Проценты и действия с ними. Задачи на проценты. Как найти процент от числа. Исчерпывающий гид. (2019). Формула расчета доли в процентном отношении

Проценты в математике. Задачи на проценты.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Проценты в математике.

Что такое проценты в математике ? Как решать задачи на проценты ? Эти вопросы всплывают, увы, внезапно… Когда выпускник читает задание ЕГЭ. И ставят его в тупик. А зря. Это очень простые понятия.

Единственно, что нужно запомнить железно – что такое один процент . Это понятие - и есть главный ключ к решению задач на проценты, да и к работе с процентами вообще.

Один процент – это одна сотая часть какого-то числа . И всё. Нет больше никаких мудростей.

Резонный вопрос – а сотая часть какого числа ? А вот того числа, о котором идёт речь в задании. Если там говорится о цене, один процент – это одна сотая часть цены. Если о скорости, один процент – это одна сотая часть скорости. И так далее. Понятно, что само число, о котором идёт речь, составляет всегда 100%. А если нет самого числа, то и проценты смысла не имеют…

Другое дело, что в сложных задачах само число так запрячут, что и не найдёшь. Но мы на сложное пока не замахиваемся. Разбираемся с процентами в математике .

Я не зря акцентирую слова один процент, одна сотая . Запомнив, что такое один процент , вы легко найдёте и два процента, и тридцать четыре, и семнадцать, и сто двадцать шесть! Сколько надо, столько и найдёте.

А это, между прочим, основное умение для решения задач на проценты.

Попробуем?

Давайте найдём 3% от 400. Сначала найдём один процент . Это будет одна сотая, т.е. 400/100 = 4. Один процент – это 4. А нам сколько процентов надо? Три. Вот и умножаем 4 на три. Получим 12. Всё. Три процента от 400 – это 12.

5% от 20 это будет 20 поделить на 100 (одна сотая – 1%), и умножить на пять (5%):

5% от 20 это будет 1. Всё.

Проще некуда. Давайте-ка быстро, пока не забылось, потренируемся!

Найдите, сколько будет:
5% от 200 рублей.
8% от 350 километров.
120% от 10 литров.
15% от 60 градусов.
4% отличников от 25 учащихся.
10% двоечников из 20 человек.

Ответы (в полном беспорядке): 9, 10, 2, 1, 28, 12.

Эти числа – количество рублей, градусов, учеников и т.д. Я не написал, сколько чего, чтобы решать интересней было…

А если нам нужно записать х% от какого-то числа, например, от 50? Да всё то же самое. Один процент от 50 – это сколько? Правильно, 50/100 = 0,5. А у нас этих процентов – х . Ну и умножим 0,5 на х ! Получим, что х% от 50 это – 0,5х.

Надеюсь, что такое проценты в математике вы уяснили. И легко сможете найти любое количество процентов от любого числа. Это просто. Вам сейчас по силам примерно 60% от всех задач на проценты! Уже больше половины. Ну что, добиваем оставшееся? Ладно, как скажете!

В задачах на проценты частенько встречаются обратная ситуация. Нам дают величины (какие угодно), а надо найти проценты . Освоим и этот нехитрый процесс.

3 человека из 120 – это сколько процентов? Не знаете? Ну, тогда, пусть это будет х процентов.

Вычислим х% от 120 человек. В человеках. Это мы умеем. 120 делим на 100 (вычисляем 1%) и умножаем на х (вычисляем х% ). Получаем 1,2х .

Осмыслим результат.

х процентов от 120 человек, это 1,2х человек . А таких человек у нас три. Остаётся приравнять:

Вспоминаем, что за икс мы брали количество процентов. Значит 3 человека от 120 человек – это 2,5%.

Вот и всё.

Можно и по-другому. Обойтись простой смекалкой, безо всяких уравнений. Соображаем, во сколько раз 3 человека меньше 120? Делим 120 на 3 и получаем 40. Значит, 3 меньше 120 в 40 раз.

Искомое количество людей в процентах будет во столько же раз меньше 100%. Ведь 120 человек – это и есть 100%. Делим 100 на 40, 100/40 = 2,5

Вот и всё. Получили 2,5%.

Есть ещё способ пропорций, но это, в сущности, то же самое в сокращенном варианте. Все эти способы – правильные. Как вам удобнее, привычнее, понятнее – так и считайте.

Опять тренируемся.

Посчитайте, сколько процентов составляют:
3 человека из 12.
10 рублей от 800.
4 учебника из 160 книг.
24 правильных ответа на 32 вопроса.
2 угаданных ответа на 32 вопроса.
9 попаданий из 10 выстрелов.

Ответы (в беспорядке): 75%, 25%, 90%, 1,25%, 2,5%, 6,25%.

В процессе вычислений вы вполне можете столкнуться с дробями. В том числе и неудобными, типа 1,333333… А кто вам велел калькулятором пользоваться? Сами? Не надо. Считайте без калькулятора , как написано в теме «Дроби». Проценты всякие бывают…

Вот мы и освоили переход от величин к процентам и обратно. Можно браться за задачки.

Задачи на проценты.

В ЕГЭ задачи на проценты очень популярны. От самых простых до сложных. В этом разделе мы работаем с простыми задачами. В простых задачах, как правило, нужно перейти от процентов к тем величинам, о которых идёт речь в задаче. К рублям, килограммам, секундам, метрам, и так далее. Или наоборот. Это мы уже умеем. После этого задача становится понятной и легко решается. Не верите? Смотрите сами.
Пусть у нас есть такая задачка.

«Проезд на автобусе стоит 14 рублей. В дни школьных каникул для учащихся ввели скидку 25%. Сколько стоит проезд на автобусе в дни школьных каникул?»

Как решать? Если мы узнаем, сколько 25% в рублях – то и решать-то нечего. Отнимем скидку от исходной цены – и все дела!

Но мы уже умеем это узнавать! Сколько будет один процент от 14 рублей? Одна сотая часть. То есть 14/100 = 0,14 рубля. А таких процентов у нас 25. Вот и умножим 0,14 рубля на 25. Получим 3,5 рублей. Вот и всё. Величину скидки в рублях мы установили, остаётся узнать новую стоимость проезда:

14 – 3,5 = 10,5.

Десять с половиной рублей. Это ответ.

Как только от процентов перешли к рублям, всё стало просто и понятно. Это общий подход к решению задач на проценты.

Понятное дело, не все задачи одинаково элементарны. Есть и посложнее. Подумаешь! Мы и их сейчас порешаем. Сложность в том, что всё наоборот. Нам даны какие-то величины, а найти надо проценты. Например, такая задача:

«Раньше Вася решал правильно две задачи на проценты из двадцати. После изучения темы на одном полезном сайте, Вася стал решать правильно 16 задач из 20. На сколько процентов поумнел Вася? За стопроцентный ум считаем 20 решённых задач.»

Раз вопрос про проценты (а не рубли, килограммы, секунды и т.д.), то и переходим к процентам. Узнаем, сколько процентов Вася решал до поумнения, сколько процентов после – и дело в шляпе!

Считаем. Две задачки из 20 – это сколько процентов? 2 меньше 20 в 10 раз, правильно? Значит, количество задачек в процентах будет в 10 раз меньше, чем 100%. То есть 100/10 = 10.

10%. Да, немного решал Вася… На ЕГЭ делать нечего. Но вот он поумнел, и решает 16 задач из 20. Считаем, сколько это будет процентов? Во сколько раз 16 меньше 20? Навскидку и не скажешь… Придётся делить.

В 5/4 раза. Ну а теперь делим 100 на 5/4:

Вот. 80% это уже солидно. А главное – не предел!

Но это ещё не ответ! Читаем задачу снова, чтобы не ошибиться на ровном месте. Да, нас спрашивают, на сколько процентов поумнел Вася? Ну, это просто. 80% - 10% = 70%. На 70%.

70% - это правильный ответ.

Как видите, в простых задачках достаточно перевести заданные величины в проценты, или заданные проценты – в величины, как всё и проясняется. Ясное дело, что в задачке вполне могут быть и дополнительные навороты. Которые, часто, к процентам отношения и не имеют вовсе. Тут, главное, внимательно условие читать и по шагам, не спеша, разворачивать задачку. Об этом мы в следующей теме поговорим.

Но есть в задачах на проценты одна серьёзная засада! Многие в неё попадают, да… Выглядит эта засада вполне невинно. Например, вот такая задачка.

«Красивая тетрадка летом стоила 40 рублей. Перед началом учебного года, продавец поднял цену на 25%. Однако, тетрадки стали покупать так плохо, что он снизил цену на 10%. Всё равно не берут! Пришлось ему снизить цену ещё на 15%. Вот тут торговля пошла! Какова была окончательная цена тетрадки?»

Ну, как? Элементарно?

Если вы стремительно и радостно дали ответ «40 рублей!», то вы попали в засаду…

Фокус в том, что проценты всегда считаются от чего-то .

Вот и считаем. На сколько рублей продавец взвинтил цену? 25% от 40 рублей - это 10 рублей. То есть, подорожавшая тетрадка стала стоить 50 рублей. Это понятно, да?

А теперь нам надо сбросить цену на 10% от 50 рублей. От 50, а не 40! 10% от 50 рублей – это 5 рублей. Следовательно, после первого удешевления тетрадь стала стоить 45 рублей.

Считаем второе удешевление. 15% от 45 рублей (от 45, а не 40, или 50! ) – это 6,75 рубля. Стало быть, окончательная цена тетрадки:

45 – 6,75 = 38,25 рубля.

Как видите, засада заключается в том, что проценты считаются каждый раз от новой цены. От последней. Так бывает практически всегда. Если в задаче на последовательное повышение-понижение величины открытым текстом не сказано, от чего считать проценты, надо считать их от последнего значения. И то, правда. Продавец откуда знает, сколько раз эта тетрадка дорожала-дешевела до него и сколько она стоила в самом начале…

Кстати, теперь вы можете подумать, зачем в задачке про умного Васю написана последняя фраза? Вот эта: «За стопроцентный ум считаем 20 решённых задач»? Вроде и так всё ясно… Э-э-э… Как сказать. Если этой фразы не будет, Вася вполне может посчитать за 100% свои начальные успехи. То есть две решённые задачки. А 16 задач – в восемь раз больше. Т.е. 800% ! Вася сможет вполне оправданно говорить о собственном поумнении аж на 700%!

А ещё можно и 16 задач взять за 100%. И получить новый ответ. Тоже правильный…

Отсюда вывод: самое главное в задачах на проценты – чётко определить, от чего надо считать тот или иной процент.

Это, кстати, и в жизни надо. Там, где проценты используются. В магазинах, банках, на акциях всяких. А то ждёшь 70% скидки, а получаешь 7%. И не скидки, а удорожания… И всё честно, сам просчитался.

Ну вот, представление о процентах в математике вы получили. Отметим самое важное.

Практические советы:

1. В задачах на проценты – переходим от процентов к конкретным величинам. Или, если надо – от конкретных величин к процентам. Внимательно читаем задачу !

2. Очень тщательно изучаем, от чего нужно считать проценты. Если об этом не сказано прямым текстом, то обязательно подразумевается. При последовательном изменении величины, проценты подразумеваются от последнего значения. Внимательно читаем задачу!

3. Закончив решать задачу, читаем её ещё раз. Вполне возможно, вы нашли промежуточный ответ, а не окончательный. Внимательно читаем задачу!

Решите несколько задач на проценты. Для закрепления, так сказать. В этих задачках я постарался собрать все главные трудности, которые поджидают решающих. Те грабли, на которые чаще всего наступают. Вот они:

1. Элементарная логика при анализе простых задачек.

2. Правильный выбор величины, от которой нужно считать проценты. Сколько народу споткнулось на этом! А ведь есть оч-ч-чень простое правило...

3. Проценты от процентов. Мелочь, а смущает здорово...

4. И ещё одни вилы. Связь процентов с дробями и частями. Перевод их друг в друга.

«В олимпиаде по математике принимали участие 50 человек. 68% учеников решили мало задач. 75% оставшихся решили средне, а остальные – много задач. Сколько человек решило много задач?»

Подсказка. Если у вас получаются дробные ученики – это неправильно. Читайте внимательно задачу, есть там одно важное слово… Ещё задачка:

«Вася (да-да, тот самый!) очень любит пончики с повидлом. Которые пекут в булочной, через одну остановку от дома. Стоят пончики по 15 рублей за штуку. Имея в наличии 43 рубля, Вася поехал в булочную на автобусе за 13 рублей. А в булочной шла акция «Скидка на всё – 30%!!!». Вопрос: сколько дополнительных пончиков не смог купить Вася из-за своей лени (мог бы и пешком прогуляться, правда?)»

Короткие задачки.

На сколько процентов 4 меньше 5?

На сколько процентов 5 больше 4?

Длинная задача...

Коля устраивался на несложную работу, связанную с расчётом процентов. При собеседовании начальник с хитрой улыбкой предложил Коле два варианта оплаты труда. По первому варианту Коле сразу назначалась ставка 15000 руб в месяц. По второму Коле, если он согласится, первые 2 месяца будут выплачивать пониженную на 50% зарплату. Типа, как новичку. Зато потом увеличат его пониженную зарплату аж на 80%!

Коля посещал один полезный сайт в Интернете... Поэтому, подумав шесть секунд, с лёгкой улыбкой выбрал первый вариант. Начальник улыбнулся в ответ и установил Коле постоянную зарплату в 17000 руб.

Вопрос: Сколько денег в расчёте за год (в тысячах рублей) Коля выиграл на этом собеседовании? Если сравнивать с самым неудачным вариантом? И ещё: что они всё время улыбались-то!?)

Опять короткая задачка.

Найти 20% от 50%.

И снова длинная.)

Скорый поезд №205 "Красноярск - Анапа" сделал остановку на станции "Сызрань-город". Василий и Кирилл пошли в привокзальный магазинчик за мороженым для Лены и гамбургером для себя. Когда они купили всё необходимое, уборщица магазина сообщила, что их поезд уже поехал... Василий и Кирилл быстро-быстро побежали и успели заскочить в вагон. Вопрос: успел бы в этих условиях заскочить в вагон чемпион мира по бегу?
Считаем, что в обычных условиях чемпион мира бежит на 30% быстрее Василия и Кирилла. Однако, стремление догнать вагон (он был последний), угостить Лену мороженым и съесть гамбургер, увеличило их скорость на 20%. А мороженое с гамбургером в руках чемпиона и шлёпанцы на ногах уменьшили бы его скорость на 10%...

А вот задачка без процентов... Интересно, зачем она здесь?)

Определить, сколько весит 3/4 яблока, если всё яблоко весит 200 граммов?

И последняя.

В скором поезде №205 "Красноярск - Анапа" попутчики разгадывали сканворд. Лена отгадала 2/5 всех слов, а Василий отгадал одну треть оставшихся. Затем подключился Кирилл и разгадал 30% всего сканворда! Серёжа отгадал последние 5 слов. Сколько всего слов было в сканворде? Верно ли, что Лена отгадала больше всех слов?

Ответы в традиционном беспорядке и без наименований единиц. Где пончики, где ученики, где рубли с процентами – это вы уж сами…

10; 50; да; 4; 20; нет; 54; 2; 25; 150.

Ну и как? Если всё сошлось - поздравляю! Проценты - не ваша проблема. Можно смело идти работать в банк.)

Что-то не так? Не получается? Не умеете быстро считать проценты от числа? Не знаете очень простых и понятных правил? От чего считать проценты, например? Или, как перевести дроби в проценты?

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

проценты

    Доход, получаемый на деньги, вложенные в банк или отданные в ссуду.

    Вознаграждение, исчисляемое в зависимости от оборота, дохода.

Большой юридический словарь

проценты

предмет обязательства, дополнительного к ряду других (возврата займа, кредита, неосновательно полученного или сбереженного, и т.п.), предусматривающих уплату денежных сумм по наступлении определенного срока; выражается в сотых частях суммы основного денежного обязательства.

Проценты

сотые доли целого (принимаемого за единицу). Процентом называют одну сотую долю и обозначают знаком %; так, 19% от 3 м составляют 0,57 м, или 57 Тысячная доля целого, т. е. десятая часть процента, имеет специальное название ≈ промилле ≈ и особое обозначение 0/00. В хозяйственных и статистических расчётах, а также во многих отраслях науки части величин принято выражать в П.; для их нахождения служит формула простых процентов: если с величины а нарастает р % за год (или за какой-либо другой промежуток времени), то через t лет она превратится в.

При этом предполагается, что по истечении каждого года доход за этот год изымается, так что за новый год доход исчисляется с первоначальной величины (в этом именно смысле говорят о простых П.). Если же доход причисляют к первоначальной величине и, следовательно, доход за новый год исчисляется с наращенной суммы, то говорят о сложных процентах; в этом случае величина, в которую превратится а через t лет, вычисляется по формуле сложных П.: . При исчислении П. за часть года условно принимают, что год содержит 360 сут, а каждый месяц ≈ 30 сут.

Сложные П. применяются во многих областях хозяйственной деятельности и бухгалтерского учёта (в банках, сберегательных кассах и т. д.), а также в различных статистических расчётах (в первую очередь при определении среднегодовых темпов относительного прироста или снижения за длительные периоды времени ≈ пятилетки, десятилетия и т. д.).

Примеры употребления слова проценты в литературе.

Основные аргументы автора сводятся к тому, что в американской и японской статистике по-разному отражаются, например, проценты , выплачиваемые по потребительским кредитам, средства, направляемые на покупку недвижимости и ее ремонт, а также многие другие факторы и обстоятельства подобного порядка.

Тайване в 80-е годы кредиты на развитие экспортных производств выдавались под проценты вдвое ниже межбанковской ставки и почти в четыре раза ниже средней цены кредитов, сложившейся на рынке.

Положением проценты начисляются за календарное количество дней нахождения задолженности на балансе, а при расчетах используется фактическое число календарных дней в году.

Конкретизировано, что в учете проценты уплаченные и полученные отражаются на основании распоряжения структурного подразделения банка бухгалтерии.

ГК установлен следующий порядок при погашении денежной задолженности: сумма произведенного платежа, недостаточная для исполнения денежного обязательства полностью, при отсутствии иного соглашения погашает прежде всего издержки кредитора по получению исполнения, затем - проценты , а в оставшейся части - основную сумму долга.

Она показывает, как колоссальные долги стран третьего мира, безработица и загрязнение окружающей среды, производство вооружений и строительство атомных электростанций связанных с механизмом, обеспечивающим обращение денег: проценты и сложные проценты .

Большинство людей считает, что они платят проценты только тогда, когда берут деньги в кредит, и, если уплата процентов нежелательна, достаточно просто не брать деньги в кредит.

Итак, если бы мы устранили проценты и заменили их на более совершенный механизм, то теоретически большинство из нас стало бы как минимум вдвое богаче или же нам нужно было бы работать для поддержания нашего теперешнего уровня жизни только половину рабочего времени.

Тенденция становится понятной - долги и проценты по кредитам в народном хозяйстве растут быстрее, чем доходы, что рано или поздно должно привести к колпаку, даже в высокоразвитых странах.

Я всегда рассматривал проценты и сложные проценты как невидимую машину разрушения, которая как раз сейчас работает особенно усердно.

Вместо того, чтобы платить проценты тем, у кого больше денег, чем им нужно, люди - для того, чтобы вернуть деньги в оборот, должны были бы платить небольшую сумму за изъятие денег из циркуляции.

Если сегодня проценты являются выражением частной прибыли, то плата за пользование деньгами стала бы выражением прибыли общественной.

Хотя нейтральные деньги и не будут приносить своему владельцу проценты , однако они сохранят свою стабильную стоимость.

Не имеет значения, насколько высоки или низки актуальные проценты , товары и услуги могут продаваться гораздо дешевле.

Есть и второй вопрос: что произойдет, если эти люди переведут свои капиталы в другие страны, где смогут и дальше получать проценты вместо того, чтобы оставить их на своих счетах, где они хотя и сохранят свою ценность, но не будут приносить проценты ?

Что такое проценты в математике ? Как решать задачи на проценты ? Эти вопросы всплывают, увы, внезапно… Когда выпускник читает задание ЕГЭ. И ставят его в тупик. А зря. Это очень простые понятия.

Единственно, что нужно запомнить железно – что такое один процент . Это понятие - и есть главный ключ к решению задач на проценты, да и к работе с процентами вообще.

Один процент – это одна сотая часть какого-то числа . И всё. Нет больше никаких мудростей.

Резонный вопрос – а сотая часть какого числа ? А вот того числа, о котором идёт речь в задании. Если там говорится о цене, один процент – это одна сотая часть цены. Если о скорости, один процент – это одна сотая часть скорости. И так далее. Понятно, что само число, о котором идёт речь, составляет всегда 100%. А если нет самого числа, то и проценты смысла не имеют…

Другое дело, что в сложных задачах само число так запрячут, что и не найдёшь. Но мы на сложное пока не замахиваемся. Разбираемся с процентами в математике .

Я не зря акцентирую слова один процент, одна сотая . Запомнив, что такое один процент , вы легко найдёте и два процента, и тридцать четыре, и семнадцать, и сто двадцать шесть! Сколько надо, столько и найдёте.

А это, между прочим, основное умение для решения задач на проценты.

Попробуем?

Давайте найдём 3% от 400. Сначала найдём один процент . Это будет одна сотая, т.е. 400/100 = 4. Один процент – это 4. А нам сколько процентов надо? Три. Вот и умножаем 4 на три. Получим 12. Всё. Три процента от 400 – это 12.

5% от 20 это будет 20 поделить на 100 (одна сотая – 1%), и умножить на пять (5%):

5% от 20 это будет 1. Всё.

Проще некуда. Давайте-ка быстро, пока не забылось, потренируемся!

Найдите, сколько будет:
5% от 200 рублей.
8% от 350 километров.
120% от 10 литров.
15% от 60 градусов.
4% отличников от 25 учащихся.
10% двоечников из 20 человек.

Ответы (в полном беспорядке): 9, 10, 2, 1, 28, 12.

Эти числа – количество рублей, градусов, учеников и т.д. Я не написал, сколько чего, чтобы решать интересней было…

А если нам нужно записать х% от какого-то числа, например, от 50? Да всё то же самое. Один процент от 50 – это сколько? Правильно, 50/100 = 0,5. А у нас этих процентов – х . Ну и умножим 0,5 на х ! Получим, что х% от 50 это – 0,5х.

Надеюсь, что такое проценты в математике вы уяснили. И легко сможете найти любое количество процентов от любого числа. Это просто. Вам сейчас по силам примерно 60% от всех задач на проценты!Уже больше половины. Ну что, добиваем оставшееся? Ладно, как скажете!

В задачах на проценты частенько встречаются обратная ситуация. Нам дают величины (какие угодно), а надо найти проценты . Освоим и этот нехитрый процесс.



3 человека из 120 – это сколько процентов? Не знаете? Ну, тогда, пусть это будет х процентов.

Вычислим х% от 120 человек. В человеках. Это мы умеем. 120 делим на 100 (вычисляем 1%) и умножаем на х (вычисляем х% ). Получаем 1,2х .

Осмыслим результат.

х процентов от 120 человек, это 1,2х человек . А таких человек у нас три. Остаётся приравнять:

1,2х = 3

Решаем это уравнение:

Вспоминаем, что за икс мы брали количество процентов. Значит 3 человека от 120 человек – это 2,5%.

Вот и всё.

Можно и по-другому. Обойтись простой смекалкой, безо всяких уравнений. Соображаем, во сколько раз 3 человека меньше 120? Делим 120 на 3 и получаем 40. Значит, 3 меньше 120 в 40 раз.

Искомое количество людей в процентах будет во столько же раз меньше 100%. Ведь 120 человек – это и есть 100%. Делим 100 на 40, 100/40 = 2,5

Вот и всё. Получили 2,5%.

Есть ещё способ пропорций, но это, в сущности, то же самое в сокращенном варианте. Все эти способы – правильные. Как вам удобнее, привычнее, понятнее – так и считайте.

Опять тренируемся.

Посчитайте, сколько процентов составляют:
3 человека из 12.
10 рублей от 800.
4 учебника из 160 книг.
24 правильных ответа на 32 вопроса.
2 угаданных ответа на 32 вопроса.
9 попаданий из 10 выстрелов.

Ответы (в беспорядке): 75%, 25%, 90%, 1,25%, 2,5%, 6,25%.

В процессе вычислений вы вполне можете столкнуться с дробями. В том числе и неудобными, типа 1,333333… А кто вам велел калькулятором пользоваться? Сами? Не надо. Считайте без калькулятора , как написано в теме «Дроби». Проценты всякие бывают…

Вот мы и освоили переход от величин к процентам и обратно. Можно браться за задачки.

Одним из базовых понятий математики является процент. Для того чтобы понять, что такое процент, достаточно разделить заданную целую величину на сто. Одна сотая часть будет одним процентом (обозначается 1%). Как в точных и экономических науках, так и в других сферах жизни проценты используются для обозначения долей по отношению к целому. При этом само целое обозначается как 100%. В некоторых случаях используется при сравнении двух величин: например, иногда стоимость товаров не сравнивается в денежных единицах, а оценивается, на сколько % цена одного товара больше или меньше цены другого. Термин также получил широкое распространение в банковском деле и в большинстве случаев используется в качестве синонима словосочетания «процентная ставка».

Правило нахождения процентов от числа

Вычисление процентных долей от целого – одна из основных математических операций, к тому же часто используемая в повседневной жизни. Правило нахождения процентов от числа гласит о том, что для решения такой задачи его необходимо умножить на указанное в условиях количество %, после чего полученный результат разделить на 100. Также можно разделить число на 100, и полученный результат умножить на заданное количество %. Важно помнить ещё один тезис: если заданный условиями процент превышает 100%, то полученное числовое значение всегда больше исходного (заданного) – и наоборот.

Правило нахождения числа по его проценту

Существует обратное правило нахождения числа по его проценту. Для того чтобы получить результат по такой математической операции (второму из трёх базовых типов задач на процентные вычисления) необходимо указанное в условиях число разделить на заданную процентную величину, после чего полученный результат умножить на 100. При этом первым действием вычисляется количество единиц исходной величины в 1%, а вторым – в целом (то есть в 100%). Если количество % превышает 100, то полученный результат всегда будет меньше числового значения, заданного условиями задачи – и наоборот.

Правило нахождения процентного выражения числа от другого

Третьим базовым типом математических задач на процентные вычисления являются такие задания, в которых необходимо использовать правило нахождения процентного выражения числа от другого (или соотношения двух величин). Оно гласит о том, что для решения необходимо второе число разделить на первое, после чего полученный результат умножить на сто. Подобное соотношение показывает, сколько % одно числовое значение составляет от другого (то есть, фактически речь идёт об отношении между двумя числовыми значениями, выраженном в %).

Процент это один из интересных и часто применяемых на практике инструментов. Проценты частично или полностью применяются в любой науке, на любой работе и даже в повседневном общении. Человек, хорошо разбирающийся в процентах, создаёт впечатление умного и образованного. В данном уроке мы узнаем, что такое процент и какие действия можно с ним выполнять.

Содержание урока

Что такое процент?

В повседневной жизни дроби встречаются наиболее часто. Они даже получили свои названия: половина, треть и четверть соответственно.

Но есть ещё одна дробь, которая тоже встречается часто. Это дробь (одна сотая). Данная дробь получила название процент . А что означает дробь одна сотая ? Эта дробь означает, что чего-либо разделено на сто частей и оттуда взята одна часть. Значит процентом является одна сотая часть чего-либо.

Процентом называется одна сотая часть чего-либо

Например, от одного метра составляет 1 см. Один метр разделили на сто частей, и взяли одну часть (вспоминаем, что 1 метр это 100 см). А одна часть из этих ста частей составляет 1 см. Значит один процент от одного метра составляет 1 см.

От одного метра уже составляет 2 сантиметра. В этот раз один метр разделили на сто частей и взяли оттуда не одну, а две части. А две части из ста составляют два сантиметра. Значит два процента от одного метра составляет 2 сантиметра.

Еще пример, от одного рубля составляет одну копейку. Рубль разделили на сто частей, и взяли оттуда одну часть. А одна часть из этих ста частей составляет одну копейку. Значит один процент от одного рубля составляет одну копейку.

Проценты встречались настолько часто, что люди заменили дробь на специальный значок, который выглядит следующим образом:

Эта запись читается как «один процент». Она заменяет собой дробь . Также она заменяет собой десятичную дробь 0,01 потому что если перевести обычную дробь в десятичную дробь, то мы получим 0,01. Стало быть между этими тремя выражениями можно поставить знак равенства:

1% = = 0,01

Два процента в дробном виде будут записаны как , в виде десятичной дроби как 0,02 а с помощью специального значка два процента записывается как 2%.

2% = = 0,02

Как найти процент?

Принцип нахождения процента такой же, как и обычное нахождение дроби от числа. Чтобы найти процент от чего-либо, нужно это чего-либо разделить на 100 частей и полученное число умножить на нужный процент.

Например, найти 2% от 10 см.

Что означает запись 2% ? Запись 2% заменяет собой запись . Если перевести это задание на более понятый язык, то оно будет выглядеть следующим образом:

Найти от 10 см

А как решать подобные задания мы уже знаем. Это обычное нахождение дроби от числа. Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.

Итак, делим число 10 на знаменатель дроби

Получили 0,1. Теперь 0,1 умножаем на числитель дроби

0,1 × 2 = 0,2

Получили ответ 0,2. Значит 2% от 10 см составляет 0,2 см. А если , то получим 2 миллиметра:

0,2 см = 2 мм

Значит 2% от 10 см составляют 2 мм.

Пример 2. Найти 50% от 300 рублей.

Чтобы найти 50% от 300 рублей, нужно эти 300 рублей разделить на 100, и полученный результат умножить на 50.

Итак, делим 300 рублей на 100

300: 100 = 3

Теперь полученный результат умножаем на 50

3 × 50 = 150 руб.

Значит 50% от 300 рублей составляет 150 рублей.

Если на первых порах сложно привыкнуть к записи со значком %, можно заменять эту запись на обычную дробную запись.

Например, те же 50% можно заменить на запись . Тогда задание будет выглядеть так: Найти от 300 рублей, а решать такие задачи для нас пока проще

300: 100 = 3

3 × 50 = 150

В принципе, ничего сложного здесь нет. Если возникают сложности, советуем остановиться и заново изучить и .

Пример 3. Швейная фабрика выпустила 1200 костюмов. Из них 32% составляют костюмы нового фасона. Сколько костюмов нового фасона выпустила фабрика?

Здесь нужно найти 32% от 1200. Найденное число будет ответом к задаче. Воспользуемся правилом нахождения процента. Разделим 1200 на 100 и полученный результат умножим на искомый процент, т.е. на 32

1200: 100 = 12

12 × 32 = 384

Ответ: 384 костюмов нового фасона выпустила фабрика.

Второй способ нахождения процента

Второй способ нахождения процента намного проще и удобнее. Он заключается в том, что число от которого ищется процент сразу умножит на нужный процент, выраженный в виде десятичной дроби.

Например, решим предыдущую задачу этим способом. Найти 50% от 300 рублей.

Запись 50% заменяет собой запись , а если перевести эти в десятичную дробь, то мы получим 0,5

Теперь для нахождения 50% от 300, достаточно будет умножить число 300 на десятичную дробь 0,5

300 × 0,5 = 150

Кстати, по этому же принципу работает механизм нахождения процента на калькуляторах. Чтобы найти процент с помощью калькулятора, нужно ввести в калькулятор число от которого ищется процент, затем нажать клавишу умножения и ввести искомый процент. Затем нажать клавишу процента %

Нахождения числа по его проценту

Зная процент от числа, можно узнать всё число. Например, предприятие выплатило нам 60000 рублей за работу, и это составляет 2% от общей прибыли, полученной предприятием. Зная свою долю, и сколько процентов она составляет, мы можем узнать общую прибыль.

Сначала нужно узнать сколько рублей составляет один процент. Как это сделать? Попробуйте догадаться внимательно изучив следующий рисунок:

Если два процента от общей прибыли составляют 60 тысяч рублей, то нетрудно догадаться, что один процент составляет 30 тысяч рублей. А чтобы получить эти 30 тысяч рублей, нужно 60 тысяч разделить на 2

60 000: 2 = 30 000

Мы нашли один процент от общей прибыли, т.е. . Если одна часть это 30 тысяч, то для определения ста частей, нужно 30 тысяч умножить на 100

30 000 × 100 = 3 000 000

Мы нашли общую прибыль. Она составляет три миллиона.

Попробуем сформировать правило нахождения числа по его проценту.

Чтобы найти число по его проценту, нужно известное число разделить на данный процент, и полученный результат умножить на 100.

Пример 2. Число 35 это 7% от какого-то неизвестного числа. Найти это неизвестное число.

Читаем первую часть правила:

Чтобы найти число по его проценту, нужно известное число разделить на данный процент

У нас известное число это 35, а данный процент это 7. Разделим 35 на 7

35: 7 = 5

Читаем вторую часть правила:

и полученный результат умножить на 100

У нас полученный результат это число 5. Умножим 5 на 100

5 × 100 = 500

500 это неизвестное число, которое требовалось найти. Можно сделать проверку. Для этого находим 7% от 500. Если мы всё сделали правильно, то должны получить 35

500: 100 = 5

5 × 7 = 35

Получили 35. Значит задача была решена правильно.

Принцип нахождения числа по его проценту такой же, как и обычное нахождение целого числа по его дроби. Если проценты на первых порах смущают и сбивают с толку, то запись с процентом можно заменять на дробную запись.

Например, предыдущая задача может быть изложена так: число 35 это от какого-то неизвестного числа. Найти это неизвестное число. Как решать такие задачи мы уже знаем. Это нахождение числа по дроби. Для нахождения числа по дроби, мы это число делим на числитель дроби и полученный результат умножаем на знаменатель дроби. В нашем примере число 35 нужно разделить на 7 и полученный результат умножить на 100

35: 7 = 5

5 × 100 = 500

В будущем мы будем решать задачи на проценты, часть из которых будут сложными. Чтобы на первых порах не усложнять обучение, достаточно уметь находить процент от числа, и число по проценту.

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках