Разложение функции в ряд тейлора, маклорена, лорана. Разложение в ряд маклорена на примерах
16.1. Разложение элементарных функций в ряды Тейлора и
Маклорена
Покажем,
что если произвольная функция
задана на множестве
, в окрестности точки
имеет множество производных и является
суммой степенного ряда:
то можно найти коэффициенты этого ряда.
Подставим
в степенной ряд
.
Тогда
.
Найдем
первую производную функции
:
При
:
.
Для второй производной получим:
При
:
.
Продолжая
эту процедуру n
раз получим:
.
Таким образом, получили степенной ряд вида:
,
который
называется рядом Тейлора
для функции
в окресности точки
.
Частным
случаем ряда Тейлора является ряд
Маклорена
при
:
Остаток
ряда Тейлора (Маклорена) получается
отбрасыванием от основных рядов n
первых членов и обозначается как
.
Тогда функцию
можно записать как суммуn
первых членов ряда
и остатка
:,
.
Остаток
обычно
выражают разными формулами.
Одна из них в форме Лагранжа:
,
где
.
.
Заметим,
что на практике чаще используетсяряд Маклорена. Таким
образом, для того, чтобы записать функцию
в виде суммыстепенного ряданеобходимо:
1) найти коэффициенты ряда Маклорена (Тейлора);
2) найти область сходимости полученного степенногоряда;
3)
доказать, что данный ряд сходитсяк функции
.
Теорема
1
(необходимое и достаточное условие
сходимости ряда Маклорена). Пусть радиус
сходимости ряда
.
Для того, чтобы этот ряд сходился
в интервале
к функции
,необходимо
и достаточно, чтобы выполнялось условие:
в указанном интервале.
Теорема
2.
Если производные любого порядка
функции
в некотором промежутке
ограниченны по абсолютной величине
одним и тем же числомM
,
то есть
,
то в этом промежутке функцию
можно разложитьв ряд
Маклорена.
Пример
1
.
Разложить в
ряд Тейлора вокрестноститочки
функцию.
Решение.
.
,;
,
;
,
;
,
.......................................................................................................................................
,
;
Область сходимости
.
Пример
2
.
Разложить
функциюв ряд Тейлора вокрестноститочки
.
Решение:
Находим
значение функции и ее производных при
.
,
;
,
;
...........……………………………
,
.
Подставляем эти значения в ряд. Получаем:
или
.
Найдем область сходимости этого ряда. По признаку Даламбера ряд сходится, если
.
Следовательно,
при любом
этот пределменее 1, а
потому область сходимости ряда будет:
.
Рассмотрим несколько примеров разложенияв ряд Маклорена основных элементарных функций. Напомним, что ряд Маклорена:
.
сходитсянаинтервале
к функции
.
Отметим, что для разложенияфункции в ряд необходимо:
а) найти коэффициенты ряда Маклорена для данной функции;
б) вычислить радиус сходимостидля полученного ряда;
в)
доказать, что полученный ряд сходитсяк функции
.
Пример
3.
Рассмотримфункцию
.
Решение.
Вычислим
значение функции и ее производных при
.
Тогда числовые коэффициенты ряда имеют вид:
для
любого n.
Подставим найденные
коэффициенты в ряд Маклорена и получим:
Найдем радиус сходимости полученного ряда, а именно:
.
Следовательно,
ряд сходитсянаинтервале
.
Этот
ряд сходитсяк функции
при любых значениях
,
потому чтоналюбом
промежутке
функция
иее производныепоабсолютной величинеограничены числом
.
Пример
4
.
Рассмотрим
функцию
.
Решение .
:
Нетрудно
заметить, что производные четногопорядка
,
а производные нечетногопорядка.
Подставим найденные коэффициенты в ряд
Маклорена иполучимразложение:
Найдем интервал сходимости данного ряда. По признаку Даламбера:
для
любого
.
Следовательно, ряд сходитсянаинтервале
.
Этот
ряд сходитсяк функции
,
потому что все ее производные
ограничены единицей.
Пример
5
.
.
Решение.
Найдем
значение функции и ее производных при
:
Таким
образом, коэффициенты данного ряда:
и
,
следовательно:
Аналогично
с предыдущим рядом область сходимости
.
Ряд сходитсяк функции
,
потому что все еепроизводные ограничены единицей.
Обратим
внимание, что функция
нечетнаяи разложениев рядпо нечетнымстепеням, функция
– четная и разложение в ряд по четным
степеням.
Пример
6
.
Биномиальный
ряд:
.
Решение .
Найдем
значение функции и ее производных при
:
Отсюда видно, что:
Подставим эти значения коэффициентов в ряд Маклорена и получим разложение данной функции в степенной ряд:
Найдем радиус сходимости этого ряда:
Следовательно,
ряд сходится на интервале
.
В предельных точках при
и
ряд может сходится или нет в зависимости
от показателя степени
.
Исследованный
ряд сходится на интервале
к функции
,
то есть суммаряда
при
.
Пример
7
.
Разложим в
ряд Маклорена функцию
.
Решение.
Для
разложенияв ряд этой
функции используем биномиальный ряд
при
.
Получим:
На основе свойства степенных рядов (степенной ряд можно интегрировать в области его сходимости) найдем интеграл от левой и правой частей данного ряда:
Найдем
область сходимости данного ряда:
,
то
есть областью сходимости данного ряда
является интервал
.
Определим сходимость ряда на концах
интервала. При
.
Этот ряд является гармоничным рядом,
то есть расходится. При
получим числовой ряд с общим членом
.
Ряд
по признаку Лейбница сходится. Таким
образом, областью сходимости данного
ряда является промежуток
.
16.2. Применение степенных рядов степеней в приближенных вычислениях
В приближенных вычислениях степенные ряды играют исключительно большую роль. С их помощью составлены таблицы тригонометрических функций, таблицы логарифмов, таблицы значений других функций, которые используют в разных областях знаний, например в теории вероятностей и математической статистике. Кроме того, разложениефункций в степенной ряд полезно для их теоретического исследования. Главным вопросом при использовании степенных рядов в приближенных вычислениях является вопрос оценки погрешности при замене суммы ряда суммой его первыхn членов.
Рассмотрим два случая:
функция разложена в знакочередующийся ряд;
функция разложена в знакопостоянный ряд.
Вычисление с помощью знакочередующихся рядов
Пусть
функция
разложена в знакочередующийся степенной
ряд. Тогда при вычислении этой функции
для конкретного значения
получаем числовой ряд, к которому можно
применить признак Лейбница. В соответствии
с этим признаком, если сумму ряда заменить
суммой его первыхn
членов, то
абсолютная погрешность не превышает
первого члена остатка этого ряда, то
есть:
.
Пример
8
.
Вычислить
с точностью до 0,0001.
Решение .
Будем
использовать ряд Маклорена для
,
подставив значение угла в радианах:
Если сравнить первый и второй члены ряда с заданной точностью, то: .
Третий член разложения:
меньше
заданной точности вычисления.
Следовательно, для вычисления
достаточно оставить два члена ряда, то
есть
.
Таким
образом
.
Пример
9
.
Вычислить
с точностью 0,001.
Решение .
Будем
использовать формулу биномиального
ряда. Для этого запишем
в виде:
.
В
этом выражении
,
Сравним
каждый из членов ряда с точностью,
которая задана. Видно, что
.
Следовательно, для вычисления
достаточно оставить три члена ряда.
или
.
Вычисление с помощью знакоположительных рядов
Пример 10 . Вычислить число с точностью до 0,001.
Решение .
В
ряд для функцїї
подставим
.
Получим:
Оценим погрешность, которая возникает при замене суммы ряда суммой первых членов. Запишем очевидное неравенство:
то
есть 2<<3.
Используем формулу остаточного члена
ряда в форме Лагранжа:
,
.
По
условию задачи нужно найти n
такое, чтобы выполнялось неравенство:
или
.
Легко
проверить, что при n
= 6:
.
Следовательно,
.
Пример
11
.
Вычислить
с точностью0,0001.
Решение .
Заметим,
что для вычисления логарифмов можно
было бы применить ряд для функции
,
но этот ряд очень медленно сходится и
для достижения заданной точности нужно
было бы взять 9999 членов! Поэтому для
вычисления логарифмов, как правило,
используется ряд для функции
,
который сходится на интервале
.
Вычислим
с помощью этого ряда. Пусть
,
тогда
.
Следовательно,
,
Для
того, чтобы вычислить
с заданной точностью, возьмем сумму
первых четырех членов:
.
Остаток
ряда
отбросим. Оценим погрешность. Очевидно,
что
или
.
Таким
образом, в ряду, который был использован
для вычисления, достаточно было взять
только четырепервые
слагаемые вместо 9999 в ряду для функции
.
Вопросы для самодиагностики
1. Что такое ряд Тейлора?
2. какой вид имеел ряд Маклорена?
3. Сформулировать теорему о разложении функции в ряд Тейлора.
4. Записать разложение в ряд Маклорена основных функций.
5. Указать области сходимости рассмотренных рядов.
6. Как выполнить оценку погрешности в приближенных вычислениях с помощью степенных рядов?
"Найти разложение в ряд Маклорена функци f(x) " - именно так звучит задание по высшей математике, которое одним студентам по силам, а другие не могут справиться с примерами. Есть несколько способов разложения ряда по степенях, здесь будет дана методика разложения функций в ряд Маклорена. При развитии функции в ряд нужно хорошо уметь вычислять производные.
Пример 4.7 Разложить функцию в ряд по степеням x
Вычисления:
Выполняем разложение функции согласно формуле Маклорена. Сначала разложим в ряд знаменатель функции
напоследок умножим разложение на числитель.
Первое слагаемое - значение функции в нуле f (0) = 1/3.
Найдем производные функции первого и высших порядков f (x)
и значение этих производных в точке x=0
Далее с закономерности изменения значения производных в 0
записываем формулу для n-й
производной
Итак, знаменатель представим в виде разложения в ряд Маклорена
Умножаем на числитель и получаем искомое разложение функции в ряд по степеням х
Как видите ничего сложного здесь нет.
Все ключевые моменты базируются на умении вычислять производные и быстрому обобщении значение производной старших порядков в нуле. Следующие примеры помогут Вам научиться быстро раскладывать функцию в ряд.
Пример 4.10
Найти разложение в ряд Маклорена функции
Вычисления:
Как Вы возможно догадались раскладывать в ряд будем косинус в числителе. Для этого можете использовать формулы для бесконечно малых величин, или же вывести разложение косинуса через производные. В результате придем к следующему ряду по степеням x
Как видите имеем минимум вычислений и компактную запись разложения в ряд.
Пример 4.16
Разложить функцию в ряд по степеням x:
7/(12-x-x^2)
Вычисления:
В подобного рода примерах необходимо дробь разложить через сумму простейших дробей.
Как это делать мы сейчас не будем показывать, но с помощью неопределенных коэффициентов придем к сумме дох дробей.
Далее записываем знаменатели в показательной форме
Осталось разложить слагаемые с помощью формулы Маклорена. Подытоживая слагаемые при одинаковых степенях "икс" составляем формулу общего члена разложения функции в ряд
Последнюю часть перехода к ряду в начале трудно реализовать, поскольку сложно объединить формулы для парных и непарных индексов (степеней), но с практикой у Вас это будет получаться все лучше.
Пример 4.18
Найти разложение в ряд Маклорена функции
Вычисления:
Найдем производную этой функции:
Разложим функцию в ряд, воспользовавшись одной из формул Макларена:
Ряды почленно суммируем на основе того, что оба абсолютно совпадающие. Проинтегрировав почленно весь ряд получим разложение функции в ряд по степеням x
Между последними двумя строками разложения имеется переход который в начале у Вас будет забирать много времени. Обобщение формулы ряда не всем дается легко, поэтому не переживайте по поводу того что не можете достать красивой и компактной формулы.
Пример 4.28
Найти разложение в ряд Маклорена функции:
Запишем логарифм следующим образом
По формуле Маклорена раскладываем в ряд по степеням x
логарифм функцию
Конечное свертывания на первый взгляд сложное, однако при чередовании знаков Вы всегда получите нечто подобное. Входной урок по теме расписания функций в ряд завершено. Другие не менее интересные схемы разложения будут подробно рассмотрены в следующих материалах.
Если функция f(x) имеет на некотором интервале, содержащем точку а , производные всех порядков, то к ней может быть применена формула Тейлора:
где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а .
Если для некоторого значения х r n ®0 при n ®¥, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х , если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.
При а =0 получаем ряд, называемый рядом Маклорена :
Пример 1 f(x)= 2 x .
Решение . Найдем значения функции и ее производных при х =0
f(x) = 2 x , f(0) = 2 0 =1;
f¢(x) = 2 x ln2, f¢(0) = 2 0 ln2= ln2;
f¢¢(x) = 2 x ln 2 2, f¢¢(0) = 2 0 ln 2 2= ln 2 2;
f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:
Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -¥<x <+¥.
Пример 2 х +4) для функции f(x)= e x .
Решение . Находим производные функции e x и их значения в точке х =-4.
f(x) = е x , f(-4) = е -4 ;
f¢(x) = е x , f¢(-4) = е -4 ;
f¢¢(x) = е x , f¢¢(-4) = е -4 ;
f (n) (x) = е x , f (n) ( -4) = е -4 .
Следовательно, искомый ряд Тейлора функции имеет вид:
Данное разложение также справедливо для -¥<x <+¥.
Пример 3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),
(т.е. в ряд Тейлора в окрестности точки х =1).
Решение . Находим производные данной функции.
Подставляя эти значения в формулу, получим искомый ряд Тейлора:
С помощью признака Даламбера можно убедиться, что ряд сходится при
½х- 1½<1. Действительно,
Ряд сходится, если ½х- 1½<1, т.е. при 0<x <2. При х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х =0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].
Приведем полученные подобным образом разложения в ряд Маклорена (т.е. в окрестности точки х =0) для некоторых элементарных функций:
(2) ,
(3) ,
(последнее разложение называют биномиальным рядом)
Пример 4 . Разложить в степенной ряд функцию
Решение . В разложении (1) заменяем х на –х 2 , получаем:
Пример 5 . Разложить в ряд Маклорена функцию
Решение . Имеем
Пользуясь формулой (4), можем записать:
подставляя вместо х в формулу –х , получим:
Отсюда находим:
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
Этот ряд сходится в интервале
(-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.
Замечание .
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.
Этот метод иллюстрирует теорему о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.
Пример 6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.
Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):
Полученный ряд сходится при или –3<x- 3<3, 0<x < 6 и является искомым рядом Тейлора для данной функции.
Пример 7 . Написать ряд Тейлора по степеням (х -1) функции .
Решение .
Ряд сходится при , или -2 < x £ 5.
Если функция f(x) имеет на некотором интервале, содержащем точку а, производные всех порядков, то к ней может быть применена формула Тейлора:
,
где r n
– так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а.
Правила ввода функций :
Если для некоторого значения х
r n
→0 при n
→∞, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора
:
,
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х, если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.
При а =0 получаем ряд, называемый рядом Маклорена
:
,
Разложение простейших (элементарных) функций в ряд Маклорена:
Показательные функции
, R=∞
Тригонометрические функции
, R=∞
, R=∞
, (-π/2 < x < π/2), R=π/2
Функция actgx не разлагается по степеням x, т.к. ctg0=∞
Гиперболические функции
Логарифмические функции
, -1
Биномиальные ряды
.
Пример №1
. Разложить в степенной ряд функцию f(x)=
2 x
.
Решение
. Найдем значения функции и ее производных при х
=0
f(x)
= 2 x
, f(0)
= 2 0
=1;
f"(x)
= 2 x
ln2, f"(0)
= 2 0
ln2= ln2;
f""(x)
= 2 x
ln 2 2, f""(0)
= 2 0
ln 2 2= ln 2 2;
…
f (n) (x)
= 2 x
ln n
2, f (n) (0)
= 2 0
ln n
2= ln n
2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:
Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -∞<x
<+∞.
Пример №2
. Написать ряд Тейлора по степеням (х
+4) для функции f(x)=
e x
.
Решение
. Находим производные функции e x
и их значения в точке х
=-4.
f(x)
= е x
, f(-4)
= е -4
;
f"(x)
= е x
, f"(-4)
= е -4
;
f""(x)
= е x
, f""(-4)
= е -4
;
…
f (n) (x)
= е x
, f (n) ( -4)
= е -4
.
Следовательно, искомый ряд Тейлора функции имеет вид:
Данное разложение также справедливо для -∞<x
<+∞.
Пример №3
. Разложить функцию f(x)
=lnx
в ряд по степеням (х-
1),
(т.е. в ряд Тейлора в окрестности точки х
=1).
Решение
. Находим производные данной функции.
f(x)=lnx , , , ,
f(1)=ln1=0, f"(1)=1, f""(1)=-1, f"""(1)=1*2,..., f (n) =(-1) n-1 (n-1)!
Подставляя эти значения в формулу, получим искомый ряд Тейлора:
С помощью признака Даламбера можно убедиться, что ряд сходится при ½х-1½<1 . Действительно,
Ряд сходится, если ½х-
1½<1, т.е. при 0<x
<2. При х
=2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х=0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].
Пример №4
. Разложить в степенной ряд функцию .
Пример №5
. Разложить в ряд Маклорена функцию .
Замечание
.
Этот метод основан на теореме о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось. Пример №5а
. Разложить в ряд Маклорена функцию , указать область сходимости.
Дробь 3/(1-3x) можно рассматривать как сумму бесконечно убывающей геометрической прогрессии знаменателем 3x, если |3x| < 1. Аналогично, дробь 2/(1+2x) как сумму бесконечно убывающей геометрической прогрессии знаменателем -2x, если |-2x| < 1. В результате получим разложение в степенной ряд
Пример №6
. Разложить функцию в ряд Тейлора в окрестности точки х =3.
Пример №7
. Написать ряд Тейлора по степеням (х -1) функции ln(x+2) .
Пример №8
. Разложить функцию f(x)=sin(πx/4) в ряд Тейлора в окрестности точки x =2.
Пример №1
. Вычислить ln(3) с точностью до 0,01.
Пример №2
. Вычислить с точностью до 0,0001.
Пример №3
. Вычислить интеграл ∫ 0 1 4 sin (x) x с точностью до 10 -5 .
Пример №4
. Вычислить интеграл ∫ 0 1 4 e x 2 с точностью до 0,001.
Изучающим высшую математику должно быть известно, что суммой некоего степенного ряда, принадлежащего интервалу сходимости данного нам ряда, оказывается непрерывное и безграничное число раз дифференцированная функция. Возникает вопрос: можно ли утверждать, что заданная произвольная функция f(х) - это сумма некоего степенного ряда? То есть при каких условиях ф-ия f(х) может быть изображена степенным рядом? Важность такого вопроса состоит в том, что существует возможность приближенно заменить ф-ию f(х) суммой нескольких первых членов степенного ряда, то есть многочленом. Такая замена функции довольно простым выражением - многочленом - является удобной и при решении некоторых задач а именно: при решении интегралов, при вычислении и т. д. Доказано, что для некой ф-ии f(х), в которой можно вычислить производные до (n+1)-го порядка, включая последний, в окрестности (α - R; x 0 + R) некоторой точки х = α справедливой является формула: Данная формула носит имя известного ученого Брука Тейлора. Ряд, который получают из предыдущего, называется ряд Маклорена: Правило, которое дает возможность произвести разложение в ряд Маклорена: R n (х) -> 0 при n -> бесконечности. В случае если таковой существует, в нем функция f(х) должна совпадать с суммой ряда Маклорена. Рассмотрим теперь ряды Маклорена для отдельных функций. 1. Итак, первой будет f(x) = е х. Разумеется, что по своим особенностям такая ф-ия имеет производные самых разных порядков, причем f (k) (х) = e x , где k равняется всем Подставим х=0. Получим f (k) (0) = e 0 =1, k=1,2... Исходя из вышесказанного, ряд е х будет выглядеть следующим образом: 2. Ряд Маклорена для функции f(х) = sin х. Сразу же уточним, что ф-ия для всех неизвестных будет иметь производные, к тому же f " (х) = cos х = sin(х+п/2), f "" (х) = -sin х = sin(х+2*п/2)..., f (k) (х) = sin(х+k*п/2), где k равняется любому натуральному числу. То есть, произведя несложные расчеты, можем прийти к выводу, что ряд для f(х) = sin х будет такого вида: 3. Теперь попробуем рассмотреть ф-ию f(х) = cos х. Она для всех неизвестных имеет производные произвольного порядка, причем |f (k) (x)| = |cos(х+k*п/2)|<=1, k=1,2... Снова-таки, произведя определенные расчеты, получим, что ряд для f(х) = cos х будет выглядеть так: Итак, мы перечислили важнейшие функции, которые могут быть разложены в ряд Маклорена, однако их дополняют ряды Тейлора для некоторых функций. Сейчас мы перечислим и их. Стоит также отметить, что ряды Тейлора и Маклорена являются важной частью практикума решения рядов в высшей математике. Итак, ряды Тейлора. 1. Первым будет ряд для ф-ии f(х) = ln(1+x). Как и в предыдущих примерах, для данной нам f(х) = ln(1+х) можно сложить ряд, используя общий вид ряда Маклорена. однако для этой функции ряд Маклорена можно получить значительно проще. Проинтегрировав некий геометрический ряд, мы получим ряд для f(х) = ln(1+х) такого образца: 2. И вторым, который будет заключительным в нашей статье, будет ряд для f(х) = arctg х. Для х, принадлежащего промежутку [-1;1] справедливым является разложение: На этом все. В данной статье были рассмотрены наиболее употребляемые ряды Тейлора и Маклорена в высшей математике, в частности, в экономических и технических вузах.
Решение
. В разложении (1) заменяем х на -х 2 , получаем:
, -∞
Решение
. Имеем
Пользуясь формулой (4), можем записать:
подставляя вместо х в формулу –х, получим:
Отсюда находим: ln(1+x)-ln(1-x) = -
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
. Этот ряд сходится в интервале (-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а
). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х
стоит k(х-а
) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t
=х-а
и раскладывать полученную функцию относительно t в ряд Маклорена.
Решение. Сначала найдем 1-x-6x 2 =(1-3x)(1+2x) , .
на элементарные:
с областью сходимости |x| < 1/3.
Решение
. Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х
=3. Однако проще будет воспользоваться имеющимся разложением (5):
=
Полученный ряд сходится при или –3
Решение
.
Ряд сходится при , или -2 < x < 5.
Решение
. Сделаем замену t=х-2:
Воспользовавшись разложением (3), в котором на место х подставим π / 4 t, получим:
Полученный ряд сходится к заданной функции при -∞< π / 4 t<+∞, т.е. при (-∞
, (-∞Приближенные вычисления с помощью степенных рядов
Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.
Рассмотрим разложение функции в степенной ряд:
Для того, чтобы вычислить приближенное значение функции в заданной точке х
, принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n
членов (n
– конечное число), а остальные слагаемые отбрасывают:
Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x) . Для этого применяют следующие приемы:
Решение
. Воспользуемся разложением , где x=1/2 (см. пример 5 в предыдущей теме):
Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:
Таким образом, мы можем отбросить этот остаток и получаем
Решение
. Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.
так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:
, поэтому его и следующие за ним члены можно отбросить.
Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подынтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.
Решение
. Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.
Разделив почленно ряд для sinx
на x
, получим:
Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:
Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.
Таким образом, находим
.
Решение
.
. Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.
≈0.0001<0.001. Следовательно, .