Почему светодиодная лампа светится при выключенном выключателе? Лампа загорается в стакане с водой. Новейшие светодиодные лампы работающие на соли и воде. Всё что вам нужно знать Светодиодная лампа в рюмке с водой
Японская компания Hitachi Maxell разработала лампу-фонарь, которая вместо батареек использует для работы соленую воду. Новинка под названием Mizusion может здорово выручить в чрезвычайной ситуации или при внезапном отключении электропитания.
Как это работает
Чтобы заставить Mizusion работать, совсем не обязательно искать ближайший выход к морю - достаточно положить несколько ложек соли в специальный резервуар и залить их водой. Но это еще не все. Нужны сменные картриджи из магниевого сплава. Они выступают как анод, а положительно заряженный электрод получается за счет кислорода в атмосфере. В результат система генерирует электричество.
Mizusion обеспечивает световой поток в 2000 люкс, одного картриджа хватит на 80 часов непрерывной работы, но может понадобиться несколько раз сменить воду. Лампа будет работать, даже простояв 10 лет в шкафу. Ее можно добавить в набор для выживания при стихийном бедствии, которые собирают предусмотрительные японцы.
Сколько это стоит?
В Японии Mizusion можно купить примерно за $26 без учета налога, а металлические картриджи обойдутся в $9 за штуку. Стивен Хокинг мог
В Дубае была представлена инновационная энергосберегающая лампочка , которая загорается, если положить её цоколь в стакан с водой или даже взять в рот. Ну а попасть на полки магазинов ОАЭ она собирается уже в конце этого месяца.
По словам её создателя, 31-летнего д-ра Нобля Инасу, высокоэффективная лампа Flamber (потребляемая мощность 9 Вт), сделана из 18-ти LED-светодиодов со световым потоком в 900 Люмен и будет продаваться по цене в $16 за штуку во всех супермаркетах страны, начиная с 21-го июня.
Как заявляет производитель, примечательной особенностью этой универсальной лампы также является возможность автономной работы до 25-ти часов без питания. Это обеспечивается встроенной литий-ионной батареей на 2000 мА.
Дополнительным ее достоинством является инновационное решение, позволяющее зажигать LED-лампу от контакта с влагой, которое может изменить принцип освещения домов в Африке, в сельских местностях Индии и других регионах с отсутствием централизованных сетей, а также усовершенствует работу по оказанию помощи в зонах бедствий.
Автономный источник освещения
«В таких ситуациях, как те, что недавно случились в Непале, это может быть удивительно удобным для тех, кто работает в экстремальных условиях, зачастую без электричества», - добавил д-р Инасу, некогда обучавшийся в Лондоне специалист по внутренней медицине, который на данный момент возглавляет отдел исследования и разработки в Britelite, создателей ультраэффективной LED лампочки.
«Нам кажется, что мы первые, кто придумал подобное аварийное освещение такого масштаба. Самое лучшее в данном подходе то, что эта лампочка может также служить для освещения кемпинга, выступать в роли инвертора и, конечно же, быть стандартной LED лампочкой для домов», - говорит д-р Инасу из Кералы, Индия, который родился и вырос в ОАЭ.
«Если обратить внимание на затраты по установке, то они составляют чуть более $1 в год. В свою очередь, затраты на электроэнергию ещё меньше – они уменьшаются практически до десятой части того, что связано с обычным освещением. За ту же цену показатель стоимости и 1 Вт потребляемой энергии гораздо меньше, чем у большинства конкурентов на рынке», - отмечает создатель продукта.
По его словам, Flamber, которая, по-видимому, получила своё название от сочетания слов flame (пламя) и amber (янтарь), является наиболее рентабельной в долгосрочной перспективе.
«Янтарь горит действительно долго, что символично, так как наши лампочки гарантированно прослужат до 12-ти лет, - добавляет Инасу. - Наша светодиодная лампочка заряжается полностью за три часа, после чего может предоставить от трех до четырех ночей непрерывного света. В Индии и других странах, где перебои с подачей электроэнергии стандартное явление, это может быть просто большим благословением».
Компания уже подала заявление на международный патент на дизайн и технологию изготовления LED-лампы со встроенным аккумулятором. Остаётся только ждать, когда Flamber «перевернет наше представление» об освещении.
Лампа на соленой воде
Проектировщик: Siyu Huang и Jiahui Song
Лампа “Ясный Свет” использует соленую воду чтобы проводить электричество и заставлять лампу работать. По сути, соленая вода заменяет обычные провода, чтобы уменьшить потерю в энергии. Лампа оснащена голосовым выключателем и металлической пластинной на которой размещены основные элементы управления.
Это ручной фонарь, которому не требуется топливо.
Его разработали Рафаэль и Айса Миджено – близнецы.
Предпосылкой к изобретению стали проблемы в общинах Гринпис, где работала Айса. Здесь нет электричества и газа, керосин для ламп купить невозможно из-за перебоев с транспортом. Зато соленая вода – это то, что есть повсюду и недорого стоит.
Лампа может работать 8 часов на стакане воды и двух чайных ложках соли. Два различных типа металла погружены в соленую воду. Они сбрасывают избыточные электроны, которые затем путешествуют из одного металла в другой через провод, производя электроэнергию, питающую светодиоды. Лампа абсолютно пожаробезопасна. В ней предусмотрен даже USB-порт для зарядки смартфонов.
Изобретатели предлагают применить тот же принцип и для уличных фонарей, используя морскую воду.
В будущем, возможно, появятся электростанции, работающие по этому принципе.
Несмотря на то, что стержни в лампе потребуется менять раз в 2 года, это очень экономичный выход для жителей Филиппин.
Брат и сестра мечтают в дальнейшем построить большой генератор на соленой воде, способный питать целый дом. А пока они готовятся к запуску серийного производства своей лампы, в этом им помогают инвесторы и гранты от таких организаций, как USAID.
Вопрос с поиском альтернативных источников энергии особо остро стоит в развивающихся странах, ведь они стеснены в материальных средствах и не имеют особо развитой инфраструктуры подачи электроэнергии, особенно экологически чистой. При установке ультрасовременных солнечных панелей и ветряных турбин возникает еще одна проблема – нехватка квалифицированных кадров.
Но как оказалось, в случае с такими странами совсем не обязательно выворачиваться наизнанку, а всего лишь стоит вспомнить о простых вещах. Например, о солнечной лампе, работающей на соленой воде, что кроме освещения дает ей возможность служить зарядным устройством для небольших гаджетов, например, мобильных телефонов.
Кроме специального источника света нам ничего сверхъестественного не потребуется. Достаточно в специальном пакетике растворить 16 соли в 350 мл воды и залить полученное вещество в емкость фонаря. И никаких батареек, что очень удобно и экологично. Находясь внутри фонаря, соляной раствор действует как электролит, взаимодействуя с магниевым проводом (отрицательный электрод) и углеродным проводом (положительный электрод). Он действительно способен вырабатывать небольшие объемы электричества. Правда, пока неизвестно, что делать, если под рукой только морская вода.
Компания-производитель уверяет, что такие лампы способны вырабатывать электричество на протяжении восьми часов и иметь мощность в 55 люмен. В таком режиме они могут проработать до 120 часов, после чего магниевый электрод придется заменить. У ламп имеется специальный USB-порт для подключения устройств при зарядке.
Работа лампы:
Работа лампы основана на принципе работы гальванического элемента. Лампа использует солёную воду, как электролит в гальванической батарее. Два электрода размещаются в растворе с электролитом, энергия вырабатывается и она в свою очередь зажигает лампу.
Лампа разработана таким образом, чтобы наносить как можно меньше вреда окружающей среде, используя возобновляющие источники энергии. У неё есть способность оставаться включенной около восьми часов в день и работать полгода.
Айса Миено работает в SALt (Sustainable Alternative Lighting). Она основала эту компанию, с целью поставить 600 ламп местному населению Филиппин.
В дальнейших планах у Миено увеличить производство в 2016 году и вывести эту продукцию на массовый рынок. Планируемое улучшение позволит светодиодной лампе работать дольше и подзаряжать мобильные телефоны
Светодиодные лампы в Индии на 76% являются поддельными
Исследование, проведенное в четырех крупных городах Индии (Нью-Дели, Мумбаи, Ахмедабаде и Хайдарабаде), показало, что три четверти светодиодных ламп, продаваемых на рынке освещения в Индии, являются поддельными, поскольку они не соответствуют стандартам безопасности для потребителей, заявила исследовательская фирма «Nielsen» в отчете об исследовании. Было обнаружено, что около 76% брендов светодиодных ламп и 71% светодиодных светильников продаваемых более чем в двухстах розничных торговых точках не соответствуют стандартам безопасности. Эти некачественные продукты в конечном итоге повлияют на всю энергоэффективность в стране.
Согласно исследованию, проведенному компании «Nielsen» для ELCOMA (Ассоциация производителей электрических ламп и компонентов), эти бренды нарушают нормы, которые предписаны Бюро индийских стандартов (BIS) и Министерством электроники и информационных технологий (правительство Индии) для продуктов освещения. По словам Сунила Сикки, бывшего президента ассоциации ELCOMA и компании «Havells India», доля рынка поддельных и нелегальных светодиодных продуктов неуклонно растет.
В августе 2017 года, бюро BIS приказало производителям светодиодного освещения зарегистрировать свою продукцию в BIS для проверок по безопасности, поскольку рынок затоплен дешевыми и низкокачественными китайскими продуктами.
Исследование показало, что эти побочные продукты создают серьезную угрозу безопасности для потребителей. Это также приводит к значительной потере налоговых поступлений для правительства, поскольку эти продукты производятся и продаются незаконно. Но, как ни странно, город Хайдарабад не очень согласен с соблюдением норм BIS.
Исследование также показало, что 48% брендов светодиодных ламп не указывают адрес производителя, а 31% брендов не имеют названия производителя, что наглядно указывает на то, что эти бренды нарушают правила индийской законодательной стандартизации и производятся незаконно.
Согласно данным ассоциации ELCOMA, общий рынок светодиодов в Индии составляет 100 000 миллионов рупий, а светодиодные лампы и светильники составляют 50% общего рынка светодиодов.
«Большое количество нелегальных производителей светодиодных ламп освещения угрожает честной конкуренции на рынке светодиодного освещения, особенно для тех компаний, которые соответствуют всем обязательным стандартам безопасности потребителей», - сказал Ракеш Зутши, президент ассоциации ELCOMA и управляющий директор компании «Halonix Technologies», в своем заявлении.
Источник: сайт
Знаю, что в особенности для детских глаз вредно и может быть неприятным раздражителем, если светодиодное освещение обладает высоким коэффициентом пульсации, как его определить в магазине перед покупкой?
Завершается стадия ремонта в доме, сейчас полным ходом идет подготовка к монтажу электропроводки и освещения, осталось только раскошелиться на светодиодные лампочки , подскажите какие надежные и экономные купить? Необходимы с возможностью регулировки яркости и температуры свечения от 2700 до 5500К.
Эта восхитительная кухня представляет собой идеальное помещение для приготовления пищи и ее употребления. Комната условна разделена на две ярко освещенные зоны. Над рабочей частью находятся строгие точечные лампы , а над обеденным столом расположилась шикарная, и в тоже время очень современная люстра. Люстра не имеет множества стеклянных украшений, ее основным достоянием являются светодиодные лампы в форме свечей.
Правильный свет меняет все!
В Philips Lighting знают, что свет – это не просто лампочка под потолком. Он способен поддерживать наши биоритмы и помогает просыпаться бодрыми по утрам и быстрее засыпать по ночам. Он оптимизирует и семейный бюджет: светодиодные решения сокращают расходы на освещение до 90%. С помощью правильного света можно создать неповторимую атмосферу в любом помещении. Чтобы раскрыть все возможности освещения, специалисты Philips Lighting ежедневно разрабатывают инновационные световые решения, которые призваны сделать жизнь людей ярче и комфортнее.
Недостаток солнечного света может стать причиной плохого самочувствия, сонливости, бессонницы, привести к сезонному расстройству, которое часто возникает в осенне-зимний период. По данным Всероссийского центра исследования общественного мнения, только 34% россиян никогда не сталкивались с признаками сезонной хандры.
Philips Lighting знает о способностях света влиять на физиологию и эмоциональное самочувствие человека. Поэтому в 2015 году компания приняла участие в оборудовании первой в России световой комнаты для лечения сезонных расстройств в НИИ физиологии и фундаментальной медицины г.Новосибирск. Помещение оснащено светодиодными решениями Philips LED Tubes, обогащенными в определенной части спектра. Первые результаты работы световой комнаты показали значительное улучшение состояния пациентов.
«Научно доказано, что наше психологическое и физическое здоровье во многом зависит от получения достаточного количества света в течение дня. К сожалению, население нашей страны не может позволить себе круглый год наслаждаться ярким солнцем, – комментирует Константин Даниленко, заместитель директора по научной и лечебной работе НИИФФМ.
Чаще всего мы проводим большую часть дня в помещении с недостаточным уровнем освещенности – это пагубно сказывается на нашем здоровье и в ряде случаев приводит к депрессии. Профессионально оборудованные световые комнаты позволяют привести в тонус организм, наладить сбитые суточные ритмы и снова чувствовать себя лучше».
В домашних условиях обеспечить поступление необходимого количества искусственного света нам тоже по силам. Помочь в борьбе с осенне-зимней хандрой может новая светодиодная лампа Philips Scene Switch, которая меняет световую температуру в помещении одним нажатием на выключатель. Пользователь может выбирать необходимый режим освещения: теплый (температура 2700К) или холодный (температура 6500К). Доказано, что температура света влияет на выработку гормонов. Холодное освещение способствует производству кортизола или гормона стресса, поэтому подходит для сосредоточенной работы и утренней зарядки. При теплом свете вырабатывается мелатонин или гормон сна, который помогает нам расслабиться, поэтому он подойдет для занятий йогой или чтения. С инновационным решением вы сможете подобрать световой режим для любой активности!
Купить в магазине Philips Scene Switch
Светодиодные лампы – это не только функциональное средство освещения, но и невероятно эффектный декоративный элемент. Линейка филаментных ламп Philips DECO Classic имеют классическую форму, поэтому решения могут вписаться в любой интерьер и стать украшением открытого светильника. Вместо нити накаливания в таких лампах находятся светодиоды, а разнообразие форм позволяет подобрать решение для любого светильника. Теплый свет филаментных ламп напоминает горение нити накаливания и создает домашнюю атмосферу, а привычный глазу дизайн делает их привлекательными не только во время горения, но и при выключенном свете.
Все светодиодные лампы Philips Lighting потребляют электроэнергии в 10 раз меньше, чем лампы накаливания, при этом обеспечивают прекрасное качество света. Срок службы таких решений составляет 15 тысяч часов, что в 15 раз больше, чем у традиционных ламп. При этом стандартные цоколи позволяют использовать их в любых светильниках со стандартными выключателями.
Купить в магазине Philips
За более обращайтесь к представителям Philips Lighting
Светодиодные Smart лампы
Полный спектр энергоэффективных светодиодных Bluetooth ламп, которые можно контролировать прямо с вашего смартфона или планшета без каких-либо дополнительных вспомогательных устройств. «Умные» светодиодные лампочки позволяют осуществлять контроль над временем их включения и выключения, степенью яркости, а также над тем, каким именно цветом они будут светить.
Функция затемнения/изменения яркости
Режим будильника
Изменение цвета (включая режим «Диско»)
Гибкая настройка температуры цвета
Простота в использовании, готова к работе сразу «из коробки»
16 миллионов цветов
КУПИТЬ ЗА 1 795 РУБЛЕЙ с бесплатной доставкой Почтой (25-41дн.)
Компания Verbatim анонсирует светодиодные лампы AR111 для обеспечения анти-бликовой замены галогенных ламп
Verbatim продемонстрирует новые линейные светодиодные решения с технологией анти-мерцания "flicker-free".
Москва, Россия, – 15 ноября 2016 года: Компания Verbatim анонсирует новое поколение анти-бликовых модифицированных светодиодных ламп AR111. Новые лампы серии линейных светодиодных продуктов позволят заменить существующие галогенные лампы.
Светодиодные лампы AR111 (номера товара: 52340-52346)
Во избежание неприятных бликов, часто характеризующих светодиодную продукцию конкурентов, диммируемые на 10 Вт лампы от компании Verbatim, отличаются уникальной архитектурой, позволяющей имитировать эффект освещения традиционной галогенной лампочкой, пропуская свет через отражатель.
Светодиодные лампы AR111 идеально подходят для общего освещения помещений, таких как рецепция в отелях, ресторанах или магазинах, а также других помещений, где яркий, но комфортный свет необходим в течение длительного периода времени. Лампы AR111 экономят до 89% энергии по сравнению с аналогичными галогенными лампами . Лампы AR111 отличаются легкостью, яркостью, эффективностью и продолжительностью службы, что позволяет снизить эксплуатационные расходы.
Новое поколение диммируемых ламп AR111 обеспечивает световой поток до 750 люмен и плотность светового потока до 5700кд. Со световой отдачей до 75 лм/Вт (до 25% больше чем у конкурентов), они имеют небольшой вес - всего 90г (вдвое легче, чем большинство конкурирующих продуктов) и работают дольше на 40 000 часов. Лампы AR111 не требуют отдельного радиатора так как, благодаря технологии от Mitsubishi Chemical Corporation, они могут использовать отражатель в качестве теплоотвода. Доступные с цветовой температурой в 2700К, 3000К и 4000К и углами излучения на 12, 25 и 40 градусов, светодиодные лампы AR111 идеально подходят для широкого спектра жилых, торговых, офисных и представительских целей.
Показатель EEI (Индекса энергетической эффективности) светодиодных ламп AR111 ранжируется до 0,20, что подтверждает соответствие новым требованиям экологического проектирования энергетических продуктов, которые вступили в силу в сентябре 2016 года. Кроме того, что продукция представлена с 5-летней гарантией, она отличается возможностью интуитивной установки, благодаря идеальным размерам и совместимости формы AR111 с большинством устройств, представленных на рынке.
Линейное светодиодное освещение (номера товара: 52278–52283)
Verbatim также представит новый модельный ряд линейных светодиодных модулей для общего освещения в коммерческих, розничных и представительских помещениях. Они также подходят для аварийного освещения 220VDC. С внушительной световой отдачей до 104 лм/Вт (до 20% выше, чем у некоторых конкурирующих продуктов), модули выпускаются с доступной длиной 600, 1200 и 1500 мм и с цветовой температурой 3000К и 4000К.
Набор комплектующих позволяет делать скрытый монтаж и настраивать подвески при монтаже на потолках и стенах. При необходимости модули могут быть легко установлены и подключены параллельно.
В комплекте с не-диммируемым драйвером c технологией анти-мерцания, модули обеспечивают высокую энергоэффективность, длительный срок службы (до 50 000 часов) и малый интервал в эллипсах ошибок Мак-Адама. Данные модули являются идеальной заменой для линейных систем освещения с обычными люминесцентными лампами.
Линейные системы освещения Verbatim излучают однородный свет благодаря огнезащитному рассеивателю из поликарбоната, который проходит строгие стандарты безопасности МЭК (Международная Электротехническая Комиссия), включая испытания нагрева провода до 850°с. Высококачественный рассеиватель устойчив к возгоранию и обладает самозатухающими свойствами, что позволяет избежать опасности пожара. Корпус белого цвета изготовлен из экструдированного алюминия.
Технология «Vx-filter»
Кроме ламп AR111 и линейных светодиодных модулей, компания также представит свою новую технологию «Vx-filter». Световые решения компании Verbatim оборудованы инновационными Vx-фильтрами, которые значительно повышают индекс цветопередачи (CRI) и одновременно яркость цветов. Благодаря этому, цвета и мелкие детали будут восприниматься так же, как и при естественном дневном освещении.
О компании Verbatim
Компания Verbatim является ведущим производителем решений в сфере хранения данных и светодиодных осветительных приборов и обладает большим ассортиментов продуктов, как для бизнеса, так и для конечных потребителей. С момента основания в 1969 году компания Verbatim внесла значительный вклад в развитие технологий хранения данных и на данный момент является ведущим мировым поставщиком оптических носителей (компакт-дисков, DVD-дисков и дисков Blu-ray). Компания также поставляет на рынок карты флеш-памяти, внешние жесткие диски для хранения данных, а также большой выбор разнообразных компьютерных аксессуаров.
Кроме того, компания активно развивает направление светодиодных (LED) и органических светодиодных ламп (OLED), разрабатывая качественные продукты, которые снижают потребление электроэнергии и имеют долгий срок службы. Verbatim также является поставщиком систем очистки воды. Одна из таких систем под брендом Cleansui признана самой популярной в сегменте фильтров для очистки воды в Японии. Крое того, недавно компания запустила производство расходных полимерных материалов для 3D-принтеров.
Компания Verbatim является дочерней компанией фирмы Mitsubishi Kagaku Media, которая, в свою очередь, входит в состав корпорации Mitsubishi Chemical – одной из крупнейших химических организаций в Японии, которая инвестирует большие средства в научно-исследовательские разработки в разных сферах. Основная цель компании – обеспечить здоровую, комфортную и экологически безопасную жизнь для людей. Представительства компании Verbatim находятся в Америке, Европе, Азиатско-Тихоокеанском регионе и на Ближнем Востоке, компания имеет свои офисы в большинстве стран мира. Европейская штаб-квартира компании базируется в Великобритании.
Дополнительная информация о компании Verbatim: http://www.verbatim.com
Предлагаем вашему вниманию небольшую сушильную камеру для лака, нанесенного на ногти (используется специальный гель-лак, который держится потом очень долго). Сначала изготавливается корпус на 3D – принтере, затем устанавливается ультрафиолетовый светодиод, корпус декорируется по вашему вкусу. Затем подключается питание (через драйвер NSI50350AST3G Constant Current LED Driver) с небольшим выключателем, и все, ваша лампа готова к использованию.
В сборке использован ультрафиолетовый светодиод EDEV - 1LA1 мощностью 1 Ватт и напряжением питания 3.7V, с углом рассеивания света 140 градусов.
Ссылка на файлы с 3D моделями: http://www.thingiverse.com/thing:483905/#files
Данные по УФ светодиоду: http://edison-opto.com.ua/doc/UV_Edixeon_v1.1.pdf
Данные по драйверу: http://www.onsemi.ru.com/pub_link/Collateral/NSI50350AS-D.PDF
Энергосберегающая лампа есть в каждом доме. Есть ли вред, почему перегорают или пахнут энергосберегающие лампы , что делать если мигает, трещит или разбилась лампочка вы узнаете из этой статьи.
В статье рассмотрим следующие вопросы:
К энергосберегающим относятся лампы, работающие на эффектах свечения за счёт люминесценции люминофора и излучательной способности светодиодов. Они имеют традиционную конструкцию: стеклянная колба, вмонтированная в цоколь (патрон).
Действие ламп основано на запуске газоразрядного процесса, вызывающего свечение люминофора, сосредоточенного на стенках стеклянной колбы лампы. Газоразрядный процесс вызывается высоким напряжением, действующим на газовую среду, состоящую из инертного газа и ртутных паров. Этот процесс называют лавинообразной эмиссией электронов от катода в направлении другого электрода.
Современные энергосберегающие лампы не требуют отдельных источников питания, используют привычный для ламп накаливания тип патрона, технологичны и отвечают требованиям электробезопасности.
Чем вредна энергосберегающая лампочка?
Ввиду того, что газовая среда люминесцентной лампы содержит некоторое количество паров ртути, вследствие чего возникает опасность отравления. Длительный контакт человека с парами ртути и её химическими соединениями заканчивается летальным исходом, но и следует также понимать, что даже кратковременный контакт способен вызвать отравление и даже неврологическое заболевание - меркуриализм.
Сквозь стеклянную колбу люминесцентной лампы выходит , которое может представлять опасность людям, имеющих чувствительную кожу. Его опасность кроется в воздействии на глаза, повреждая сетчатку и роговицу.
Вред от энергосберегающих лампочек заключается в опасности отравления парами ртути и воздействии на роговицу и сетчатку глаза ультрафиолетового излучения.
Энергосберегающие лампочки на рынке позиционируются не только как экономичные, но они и надёжнее ламп накаливания. В моду входят различные устройства , облегчающие жизнь человека в мегаполисе. Это и выключатели с подсветкой. Если подсвет осуществляется неоновой лампочкой, то лампа находится постоянно под напряжением, что приводит к её преждевременному расходу ресурса и быстрому выходу из строя.
Еще одной причиной того, что энергосберегающие лампы быстро сгорают может быть закрытый плафон или другое закрытое пространство, где затруднена вентиляция. Ответить на вопрос: " почему перегорают энергосберегающие лампочки?" позволит и анализ схемы ее включения, скачки напряжения. Как говорится вечного ничего нет.
Почему пахнут или воняют энергосберегающие лампы?
Посторонний запах от энергосберегающей лампы может быть из-за нагрева её пластмассовых элементов. Полупроводниковые элементы блока питания, расположенного в цокольной части лампы, работает в ключевом режиме. Это самый тяжелый в смысле энергетики режим работы переключательных элементов – транзисторов. На плате транзисторы находятся без радиаторов, отвод тепла минимальный, через пластмассовый корпус. Поэтому запах может давать пластмассовые элементы, используемые в электролампе.
В случае обнаружения запаха следует тщательно обследовать источник. Потому что запах может давать не только лампа, а и патрон, в который она вставлена, и изоляция подводящих проводов. Элемент, который издаёт запах необходимо заменить новым, исправным. Важно знать, что патрон, в который вставляется электролампочка, имеет также ограничение по мощности вставляемой нагрузки. Никогда не следует превышать эту нагрузку.
Известны также случаи, когда источником запаха являлся лак, который был использован, чтобы покрыть монтажную плату источника питания лампы. Это свидетельство недобросовестности производителя ламп, который решил воспользоваться несоответствующим элементом в составе изделия. Для исключения этого необходимо контролировать стандарты на упаковке лампы, которым лампы должны соответствовать. Чем большему количеству стандартов удовлетворяет лампа, тем лучше. Лампу, издающую неприятный запах, следует заменить.
Запах от энергосберегающих лампочек должен стать причиной поиска возможного очага возгорания. Исправные элементы работают практически без запаха.
Почему мигают выключенные энергосберегающие лампы?
Мигание электроламп хорошо заметно в темное время суток или в темном помещении. Это такие заметные вспышки света с частотой примерно один раз в секунду. Здесь проблема может скрываться также в выключателе с подсветкой. Проблема отсутствует, на выключателях, в которых такая подсветка отсутствует.
Причина заключается в следующем. В каждой энергосберегающей лампе есть конденсатор, который запускает лампу. Когда отключен выключатель, то горит его светодиодная подсветка . Это означает, что через нее (от сети и через нашу энергосберегающую лампу) проходит небольшой электрический ток.
Именно этот небольшой протекающий ток и заряжает конденсатор, который в определенный момент времени запускает энергосберегающую лампу. Затем происходит небольшая вспышка и конденсатор снова разряжается и процесс повторяется. Вот поэтому и мерцают энергосберегающие лампочки.
Почему трещит энергосберегающая лампочка
Посторонний звуковой эффект возникает из-за неисправности элементов блока питания самой лампы. Напомним, что он работает в импульсном режиме , при неисправности элементов блока питания может возникнуть неприятное стрекотание.
Звук может иметь также контактное происхождение из-за плохого контакта в патроне. Если эффект имеет контактное происхождение, то он легко устраняется восстановлением хорошего контакта. Прежде всего, необходимо подкрутить сильнее лампу в патроне.
Когда положительного результата таким способом не достигается, необходимо при выключенном выключателе и выкрученной лампе попытаться выдвинуть язычок лампы, на котором она сидит в патроне. Последний эксперимент заключается в замене лампы новой или же проверить её в другом патроне.
Когда трещит энергосберегающая лампочка, необходимо проверить саму лампу и патрон, в которую она включена.
Что делать если лампочка разбилась
Когда энергосберегающая лампа разбилась, необходимо остатки лампы аккуратно собрать, соблюдая меры предосторожности. Это проветрить помещение, чтобы остатки паров ртути испарились. Влажную уборку в помещении провести с использованием мыльного водного раствора.
При уборке следует использовать резиновые перчатки, после проведения уборки тщательно, с мылом вымыть руки, удалив из помещения все возможные остатки лампы.
Как утилизировать энергосберегающие лампочки?
Необходимо помнить, что люминесцентные лампы не выбрасываются как обычный мусор, где они разбиваются и все дышат ртутными парами, а утилизация энергосберегающих лампочек происходит путём их сдачи в соответствующие пункты сбора.
Итог
Существует масса проблем с энергосберегающими лампами люминесцентного типа . Наиболее распространенные – это мигание, звуковые эффекты и могут возникать посторонние неприятные запахи. Для того, чтобы предотвратить эти явления, необходимо выбирать лампы проверенных временем производителей, удовлетворяющих большому количеству международных стандартов (от пяти), использовать энергосберегающие лампы светодиодного типа.
Устройство LED ламп существенно отличается от устройства обычных ламп накаливания. В этом зачастую и кроется объяснение того, почему светодиодные лампы продолжают гореть при выключенном выключателе (извиняюсь за тавтологию).
Устройство LED ламп
Несмотря на многообразие моделей и различие технических решений в зависимости от фирмы-производителя, в каждой светодиодной лампе есть основные узлы:
- цоколь;
- корпус;
- светодиоды;
- драйвер.
Как и в обычных осветительных приборах, цоколь применяют для крепления, а корпус для размещения основных элементов. Некоторые из ламп оснащены радиаторами для охлаждения. Источниками освещения выступают светодиоды — полупроводниковые элементы, преобразующие электрическую энергию в световое излучение. Потребляемое ими напряжение значительно ниже обычных 220 В, поэтому и мощность гораздо меньше той, которую расходуют обычные лампочки. На этом и основана экономия при эксплуатации светодиодных ламп. Но для создания нужного напряжения необходимо использовать специальные преобразователи (драйверы), которые понижают его до требуемого значения. Вот тут и проявляются главные отличия. Преобразователь представляет собой сложное устройство, состоящее из электронных компонентов: диодного моста, резисторов, транзисторов, конденсаторов, дросселей, иногда, трансформаторов.
Почему работают светодиодные лампы после выключения?
Свечение прибора, когда он отключен, может быть вызвано несколькими причинами.
Работа конденсатора, входящего в драйвер
Свойство LED лампы продолжать работать при выключенном свете у многих потребителей вызывает вполне логичное удивление. Электроэнергия не подается, а прибор функционирует. Тогда возникает следующий вопрос: откуда берется питание. Некоторые электронные компоненты способны накапливать в себе электрическую энергию. Конденсатор — один из них. Он входит в состав LED лампы. Во время ее свечения от сети он аккумулирует электричество. Когда же электричество полностью выключено, емкость отдает накопленную энергию и выступает в данном случае источником напряжения. Именно из-за этой детали светодиодные лампы могут кратковременно гореть после выключения.
Емкость считается реактивным сопротивлением, т. к. способна возвращать в сеть потребленную мощность. Если бы она не являлась составным элементом LED ламп, то они бы не могли светить при выключении электричества. Аналогично тому, как перестают работать обычные лампы после отключения, т. к. являются очень простыми устройствами, которые не содержат реактивных элементов. Когда накопленное конденсатором электричество заканчивается, то он прекращает быть источником питания и выдавать напряжение, в результате чего светодиодные лампы перестают получать энергию и гаснут. В таком случае аккумулированного заряда хватает лишь на несколько секунд для поддержания работы устройства после выключения.
Вряд ли эту пару мгновений свечения требуется устранять. Тем более что емкость выполняет важную роль в преобразовании питания: она сглаживает пульсации в напряжении после понижения.
Светодиодный выключатель
Если же LED лампа светится продолжительное время после отключения, то причина заключается в другом. Возможно, осветительный прибор используется вместе с выключателем. Очень часто применяют светодиодный выключатель, который, кроме основной функции, заключающейся в разъединении электрической цепи, выполняет и дополнительную: светит, когда лампа выключена. Для этого он оснащен светодиодом, на который подается напряжение в тот момент, когда лампочка не работает. Благодаря параллельному соединению на лампу питание не поступает. Т. е. в этот момент через светодиод выключателя проходит электрический ток, который заряжает вышеупомянутый конденсатор. Когда последний накопит достаточное количество электроэнергии, то начинает отдавать ее в сеть, выступая источником питания. Светодиодные лампочки получают это электричество и светятся. После разрядки реактивного элемента энергия отсутствует, и лампочка перестает гореть. Затем конденсатор снова заряжается, и процесс повторяется. Она будет то светить, то гаснуть, что визуально выглядит как мигание.
Важно! Этот недостаток нарушает обычную эксплуатацию прибора, увеличивает количество потребленной электроэнергии, и сокращает срок службы.
Необходимо рассмотреть, что можно сделать для того, чтобы ликвидировать описанный дефект.
Способы устранения мигания
- Самый простой выход — замена выключателя на другой, который не светится. После размыкания всей цепи он не будет светиться, поэтому во время отключения не потребуется напряжение, и ток, подзаряжающий конденсатор, протекать не будет. Преимущества этого способа заключаются в быстроте и простоте, но его минус состоит в дополнительных финансовых затратах на новый выключатель.
- Самостоятельное удаление подсветки из выключателя. В таком случае потребуется разобрать корпус лампы, открутить или откусить с помощью кусачек провод, который идет к резистору и светодиоду.
- Добавление шунтирующего резистора. Данный метод подходит для тех, кто хочет, чтобы и светодиодная лампочка не мигала, и выключатель светился в темноте. Но для его реализации необходимы некоторые технические действия. Прежде всего, потребуется приобрести резистор сопротивлением около 50 кОм и мощностью 2-3 Вт, такой можно найти в любом магазине радиодеталей. Затем надо снять плафон лампы, а проволочки, отходящие от резистора, воткнуть в клеммник, к которому подсоединяются сетевые провода.
Важно! До начала работ следует обесточить цепь, отключив автомат, а при работе необходимо соблюдать технику безопасности. Не делайте эту работу сами, если не уверены в своих силах. Работа с высоким напряжением опасна для жизни!
Если хозяин не хочет заниматься электрикой, как предлагают описанные методы, то можно просто дополнительно вкрутить обычную лампу накаливания при наличии в люстре свободного патрона. Минусами этого способа является то, что она будет светить тогда, когда светодиодная лампа будет выключена. Таким образом мигание будет заменено на постоянное. Также к недостаткам можно будет отнести то, что вкрученная лампочка будет потреблять электроэнергию в те моменты, когда освещение вообще не требуется.
Ошибки при подключении электропроводки к выключателю
Если светодиодная лампа продолжает работать даже тогда, когда выключена, и человек не пользуется выключателем с подсветкой, то причиной может служить неправильный монтаж проводки: к выключателю вместо фазы подсоединили ноль. В этом случае при размыкании цепи отключается ноль, а не фаза, вследствие чего проводка находится под напряжением. В результате лампа горит при выключенном выключателе. Такую ситуацию обязательно надо исправить, подсоединив провода правильно. В противном случае во время плановой замены осветительного прибора даже тогда, когда все отключено, появится опасность получить удар электрическим током, т. к. проводка будет находиться под напряжением.
Какой бы способ устранения мигания светодиодных лампочек после выключения вы не выбрали, соблюдение правил техники безопасности является обязательным, а безошибочное подсоединение проводки к выключателю — залог нормальной работы устройства.
Помните, что 100 лет назад говорил нам великий ученый Никола Тесла?
И как его за это невзлюбил магнат Морган, которому было не выгодно такое положение вещей - ведь он контроллировал тогда рынок медных проводов. Кому была бы нужна его медь, если бы электричество передавалось без проводов?
Но это было предисловие - а слово будет впереди...
Почему горит лампочка?
Вначале предисловие о том, как вообще появилась эта статья.
Лет пять тому назад я зарегистрировался на каком-то студенческом форуме и опубликовал там статью о том, какие ошибки допускает наша академическая наука в трактовке многих базовых положений, как эти ошибки исправляет альтернативная наука, и как академическая наука воюет с альтернативной, приклеивая ей ярлык "лженауки" и обвиняя во всех смертных грехах. Моя статья провисела в свободном доступе около 10 минут, после чего была скинута в отстойник. Меня же сразу отправили в бессрочный бан и запретили появляться у них. Через несколько дней я решил зарегистрироваться на других студенческих сайтах, чтобы повторить свою попытку с публикацией данной статьи. Но оказалось, что я уже нахожусь в черном списке на всех этих сайтах и в регистрации мне отказывают. Насколько я понимаю, между студенческими форумами происходит обмен информацией о нежелательных персонах и попадание в черный список на одном сайте означает автоматический вылет со всех других.
Тогда я решил выйти на журнал "Квант", специализирующийся на научно-популярных статьях для школьников и студентов ВУЗов. Но так как на практике этот журнал больше ориентируется все же на школьную аудиторию, статью пришлось значительно упрощать. Я выкинул оттуда все про лженауку и оставил только описание одного физического явления и дал ему новую трактовку. То есть статья превратилась из технически-публицистической в чисто техническую. Но на мой запрос никакого ответа из редакции я не дождался. А раньше ответ из редакций журналов мне всегда был, даже если редакция отклоняла мою статью. Отсюда я сделал вывод, что в редакции я тоже нахожусь в черном списке. Так моя статья и не увидела свет.
Прошло пять лет. Я решил снова обратиться в редакцию "Квант". Но и через пять лет на мой запрос ответа не последовало. Значит, я до сих пор нахожусь у них в черном списке. Поэтому я решил больше не воевать с ветряными мельницами, а публикую статью здесь на сайте. Конечно жалко, что подавляющее большинство школьников ее не увидит. Но тут я уже ничего поделать не могу. Итак, вот сама статья....
Наверное, не найдется такого населенного пункта на нашей планете, где не будет электрических лампочек. Большие и маленькие, люминесцентные и галогенные, для карманных фонариков и мощных военных прожекторов - они настолько прочно вошли в нашу жизнь, что стали привычны также, как привычен нам воздух, которым мы дышим. Принципы действия электрических лампочек кажутся нам настолько ясными и очевидными, что практически никто не задумывается над механикой их работы. А тем не менее, в этом феномене таится огромная загадка, которая до сих пор не решена в полной мере. Попробуем разгадать ее сами.
Пусть у нас будет бассейн с двумя трубами, по одной из которых вода вливается в бассейн, по другой она из него выливается. Примем, что в бассейн каждую секунду поступает 10 килограммов воды, а в самом бассейне 2 килограмма из этих десяти каким-то волшебным способом перерабатывается в электромагнитное излучение и выбрасывается наружу. Вопрос: сколько воды уйдет из бассейна по другой трубе? Наверное, даже первоклассник ответит, что будет уходить 8 килограммов воды в секунду.
Немного изменим пример. Пусть вместо труб будут электрические провода, а вместо бассейна электрическая лампочка. И снова рассмотрим ситуацию. По одному проводу в лампочку входит, скажем, 1 миллион электронов в секунду. Если мы полагаем, что часть из этого миллиона преобразуется в световое излучение и выбрасывается из лампы в окружающее пространство, тогда по другому проводу будет уходить из лампы меньшее количество электронов. А что покажут измерения? Они покажут, что электрический ток в цепи не меняется. Ток - это поток электронов. И если электрический ток одинаков в обоих проводах, это означает, что количество уходящих из лампы электронов равно количеству электронов, входящих в лампочку. А световое излучение - это разновидность материи, которая не может появиться из совершенной пустоты, но может появиться только из другой разновидности. И если в данном случае световое излучение не может появиться из электронов, тогда откуда же появляется материя в форме светового излучения?
Этот феномен свечения электической лампочки также вступает в противоречие с одним очень важным законом физики элементарных частиц - законом сохранения так называемого лептонного заряда. Согласно данному закону, электрон может исчезнуть с испусканием гамма-кванта только в реакции аннигиляции со своей античастицей позитроном. Но в лампочке никаких позитронов как носителей антивещества быть не может. И тогда мы получаем буквально катастрофическую ситуацию: все электроны, входящие в лампочку по одному проводу, без всяких реакций аннигиляции уходят из лампочки по другому проводу, но при этом в самой лампочке возникает новая материя в форме светового излучения.
А вот еще интересный эффект, связанный с проводами и лампами. Много лет назад известный физик Никола Тесла выполнил загадочный эксперимент передачи энергии по одному проводу, который в наше время повторил российский физик Авраменко. Суть эксперимента состояла в следующем. Берем самый обыкновенный трансформатор и первичной обмоткой подключаем его к электрогенератору или сети. Один конец провода вторичной обмотки просто болтается в воздухе, второй конец тянем в соседнее помещение и там подсоединяем к мостику из четырех диодов с электролампочкой в середине. Подаем напряжение на трансформатор и лампочка загорелась. Но ведь к ней тянется всего один провод, а для работы электрической цепи нужно два провода. При этом, как утверждают исследующие этот феномен ученые, идущий к лампочке провод совершенно не нагревается. Настолько не нагревается, что вместо меди или алюминия можно использовать любой металл с очень высоким удельным сопротивлением, и он все равно останется холодным. Более того, можно толщину провода уменьшить до толщины человеческого волоса, и все равно установка будет работать без проблем и без выделения тепла в проводе. До сих пор этот феномен передачи энергии по одному проводу без каких-либо потерь так никто и не сумел объяснить. И сейчас я попробую дать свое объяснение данному явлению.
Есть в физике такое понятие - физический вакуум. Его не нужно путать с техническим вакуумом. Технический вакуум - это синоним пустоты. Когда мы удаляем из сосуда все молекулы воздуха, мы создаем технический вакуум. Физический вакуум - это совсем иное, это некий аналог всепроникающей материи или среды. Все ученые работающие в данной области, не сомневаются в существовании физвакуума, т.к. его реальность подтверждается многими хорошо известными фактами и явлениями. Спорят о наличии в нем энергии. Кто-то говорит об исключительно малом количестве энергии, другие склоняются к мысли о сверхогромном количестве энергии. Дать точное определение физвакууму невозможно. Но можно дать примерное определение через его характеристики. Например такое: физический вакуум - это особая всепроникающая среда, которая формирует пространство Вселенной, порождает вещество и время, участвует во многих процессах, имеет огромнейшую энергию, но не видима нами из-за отсутствия нужных органов чувств и потому кажущаяся нам пустотой. Надо особенно подчеркнуть: физвакуум не есть пустота, он только кажется пустотой. И если встать на такую позицию, тогда очень многие загадки достаточно легко решаются. Например, загадка инерции.
Что такое инерция - до сих пор не ясно. Более того, феномен инерции даже противоречит третьему закону механики: действие равно противодействию. По этой причине инерционные силы иной раз даже пытаются объявить иллюзорными и фиктивными. Но если мы в резко тормознувшем автобусе упадем под действием инерционных сил и набьем себе шишку на лбу, насколько эта шишка будет иллюзорна и фиктивна? В реальности инерция возникает как реакция физвакуума на наше движение.
Когда мы сидим в автомобиле и давим на газ, мы начинаем двигаться неравномерно (ускоренно) и таким движением гравитационного поля своего организма деформируем структуру окружающего нас физвакуума, сообщая ему некоторую энергию. А вакуум реагирует на это созданием сил инерции, которые тянут нас назад, чтобы оставить в состоянии покоя и тем самым исключить вносимую с него деформацию. Для преодоления сил инерции требуется затратить много энергии, что выливается в большой расход топлива на разгон. Дальнейшее равномерное движение никак не действует на физвакуум, и потому он сил инерции не создает, поэтому затраты топлива при равномерном движении меньше. А когда мы начинаем тормозить, мы снова движемся неравномерно (замедленно) и снова деформируем физвакуум своим неравномерным движением, и он снова реагирует на это созданием сил инерции, которые тянут нас вперед, чтобы оставить в состоянии равномерного прямолинейного движения, когда деформация вакуума отсутствует. Но теперь уже не мы передаем энергию вакууму, а он отдает ее нам, и эта энергия выделяется в форме тепла в тормозных колодках автомобиля.
Такое ускоренно-равномерно-замедленное движение автомобиля является не чем иным, как единичным тактом колебательного движения низкой частоты и огромной амплитуды. На стадии ускорения в вакуум вносится энергия, на стадии замедления вакуум энергию отдает. И самое интригующее состоит в том, что вакуум может отдать энергии больше, чем ранее принял ее от нас, т.к. он сам обладает огромным запасом энергии. При этом никакого нарушения закона сохранения энергии не происходит: сколько энергии вакуум нам отдаст, ровно столько энергии мы от него получим. Но вследствие того, что физвакуум кажется нам пустотой, нам будет казаться, что энергия возникает из ниоткуда. И такие факты кажущегося нарушения закона сохранения энергии, когда энергия появляется буквально из пустоты, в физике давно известны (например, при любом резонансе выделяется настолько огромная энергия, что резонирующий предмет может даже разрушиться).
Движение по окружности также является разновидностью неравномерного движения даже при постоянной скорости, т.к. в этом случае меняется положение вектора скорости в пространстве. Следовательно, такое движение деформирует окружающий физвакуум, который реагирует на это созданием сил сопротивления в форме центробежных сил: они всегда направлены так, чтобы распрямить траекторию движения и сделать ее прямолинейной, когда деформация вакуума отсутствует. И для преодоления центробежных сил (или для поддержания вызываемой вращением деформации вакуума) приходится тратить энергию, которая уходит в сам вакуум.
Теперь можно возвратиться к феномену свечения лампочки. Для ее работы в цепи обязательно должен присутствовать электрогенератор (даже если будет батарея, она все равно когда-то заряжалась от генератора). Вращение ротора электрогенератора деформирует структуру соседнего физвакуума, в роторе возникают центробежные силы, а энергия на преодоление этих сил уходит от первичной турбины или иного источника вращения в физвакуум. Что касается движения электронов в электрической цепи, это движение происходит под действием создаваемых вакуумом центробежных сил во вращающемся роторе. Когда электроны входят в нить накаливания электрической лампочки, они интенсивно бомбардируют ионы кристаллической решетки, и те начинают резко колебаться. В ходе таких колебаний структура физвакуума снова деформируется, и вакуум реагирует на это испусканием световых квантов. Так как сам вакуум является разновидностью материи, отмеченное ранее противоречие появления материи из ниоткуда снимается: одна форма материи (световое излучение) возникает из другой ее разновидности (физический вакуум). Сами же электроны в таком процессе не исчезают и не трансформируются во что-то иное. Поэтому сколько электронов в лампочку войдет по одному проводу, ровно столько же выйдет по другому. Естественно, что энергия квантов также берется из физвакуума, а не от входящих в нить накаливания электронов. Сама же энергия электрического тока в цепи не меняется и остается постоянной.
Таким образом, для свечения лампы нужны не электроны сами по себе, а резкие колебания ионов кристаллической решетки металла. Электроны играют всего лишь роль инструмента, который заставляет ионы колебаться. Но инструмент можно заменить. И в эксперименте с одним проводом как раз это происходит. В знаменитом эксперименте Николы Тесла по передаче энергии через один провод таким инструментом выступало внутреннее переменное электрическое поле провода, которое постоянно меняло свою напряженность и тем самым заставляло ионы колебаться. Поэтому выражение "передача энергии по одному проводу" в данном случае не удачно, даже ошибочно. Никакой энергии через провод не передавалось, энергия выделялась в самой лампочке из окружающего физвакуума. Вот по этой причине и сам провод не нагревался: невозможно нагреть предмет, если энергию к нему не подводить.
В итоге вырисовывается довольно заманчивая перспектива резкого снижения стоимости строительства линий электропередачи. Во-первых, можно обойтись одним проводом вместо двух, что сразу снижает капитальные затраты. Во-вторых, можно вместо сравнительно дорогой меди использовать любой самый дешевый металл, хоть ржавое железо. В-третьих, можно уменьшить сам провод до толщины человеческого волоса, а прочность провода оставить неизменной или даже повысить, заключив его в оболочку из прочного и дешевого пластика (кстати, это также защитит провод от атмосферных осадков). В-четвертых, из-за снижения общей массы провода можно увеличить расстояние между опорами и тем самым снизить количество опор на всю линию. Реально ли это осуществить? Конечно реально. Была бы политическая воля руководства нашей страны, а ученые не подведут.