограмма: параллелограмм – это такой четырехугольник, у которого противоположные стороны попарно параллельны
Слово «параллелограмм» переводится как «параллельные линии» (от греческих слов Parallelos — параллельный и gramme — линия), этот термин был введен Евклидом. В своей книге «Начала» Евклид доказал следующие свойства параллелограмма: противоположные стороны и углы параллелограмма равны, а диагональ делит его пополам. О точке пересечения параллелограмма Евклид не упоминает. Только к концу средних веков была разработана полная теория параллелограммов И лишь в XVII веке в учебниках появились теоремы о параллелограммах, которые доказываются с помощью теоремы Евклида о свойствах параллелограмма.
III Дополнительные свойства параллелограмма
В учебнике по геометрии даны только 2 свойства параллелограмма:
Противоположные углы и стороны равны
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
В различных источниках по геометрии можно встретить следующие дополнительные свойства:
Сумма соседних углов параллелограмма равна 180 0
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник;
Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых;
Биссектрисы соседних углов параллелограмма пересекаются под прямым углом;
Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник;
Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.
Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.
Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.
IVДоказательство свойств параллелограмма
Сумма соседних углов параллелограмма равна 180 0
Дано:
ABCD – параллелограмм
Доказать:
A +
B = 
Доказательство:
А и
B –внутренние односторонние углы при параллельных прямых ВС
АD и секущей АВ, значит,
A +
B = 
2
Дано: АBCD —параллелограмм,
АК -биссектриса
А.
Доказать:
АВК – равнобедренный
Доказательство:
1)
1=
3 (накрест лежащие при ВС
AD и секущей AK),
2)
2=
3 т. к. АК – биссектриса,
значит 1=
2.
3)
АВК – равнобедренный т. к. 2 угла треугольника равны
. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник
3
Дано: АВСD – параллелограмм,
АК – биссектриса A,
СР — биссектриса C.
Доказать: АК ║ СР
Доказательство:
1) 1=2 т. к. АК-биссектриса
2) 4=5 т.к. СР – биссектриса
3) 3=1 (накрест лежащие углы при
ВС ║ АD и АК-секущей),
4) A=C (по свойству параллелограмма), значит2=3=4=5.
4) Из п. 3 и 4 следует, что 1=4, а эти углы соответственные при прямых АК и СР и секущей ВС,
значит, АК ║ СР (по признаку параллельности прямых)
. Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых

Биссектрисы соседних углов параллелограмма пересекаются под прямым углом

Дано: АВСD — параллелограмм,
АК-биссектриса A,
DР-биссектриса D
Доказать: DР
АК.
Доказательство:
1) 1=2, т.к. АК — биссектриса
Пусть, 1=2=x, тогда А=2x,
2) 3=4, т.к. DР – биссектриса
Пусть, 3=4= у, тогда D=2y
3) A+D=180 0 , т.к. сумма соседних углов параллелограмма равна 180
2) Рассмотрим
AОD
1+3=90 0 , тогда 
5. Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник

Дано: АВСD — параллелограмм, АК-биссектриса A,
DР-биссектриса D,
CM -биссектриса C,
BF -биссектриса B.
Доказать: KRNS-прямоугольник
Доказательство:
Исходя из предыдущего свойства 8=7=6=5=90 0 ,
значит KRNS-прямоугольник.
Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.

Дано: ABCD-параллелограмм, АС-диагональ.
ВК
АС, DP
AC
Доказать: BК=DР
Доказательство: 1)DCР=КAB, как внутренние накрест лежащие при АВ ║ СD и секущей АС.
2)
AКB=
CDР (по стороне и двум прилежащим к ней углам АВ=СD CDР=ABК).
А в равных треугольниках соответственные стороны равны, значит DР=BК.
Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.
Дано: ABCD-параллелограмм.
Доказать: ВКDР – параллелограмм.
Доказательство:
1) BР=КD (AD=BC, точки К и Р
делят эти стороны пополам)
2) ВР ║ КD (лежат на АD
BC)
Если в четырехугольнике противоположные стороны равны и параллельны, значит, этот четырехугольник -параллелограмм.

Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.

Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.
Дано: ABCD – параллелограмм. BD и AC — диагонали.
Доказать: АС 2 +ВD 2 =2(AB 2 + AD 2 )
Доказательство: 1)
АСК:AC²=
+
2)BРD:BD 2 =BР 2 + РD 2 (по теореме Пифагора)
3)AC²+BD²=СК²+AК²+BР²+РD²
4) СК = ВР = Н(высота)
5) АС 2 +ВD 2 =H 2 +AК 2 +H 2 +РD 2
6)ПустьDК=AР=х, тогда
CКD:H 2 =CD 2 – х 2 по теореме Пифагора)
7) АС²+ВD² = СD 2 — х²+ АК 1 ²+CD 2 -х 2 +РD 2 ,
АС²+ВD²=2СD 2 -2х 2 +AК 2 +РD 2
8) AК=AD+х,РD=AD-х,
АС²+ВD² =2CD 2 -2х 2 +(AD+х) 2 +(AD-х) 2 ,
АС²+ВD²=2СD²-2х² +AD 2 +2ADх+х 2 +AD 2 -2ADх+х 2 ,АС²+ВD²=2CD 2 +2AD 2 =2(CD 2 +AD 2 ).

V. Решение задач с использованием этих свойств
Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5 . Найдите его большую сторону.
Дано: ABCD – параллелограмм,
АК – биссектриса
А,
DК – биссектриса
D, АВ=5
Найти: ВС
ешение
Решение
Т.к. АК — биссектриса
А, то АВК – равнобедренный.
Т.к. DК – биссектриса
D, то
DCK- равнобедренный
DC=CК= 5
Тогда, ВС=ВК+СК=5+5 = 10
Ответ: 10
2. Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см.

1 случай
Дано:
А,
ВК=14 см, КС=7 см
Найти: Р параллелограмма
Решение
ВС=ВК+КС=14+7=21 (см)
Т.к. АК – биссектриса
А, то АВК – равнобедренный.
АВ=ВК= 14 см
Тогда Р=2 (14+21) =70 (см)
случай
Дано:ABCD – параллелограмм,
DК – биссектриса
D,
ВК=14 см, КС=7 см
Найти: Р параллелограмма
Решение
ВС=ВК+КС=14+7=21 (см)
Т.к. DК – биссектриса
D, то
DCK- равнобедренный
DC=CК= 7
Тогда, Р= 2 (21+7) = 56 (см)
Ответ: 70см или 56 см
3.Стороны параллелограмма равны 10 см и 3 см. Биссектрисы двух углов, прилежащих к большей стороне, делят противоположную сторону на три отрезка. Найдите эти отрезки.
1 случай: биссектрисы пересекаются вне параллелограмма

Дано:ABCD – параллелограмм, АК – биссектриса
А,
DК – биссектриса
D, АВ=3 см, ВС=10 см
Найти: ВМ, МN, NC
Решение
Т.к. АМ — биссектриса
А, то АВМ – равнобедренный.
Т.к. DN – биссектриса
D, то
DCN- равнобедренный
DC=CN= 3
Тогда, МN= 10 – (BM+NC) = 10 – (3+3)=4 см
2 случай:биссектрисы пересекаются внутри параллелограмма

Т.к. АN — биссектриса
А, то АВN – равнобедренный.
АВ=ВN= 3 D
А раздвижную решетку – отодвигать на необходимое расстояние в дверном проеме
Параллелограммный механизм — четырёхзвенный механизм, звенья которого составляют параллелограмм. Применяется для реализации поступательного движения шарнирными механизмами.
Параллелограмм с неподвижным звеном — одно звено неподвижно, противоположное совершает качательное движение, оставаясь параллельным неподвижному. Два параллелограмма, соединённых друг за другом, дают конечному звену две степени свободы, оставляя его параллельным неподвижному.
Примеры: стеклоочистители автобусов, погрузчики, штативы, подвесы, автомобильные подвески.
Параллелограмм с неподвижным шарниром — используется свойство параллелограмма сохранять постоянное соотношение расстояний между тремя точками. Пример: чертёжный пантограф — прибор для масштабирования чертежей.
Ромб — все звенья одинаковой длины, приближение (стягивание) пары противоположных шарниров приводит к раздвиганию двух других шарниров. Все звенья работают на сжатие.
Примеры — автомобильный ромбовидный домкрат, трамвайный пантограф.
Ножничный или X-образный механизм, также известный как Нюрнбергские ножницы — вариант ромба — два звена, соединённые посередине шарниром. Достоинства механизма — компактность и простота, недостаток — наличие двух пар скольжения. Два (и более) таких механизма, соединённые последовательно, образуют в середине ромб(ы). Применяется в подъёмниках, детских игрушках.
VII Заключение
Кто с детских лет занимается математикой,
тот развивает внимание, тренирует свой мозг,
свою волю, воспитывает в себе настойчивость
и упорство в достижении цели
А. Маркушевич
В ходе работы я доказала дополнительные свойства параллелограмма.
Я убедилась, что применяя эти свойства, можно решать задачи быстрее.
Я показала, как применяются эти свойства на примерах решения конкретных задач.
Я узнала много нового о параллелограмме, чего нет в нашем учебнике геометрии
Я убедилась в том, что знания геометрии очень важны в жизни на примерах применения свойств параллелограмма.
Цель моей исследовательской работы выполнена.
О том, насколько важны математические знания, говорит тот факт, что была учреждена премия тому, кто издаст книгу о человеке, который всю жизнь прожил без помощи математики. Эту премию до сих пор не получил ни один человек.
VIII Литература
-
ПогореловА.В. Геометрия 7-9: учебник для общеобразоват. учреждений-М.: Просвещение, 2014г
Л.С.Атанасян и др. Геометрия. Доп. Главы к учебнику 8 кл.: учеб. пособие для учащихся школ и классов с углубл. изуч.математики. – М.: Вита-пресс, 2003
Ресурсы сети Интернет
материалы Википедии
Тема урока
- Свойство диагоналей параллелограмма.
Цели урока
- Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
- Сформулировать и доказать свойство диагоналей параллелограмма.
- Научиться применять свойства фигур при решении задач.
- Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
- Воспитательные — посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.
Задачи урока
- Проверить умение учащихся решать задачи.
План урока
- Вступительное слово.
- Повторение ранее изученного материала.
- Параллелограмм, его свойства и признаки.
- Примеры задач.
- Самостоятельная проверка.
Введение
«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия».

Свойство противолежащих сторон параллелограмма
У параллелограмма противолежащие стороны равны.
Доказательство.
Пусть ABCD – данный параллелограмм. И пусть его диагонали пересекаются в точке O.Так как Δ AOB = Δ COD по первому признаку равенства треугольников (∠ AOB = ∠ COD, как вертикальные, AO=OC, DO=OB, по свойству диагоналей параллелограмма), то AB=CD. Точно также из равенства треугольников ВОС и DOA, следует что BC=DA. Теорема доказана.
Свойство противолежащих углов параллелограмма
У параллелограмма противолежащие углы равны.
Доказательство.Пусть ABCD – данный параллелограмм . И пусть его диагонали пересекаются в точке O.Из доказанного в теореме о свойства противолежащих сторон параллелограмма Δ ABC = Δ CDA по трем сторонам (AB=CD, BC=DA из доказанного, AC – общая). Из равенства треугольников следует, что ∠ ABC = ∠ CDA.Так же доказывается, что ∠ DAB = ∠ BCD, которое следует из ∠ ABD = ∠ CDB. Теорема доказана.
Свойство диагоналей параллелограмма
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Доказательство.
Пусть ABCD – данный параллелограмм. Проведем диагональ AC. Отметим на ней середину O. На продолжении отрезка DO отложим отрезок OB 1 , равный DO.По предыдущей теореме AB 1 CD – параллелограмм. Поэтому, прямая AB 1 параллельна DC. Но через точку A можно провести только одну прямую, параллельную DC. Значит, прямая AB 1 совпадает с прямой AB.Также доказывается, что BC 1 совпадает с BC. Значит, точка С совпадает с С 1 . параллелограмм ABCD совпадает с параллелограммом AB 1 CD. Следовательно, диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. Теорема доказана.
В учебниках для обычных школ (например, в Погорелове) доказывается она так: диагонали делят параллелограмм на 4 треугольника. Рассмотрим одну пару и выясним — они равны: основания у них — противоположные стороны, прилежащие к нему соответствующие углы равны как вертикальные при параллельных прямых. То есть отрезки диагоналей попарно равны. Всё.
Всё ли?Выше доказано, что точка пересечения делит диагонали пополам — если существует. Само её существование приведённое рассуждение не доказывает ни в коей мере. То есть часть теоремы «диагонали параллелограмма пересекаются» остаётся недоказанной.
Забавно, что доказать эту часть намного сложнее. Следует это, кстати, из более общего результата: у любого выпуклого четырёхугольника диагонали будут пересекаться, у любого невыпуклого — не будут.
О равенстве треугольников по стороне и двум прилежащим к ней углам (второй признак равенства треугольников) и другие.
Теореме о равенстве двух треугольников по стороне и двум прилежащим к ней углам Фалес нашел важное практическое применение. В гавани Милета был построен дальномер, определяющий расстояние до корабля в море. Он представлял собой три вбитых колышка А, В и С (АВ = ВС) и размеченную прямую СК, перпендикулярную.СА. При появлении корабля на прямой СК находили точку D такую, чтобы точки D, .В и Е оказывались на одной прямой. Как ясно из чертежа, расстояние CD на земле является искомым расстоянием до корабля.

Вопросы
- Диагонали квадрата точкой пересечения делятся пополам?
- Диагонали параллелограмма равны?
- Противолежащие углы параллелограмма равны?
- Сформулируйте определение параллелограмма?
- Сколько признаков параллелограмма?
- Может ли ромб быть параллелограмом?
Список использованных источников
- Кузнецов А. В., учитель математики (5-9 класс), г. Киев
- «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
- Мазур К. И. «Решение основных конкурсных задач по математике сборника под редакцией М. И. Сканави»
- Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина «Геометрия, 7 – 9: учебник для общеобразовательных учреждений»
Над уроком работали
Кузнецов А. В.
Потурнак С.А.
Евгений Петров
Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.
Предмети > Математика > Математика 8 класс
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!
Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.
Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.
Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.
Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.
Как в евклидовой геометрии точка и прямая — главные элементы теории плоскостей, так и параллелограмм является одной из ключевых фигур выпуклых четырехугольников. Из него, как нитки из клубка, втекают понятия «прямоугольника», «квадрата», «ромба» и других геометрических величин.
Вконтакте
Определение параллелограмма
Выпуклый четырехугольник, состоящий из отрезков, каждая пара из которых параллельна, известен в геометрии как параллелограмм.
Как выглядит классический параллелограмм изображает четырехугольник ABCD. Стороны называются основаниями (AB, BC, CD и AD), перпендикуляр, проведенный из любой вершины на противоположную этой вершине сторону, — высотой (BE и BF), линии AC и BD — диагоналями.
Внимание! Квадрат, ромб и прямоугольник — это частные случаи параллелограмма.
Стороны и углы: особенности соотношения
Ключевые свойства, по большому счету, предопределены самим обозначением, их доказывает теорема. Эти характеристики следующие:
- Стороны, которые являются противоположными, — попарно одинаковые.
- Углы, расположенные противоположно друг другу — попарно равны.
Доказательство: рассмотрим ∆ABC и ∆ADC, которые получаются вследствие разделения четырехугольника ABCD прямой AC. ∠BCA=∠CAD и ∠BAC=∠ACD, поскольку AC для них общая (вертикальные углы для BC||AD и AB||CD, соответственно). Из этого следует: ∆ABC = ∆ADC (второй признак равенства треугольников).
Отрезки AB и BC в ∆ABC попарно соответствуют линиям CD и AD в ∆ADC, что означает их тождество: AB = CD, BC = AD. Таким образом, ∠B соответствует ∠D и они равны. Так как ∠A=∠BAC+∠CAD, ∠C=∠BCA+∠ACD, которые так же попарно одинаковые, то ∠A = ∠C. Свойство доказано.
Характеристики диагоналей фигуры
Основной признакэтих линий параллелограмма: точка пересечения разделяет их пополам.
Доказательство: пусть т. Е — это точка пересечения диагоналей AC и BD фигуры ABCD. Они образуют два соизмеримых треугольника — ∆ABE и ∆CDE.
AB=CD, так как они противоположные. Согласно прямых и секущей, ∠ABE = ∠CDE и ∠BAE = ∠DCE.
По второму признаку равенства ∆ABE = ∆CDE. Это означает, что элементы ∆ABE и ∆CDE: AE = CE, BE = DE и при этом они соразмерные части AC и BD. Свойство доказано.
Особенности смежных углов
У смежных сторон сумма углов равна 180°, поскольку они лежат по одну сторону параллельных линий и секущей. Для четырехугольника ABCD:
∠A+∠B=∠C+∠D=∠A+∠D=∠B+∠C=180º
Свойства биссектрисы:
- , опущенные на одну сторону, являются перпендикулярными;
- противолежащие вершины имеют параллельные биссектрисы;
- треугольник, полученный проведением биссектрисы, будет равнобедренным.
Определение характерных черт параллелограмма по теореме
Признаки этой фигуры вытекают из ее основной теоремы, которая гласит следующее: четырехугольник считается параллелограммомв том случае, если его диагонали пересекаются, а эта точка разделяет их на равные отрезки.
Доказательство: пусть в т. Е прямые AC и BD четырехугольника ABCD пересекаются. Так как ∠AED = ∠BEC, а AE+CE=AC BE+DE=BD, то ∆AED = ∆BEC (по первому признаку равенства треугольников). То есть ∠EAD = ∠ECB. Они также являются внутренними перекрестными углами секущей AC для прямых AD и BC. Таким образом, по определению параллельности — AD || BC. Аналогичное свойство линий BC и CD выводится также. Теорема доказана.
Вычисление площади фигуры
Площадь этой фигуры находится несколькими методами,одним из самых простых: умножения высоты и основания, к которому она проведена.
Доказательство: проведем перпендикуляры BE и CF из вершин B и C. ∆ABE и ∆DCF — равные, поскольку AB = CD и BE = CF. ABCD — равновеликий с прямоугольником EBCF, так как они состоят и соразмерных фигур: S ABE и S EBCD , а также S DCF и S EBCD . Из этого следует, что площадь этой геометрической фигуры находится так же как и прямоугольника:
S ABCD = S EBCF = BE×BC=BE×AD.
Для определения общей формулы площади параллелограмма обозначим высоту как hb, а сторону — b. Соответственно:

Другие способы нахождения площади
Вычисления площади через стороны параллелограмма и угол, который они образуют, — второй известный метод.
,
Sпр-ма — площадь;
a и b — его стороны
α — угол между отрезками a и b.
Этот способ практически основывается на первом, но в случае, если неизвестна. всегда отрезает прямоугольный треугольник, параметры которого находятся тригонометрическими тождествами, то есть . Преобразуя соотношение, получаем . В уравнении первого способа заменяем высоту этим произведением и получаем доказательство справедливости этой формулы.
Через диагонали параллелограмма и угол, который они создают при пересечении, также можно найти площадь.
Доказательство: AC и BD пересекаясь, образуют четыре треугольника: ABE, BEC, CDE и AED. Их сумма равна площади этого четырехугольника.
Площадь каждого из этих ∆ можно найти за выражением , где a=BE, b=AE, ∠γ =∠AEB. Поскольку , то в расчетах используется единое значение синуса. То есть . Поскольку AE+CE=AC= d 1 и BE+DE=BD= d 2 , формула площади сводится до:
.
Применение в векторной алгебре
Особенности составляющих частей этого четырехугольника нашли применение в векторной алгебре, а именно: сложении двух векторов. Правило параллелограмма утверждает, что если заданные векторы и не коллинеарны, то их сумма будет равна диагонали этой фигуры, основания которой соответствуют этим векторам.
Доказательство: из произвольно выбранного начала — т. о. — строим векторы и . Далее строим параллелограмм ОАСВ, где отрезки OA и OB — стороны. Таким образом, ОС лежит на векторе или сумме .

Формулы для вычисления параметров параллелограмма
Тождества приведены при следующих условиях:
- a и b, α — стороны и угол между ними;
- d 1 и d 2 , γ — диагонали и в точке их пересечения;
- h a и h b — высоты, опущенные на стороны a и b;
ПараметрФормулаНахождение сторонпо диагоналям и косинусу угла между ними ![]()
![]()
по диагоналям и стороне ![]()
![]()
через высоту и противоположную вершинуНахождение длины диагоналейпо сторонам и величине вершины между ними
