Разложение функции в ряд тейлора, маклорена, лорана. Разложение в ряд тейлора
16.1. Разложение элементарных функций в ряды Тейлора и
Маклорена
Покажем,
что если произвольная функция
задана на множестве
, в окрестности точки
имеет множество производных и является
суммой степенного ряда:
то можно найти коэффициенты этого ряда.
Подставим
в степенной ряд
.
Тогда
.
Найдем
первую производную функции
:
При
:
.
Для второй производной получим:
При
:
.
Продолжая
эту процедуру n
раз получим:
.
Таким образом, получили степенной ряд вида:
,
который
называется рядом Тейлора
для функции
в окресности точки
.
Частным
случаем ряда Тейлора является ряд
Маклорена
при
:
Остаток
ряда Тейлора (Маклорена) получается
отбрасыванием от основных рядов n
первых членов и обозначается как
.
Тогда функцию
можно записать как суммуn
первых членов ряда
и остатка
:,
.
Остаток
обычно
выражают разными формулами.
Одна из них в форме Лагранжа:
,
где
.
.
Заметим,
что на практике чаще используетсяряд Маклорена. Таким
образом, для того, чтобы записать функцию
в виде суммыстепенного ряданеобходимо:
1) найти коэффициенты ряда Маклорена (Тейлора);
2) найти область сходимости полученного степенногоряда;
3)
доказать, что данный ряд сходитсяк функции
.
Теорема
1
(необходимое и достаточное условие
сходимости ряда Маклорена). Пусть радиус
сходимости ряда
.
Для того, чтобы этот ряд сходился
в интервале
к функции
,необходимо
и достаточно, чтобы выполнялось условие:
в указанном интервале.
Теорема
2.
Если производные любого порядка
функции
в некотором промежутке
ограниченны по абсолютной величине
одним и тем же числомM
,
то есть
,
то в этом промежутке функцию
можно разложитьв ряд
Маклорена.
Пример
1
.
Разложить в
ряд Тейлора вокрестноститочки
функцию.
Решение.
.
,;
,
;
,
;
,
.......................................................................................................................................
,
;
Область сходимости
.
Пример
2
.
Разложить
функциюв ряд Тейлора вокрестноститочки
.
Решение:
Находим
значение функции и ее производных при
.
,
;
,
;
...........……………………………
,
.
Подставляем эти значения в ряд. Получаем:
или
.
Найдем область сходимости этого ряда. По признаку Даламбера ряд сходится, если
.
Следовательно,
при любом
этот пределменее 1, а
потому область сходимости ряда будет:
.
Рассмотрим несколько примеров разложенияв ряд Маклорена основных элементарных функций. Напомним, что ряд Маклорена:
.
сходитсянаинтервале
к функции
.
Отметим, что для разложенияфункции в ряд необходимо:
а) найти коэффициенты ряда Маклорена для данной функции;
б) вычислить радиус сходимостидля полученного ряда;
в)
доказать, что полученный ряд сходитсяк функции
.
Пример
3.
Рассмотримфункцию
.
Решение.
Вычислим
значение функции и ее производных при
.
Тогда числовые коэффициенты ряда имеют вид:
для
любого n.
Подставим найденные
коэффициенты в ряд Маклорена и получим:
Найдем радиус сходимости полученного ряда, а именно:
.
Следовательно,
ряд сходитсянаинтервале
.
Этот
ряд сходитсяк функции
при любых значениях
,
потому чтоналюбом
промежутке
функция
иее производныепоабсолютной величинеограничены числом
.
Пример
4
.
Рассмотрим
функцию
.
Решение .
:
Нетрудно
заметить, что производные четногопорядка
,
а производные нечетногопорядка.
Подставим найденные коэффициенты в ряд
Маклорена иполучимразложение:
Найдем интервал сходимости данного ряда. По признаку Даламбера:
для
любого
.
Следовательно, ряд сходитсянаинтервале
.
Этот
ряд сходитсяк функции
,
потому что все ее производные
ограничены единицей.
Пример
5
.
.
Решение.
Найдем
значение функции и ее производных при
:
Таким
образом, коэффициенты данного ряда:
и
,
следовательно:
Аналогично
с предыдущим рядом область сходимости
.
Ряд сходитсяк функции
,
потому что все еепроизводные ограничены единицей.
Обратим
внимание, что функция
нечетнаяи разложениев рядпо нечетнымстепеням, функция
– четная и разложение в ряд по четным
степеням.
Пример
6
.
Биномиальный
ряд:
.
Решение .
Найдем
значение функции и ее производных при
:
Отсюда видно, что:
Подставим эти значения коэффициентов в ряд Маклорена и получим разложение данной функции в степенной ряд:
Найдем радиус сходимости этого ряда:
Следовательно,
ряд сходится на интервале
.
В предельных точках при
и
ряд может сходится или нет в зависимости
от показателя степени
.
Исследованный
ряд сходится на интервале
к функции
,
то есть суммаряда
при
.
Пример
7
.
Разложим в
ряд Маклорена функцию
.
Решение.
Для
разложенияв ряд этой
функции используем биномиальный ряд
при
.
Получим:
На основе свойства степенных рядов (степенной ряд можно интегрировать в области его сходимости) найдем интеграл от левой и правой частей данного ряда:
Найдем
область сходимости данного ряда:
,
то
есть областью сходимости данного ряда
является интервал
.
Определим сходимость ряда на концах
интервала. При
.
Этот ряд является гармоничным рядом,
то есть расходится. При
получим числовой ряд с общим членом
.
Ряд
по признаку Лейбница сходится. Таким
образом, областью сходимости данного
ряда является промежуток
.
16.2. Применение степенных рядов степеней в приближенных вычислениях
В приближенных вычислениях степенные ряды играют исключительно большую роль. С их помощью составлены таблицы тригонометрических функций, таблицы логарифмов, таблицы значений других функций, которые используют в разных областях знаний, например в теории вероятностей и математической статистике. Кроме того, разложениефункций в степенной ряд полезно для их теоретического исследования. Главным вопросом при использовании степенных рядов в приближенных вычислениях является вопрос оценки погрешности при замене суммы ряда суммой его первыхn членов.
Рассмотрим два случая:
функция разложена в знакочередующийся ряд;
функция разложена в знакопостоянный ряд.
Вычисление с помощью знакочередующихся рядов
Пусть
функция
разложена в знакочередующийся степенной
ряд. Тогда при вычислении этой функции
для конкретного значения
получаем числовой ряд, к которому можно
применить признак Лейбница. В соответствии
с этим признаком, если сумму ряда заменить
суммой его первыхn
членов, то
абсолютная погрешность не превышает
первого члена остатка этого ряда, то
есть:
.
Пример
8
.
Вычислить
с точностью до 0,0001.
Решение .
Будем
использовать ряд Маклорена для
,
подставив значение угла в радианах:
Если сравнить первый и второй члены ряда с заданной точностью, то: .
Третий член разложения:
меньше
заданной точности вычисления.
Следовательно, для вычисления
достаточно оставить два члена ряда, то
есть
.
Таким
образом
.
Пример
9
.
Вычислить
с точностью 0,001.
Решение .
Будем
использовать формулу биномиального
ряда. Для этого запишем
в виде:
.
В
этом выражении
,
Сравним
каждый из членов ряда с точностью,
которая задана. Видно, что
.
Следовательно, для вычисления
достаточно оставить три члена ряда.
или
.
Вычисление с помощью знакоположительных рядов
Пример 10 . Вычислить число с точностью до 0,001.
Решение .
В
ряд для функцїї
подставим
.
Получим:
Оценим погрешность, которая возникает при замене суммы ряда суммой первых членов. Запишем очевидное неравенство:
то
есть 2<<3.
Используем формулу остаточного члена
ряда в форме Лагранжа:
,
.
По
условию задачи нужно найти n
такое, чтобы выполнялось неравенство:
или
.
Легко
проверить, что при n
= 6:
.
Следовательно,
.
Пример
11
.
Вычислить
с точностью0,0001.
Решение .
Заметим,
что для вычисления логарифмов можно
было бы применить ряд для функции
,
но этот ряд очень медленно сходится и
для достижения заданной точности нужно
было бы взять 9999 членов! Поэтому для
вычисления логарифмов, как правило,
используется ряд для функции
,
который сходится на интервале
.
Вычислим
с помощью этого ряда. Пусть
,
тогда
.
Следовательно,
,
Для
того, чтобы вычислить
с заданной точностью, возьмем сумму
первых четырех членов:
.
Остаток
ряда
отбросим. Оценим погрешность. Очевидно,
что
или
.
Таким
образом, в ряду, который был использован
для вычисления, достаточно было взять
только четырепервые
слагаемые вместо 9999 в ряду для функции
.
Вопросы для самодиагностики
1. Что такое ряд Тейлора?
2. какой вид имеел ряд Маклорена?
3. Сформулировать теорему о разложении функции в ряд Тейлора.
4. Записать разложение в ряд Маклорена основных функций.
5. Указать области сходимости рассмотренных рядов.
6. Как выполнить оценку погрешности в приближенных вычислениях с помощью степенных рядов?
В теории функциональных рядов центральное место занимает раздел, посвященный разложению функции в ряд.
Таким образом, ставится задача: по заданной функции требуется найти такой степенной ряд
который на некотором
интервале сходился и его сумма была
равна
,
т.е.
= ..
Эта задача называется задачей разложения функции в степенной ряд.
Необходимым условием разложимости функции в степенной ряд является её дифференцируемость бесконечное число раз – это следует из свойств сходящихся степенных рядов. Такое условие выполняется, как правило, для элементарных функций в их области определения.
Итак, предположим,
что функция
имеет производные любого порядка. Можно
ли её разложить в степенной ряд, если
можно, то как найти этот ряд? Проще
решается вторая часть задачи, с неё и
начнем.
Допустим, что
функцию
можно представить в виде суммы степенного
ряда, сходящегося в интервале, содержащем
точкух
0 :
= .. (*)
где а 0 ,а 1 ,а 2 ,...,а п ,... – неопределенные (пока) коэффициенты.
Положим в равенстве (*) значение х = х 0 , тогда получим
.
Продифференцируем степенной ряд (*) почленно
= ..
и полагая здесь х = х 0 , получим
.
При следующем дифференцировании получим ряд
= ..
полагая х
= х
0 ,
получим
,
откуда
.
После п -кратного дифференцирования получим
Полагая в последнем
равенстве х
= х
0 ,
получим
,
откуда
Итак, коэффициенты найдены
,
,
,
…,
,….,
подставляя которые в ряд (*), получим
Полученный
ряд называется рядом
Тейлора
для функции
.
Таким образом, мы установили, что если функцию можно разложить в степенной ряд по степеням (х - х 0 ), то это разложение единственно и полученный ряд обязательно является рядом Тейлора.
Заметим, что ряд Тейлора можно получить для любой функции, имеющей производные любого порядка в точке х = х 0 . Но это еще не означает, что между функцией и полученным рядом можно поставить знак равенства, т.е. что сумма ряда равна исходной функции. Во-первых, такое равенство может иметь смысл только в области сходимости, а полученный для функции ряд Тейлора может и расходиться, во-вторых, если ряд Тейлора будет сходиться, то его сумма может не совпадать с исходной функцией.
3.2. Достаточные условия разложимости функции в ряд Тейлора
Сформулируем утверждение, с помощью которого будет решена поставленная задача.
Если функция
в некоторой
окрестности точки х
0
имеет производные до (n
+
1)-го
порядка включительно, то в этой окрестности
имеет место
формула
Тейлора
где R n (х )-остаточный член формулы Тейлора – имеет вид (форма Лагранжа)
где точка ξ лежит между х и х 0 .
Отметим, что между рядом Тейлора и формулой Тейлора имеется различие: формула Тейлора представляет собой конечную сумму, т.е. п - фиксированное число.
Напомним, что сумма ряда S (x ) может быть определена как предел функциональной последовательности частичных сумм S п (x ) на некотором промежутке Х :
.
Согласно этому, разложить функцию в ряд Тейлора означает найти такой ряд, что для любого х X
Запишем формулу Тейлора в виде, где
Заметим, что
определяет ту
ошибку, которую мы получаем, заменяй
функцию f
(x
)
многочленом
S
n
(x
).
Если
,
то
,т.е. функция
разлагается в ряд
Тейлора. Инаоборот,
если
,
то
.
Тем самыммы доказали критерий разложимости функции в ряд Тейлора.
Для того, чтобы
в некотором промежутке функция
f
(х)
разлагалась в ряд Тейлора, необходимо
и достаточно, чтобы на этом промежутке
,
где
R
n
(x
)
- остаточный член ряда Тейлора.
С помощью сформулированного критерия можно получить достаточные условия разложимости функции в ряд Тейлора.
Если в некоторой окрестности точки х 0 абсолютные величины всех производных функции ограничены одним и тем же числом М ≥ 0, т.е.
, т о в этой окрестности функция разлагается в ряд Тейлора.
Из вышеизложенного следует алгоритм разложения функции f (x ) в ряд Тейлора в окрестности точки х 0 :
1. Находим производные функции f (x ):
f(x), f’(x), f”(x), f’”(x), f (n) (x),…
2. Вычисляем значение функции и значения её производных в точке х 0
f(x 0 ), f’(x 0 ), f”(x 0 ), f’”(x 0 ), f (n) (x 0 ),…
3. Формально записываем ряд Тейлора и находим область сходимости полученного степенного ряда.
4. Проверяем
выполнение достаточных условий, т.е.
устанавливаем, для каких х
из области
сходимости, остаточный член R
n
(x
)
стремится
к нулю при
или
.
Разложение функций в ряд Тейлора по данному алгоритму называют разложением функции в ряд Тейлора по определению или непосредственным разложением.
Изучающим высшую математику должно быть известно, что суммой некоего степенного ряда, принадлежащего интервалу сходимости данного нам ряда, оказывается непрерывное и безграничное число раз дифференцированная функция. Возникает вопрос: можно ли утверждать, что заданная произвольная функция f(х) - это сумма некоего степенного ряда? То есть при каких условиях ф-ия f(х) может быть изображена степенным рядом? Важность такого вопроса состоит в том, что существует возможность приближенно заменить ф-ию f(х) суммой нескольких первых членов степенного ряда, то есть многочленом. Такая замена функции довольно простым выражением - многочленом - является удобной и при решении некоторых задач а именно: при решении интегралов, при вычислении и т. д.
Доказано, что для некой ф-ии f(х), в которой можно вычислить производные до (n+1)-го порядка, включая последний, в окрестности (α - R; x 0 + R) некоторой точки х = α справедливой является формула:
Данная формула носит имя известного ученого Брука Тейлора. Ряд, который получают из предыдущего, называется ряд Маклорена:
Правило, которое дает возможность произвести разложение в ряд Маклорена:
- Определить производные первого, второго, третьего... порядков.
- Высчитать, чему равны производные в х=0.
- Записать ряд Маклорена для данной функции, после чего определить интервал его сходимости.
- Определить интервал (-R;R), где остаточная часть формулы Маклорена
R n (х) -> 0 при n -> бесконечности. В случае если таковой существует, в нем функция f(х) должна совпадать с суммой ряда Маклорена.
Рассмотрим теперь ряды Маклорена для отдельных функций.
1. Итак, первой будет f(x) = е х. Разумеется, что по своим особенностям такая ф-ия имеет производные самых разных порядков, причем f (k) (х) = e x , где k равняется всем Подставим х=0. Получим f (k) (0) = e 0 =1, k=1,2... Исходя из вышесказанного, ряд е х будет выглядеть следующим образом:
2. Ряд Маклорена для функции f(х) = sin х. Сразу же уточним, что ф-ия для всех неизвестных будет иметь производные, к тому же f " (х) = cos х = sin(х+п/2), f "" (х) = -sin х = sin(х+2*п/2)..., f (k) (х) = sin(х+k*п/2), где k равняется любому натуральному числу. То есть, произведя несложные расчеты, можем прийти к выводу, что ряд для f(х) = sin х будет такого вида:
3. Теперь попробуем рассмотреть ф-ию f(х) = cos х. Она для всех неизвестных имеет производные произвольного порядка, причем |f (k) (x)| = |cos(х+k*п/2)|<=1, k=1,2... Снова-таки, произведя определенные расчеты, получим, что ряд для f(х) = cos х будет выглядеть так:
Итак, мы перечислили важнейшие функции, которые могут быть разложены в ряд Маклорена, однако их дополняют ряды Тейлора для некоторых функций. Сейчас мы перечислим и их. Стоит также отметить, что ряды Тейлора и Маклорена являются важной частью практикума решения рядов в высшей математике. Итак, ряды Тейлора.
1. Первым будет ряд для ф-ии f(х) = ln(1+x). Как и в предыдущих примерах, для данной нам f(х) = ln(1+х) можно сложить ряд, используя общий вид ряда Маклорена. однако для этой функции ряд Маклорена можно получить значительно проще. Проинтегрировав некий геометрический ряд, мы получим ряд для f(х) = ln(1+х) такого образца:
2. И вторым, который будет заключительным в нашей статье, будет ряд для f(х) = arctg х. Для х, принадлежащего промежутку [-1;1] справедливым является разложение:
На этом все. В данной статье были рассмотрены наиболее употребляемые ряды Тейлора и Маклорена в высшей математике, в частности, в экономических и технических вузах.
"Найти разложение в ряд Маклорена функци f(x) " - именно так звучит задание по высшей математике, которое одним студентам по силам, а другие не могут справиться с примерами. Есть несколько способов разложения ряда по степенях, здесь будет дана методика разложения функций в ряд Маклорена. При развитии функции в ряд нужно хорошо уметь вычислять производные.
Пример 4.7 Разложить функцию в ряд по степеням x
Вычисления:
Выполняем разложение функции согласно формуле Маклорена. Сначала разложим в ряд знаменатель функции
напоследок умножим разложение на числитель.
Первое слагаемое - значение функции в нуле f (0) = 1/3.
Найдем производные функции первого и высших порядков f (x)
и значение этих производных в точке x=0
Далее с закономерности изменения значения производных в 0
записываем формулу для n-й
производной
Итак, знаменатель представим в виде разложения в ряд Маклорена
Умножаем на числитель и получаем искомое разложение функции в ряд по степеням х
Как видите ничего сложного здесь нет.
Все ключевые моменты базируются на умении вычислять производные и быстрому обобщении значение производной старших порядков в нуле. Следующие примеры помогут Вам научиться быстро раскладывать функцию в ряд.
Пример 4.10
Найти разложение в ряд Маклорена функции
Вычисления:
Как Вы возможно догадались раскладывать в ряд будем косинус в числителе. Для этого можете использовать формулы для бесконечно малых величин, или же вывести разложение косинуса через производные. В результате придем к следующему ряду по степеням x
Как видите имеем минимум вычислений и компактную запись разложения в ряд.
Пример 4.16
Разложить функцию в ряд по степеням x:
7/(12-x-x^2)
Вычисления:
В подобного рода примерах необходимо дробь разложить через сумму простейших дробей.
Как это делать мы сейчас не будем показывать, но с помощью неопределенных коэффициентов придем к сумме дох дробей.
Далее записываем знаменатели в показательной форме
Осталось разложить слагаемые с помощью формулы Маклорена. Подытоживая слагаемые при одинаковых степенях "икс" составляем формулу общего члена разложения функции в ряд
Последнюю часть перехода к ряду в начале трудно реализовать, поскольку сложно объединить формулы для парных и непарных индексов (степеней), но с практикой у Вас это будет получаться все лучше.
Пример 4.18
Найти разложение в ряд Маклорена функции
Вычисления:
Найдем производную этой функции:
Разложим функцию в ряд, воспользовавшись одной из формул Макларена:
Ряды почленно суммируем на основе того, что оба абсолютно совпадающие. Проинтегрировав почленно весь ряд получим разложение функции в ряд по степеням x
Между последними двумя строками разложения имеется переход который в начале у Вас будет забирать много времени. Обобщение формулы ряда не всем дается легко, поэтому не переживайте по поводу того что не можете достать красивой и компактной формулы.
Пример 4.28
Найти разложение в ряд Маклорена функции:
Запишем логарифм следующим образом
По формуле Маклорена раскладываем в ряд по степеням x
логарифм функцию
Конечное свертывания на первый взгляд сложное, однако при чередовании знаков Вы всегда получите нечто подобное. Входной урок по теме расписания функций в ряд завершено. Другие не менее интересные схемы разложения будут подробно рассмотрены в следующих материалах.
Разложение функции в ряд Тейлора, Маклорена и Лорана на сайт для тренировки практических навыков. Это разложение функции в ряд дает представление математикам оценить приближенное значение функции в некоторой точки области ее определения. Намного проще вычислить такое значение функции, по сравнению с применением таблицы Бредиса, так неактуальной в век вычислительной техники. В ряд Тейлора разложить функцию означает вычислить коэффициенты перед линейными функциями этого ряда и записать это в правильном виде. Путают студенты эти два ряда, не понимая, что является общим случаем, а что частным случаем второго. Напоминаем раз и навсегда, ряд Маклорена - частный случай Тейлоровского ряда, то есть это и есть ряд Тейлора, но в точке x = 0. Все краткие записи разложения известных функций, таких как e^x, Sin(x), Cos(x) и другие, это и есть разложения в ряд Тейлора, но в точке 0 для аргумента. Для функций комплексного аргумента ряд Лорана является наиболее частой задачей в ТФКП, так как представляет двусторонний бесконечный ряд. Он и является суммой двух рядов. Мы предлагаем вам посмотреть пример разложения прямо на сайте сайт, это сделать очень просто, нажав на "Пример" с любым номером, а затем кнопку "Решение". Именно такому разложению функции в ряд сопоставлен мажорирующий ряд, ограничивающий функцию исходную в некоторой области по оси ординат, если переменная принадлежит области абсцисс. Векторному анализу поставляется в сравнение другая интересная дисциплина в математике. Поскольку исследовать нужно каждое слагаемое, то необходимо достаточно много времени на процесс. Всякому ряду Тейлора можно сопоставить ряд Маклорена, заменив x0 на нуль, а вот по ряду Маклорена порой не очевидно представление ряда Тейлора обратно. Как бы это и не требуется делать в чистом виде, но интересно для общего саморазвития. Всякому ряду Лорана соответствует двусторонний бесконечный степенной ряд по целым степеням z-a, другими словами ряд вида того же Тейлора, но немного отличающегося вычислением коэффициентов. Про область сходимости ряда Лорана расскажем чуть позже, после нескольких теоретических выкладок. Как и в прошлом веке, поэтапного разложения функции в ряд вряд ли можно достичь только лишь приведением слагаемых к общему знаменателю, так как функции в знаменателях нелинейные. Приближенное вычисление функционального значения требует постановка задач. Задумайтесь над тем, что когда аргумент ряда Тейлора есть линейная переменная, то разложение происходит в несколько действий, но совсем другая картина, когда в качестве аргумента раскладываемой функции выступает сложная или нелинейная функция, тогда очевиден процесс представления такой функции в степенной ряд, поскольку, таким образом, легко вычислить, пусть и приближенное, но значение в любой точке области определения, с минимальной погрешностью, мало влияющей на дальнейшие расчеты. Это касается и ряда Маклорена. когда необходимо вычислить функция в нулевой точке. Однако сам ряд Лорана здесь представлен разложением на плоскости с мнимыми единицами. Также не без успеха будет правильное решение задачи в ходе общего процесса. В математике такого подхода не знают, но он объективно существует. В результате вы можете прийти к выводу так называемых поточечных подмножеств, и в разложении функции в ряд нужно применять известные для этого процесса методы, таких как применение теории производных. Лишний раз убеждаемся в правоте учителя, который сделал свои предположения на счет итогов пост вычислительных выкладок. Давайте отметим, что ряд Тейлора, полученный по всем канонам математики, существует и определен на всей числовой оси, однако, уважаемые пользователи сервиса сайт, не забывайте вид исходной функции, ведь может получиться так, что изначально необходимо установит область определения функции, то есть выписать и исключить из дальнейших рассмотрений те точки, при которых функция не определена в области действительных чисел. Так сказать это покажет вашу расторопность при решении задачи. Не исключением высказанного будет и построение ряда Маклорена с нулевым значением аргумента. Процесс нахождения области определения функции никто при этом не отменял, и вы обязаны подойти со всей серьезностью к этому математическому действию. В случае содержания рядом Лорана главной части, параметр "a" будет называться изолированной особой точкой, и ряд Лорана будет разложен в кольце - это пересечение областей сходимости его частей, отсюда будет следовать соответствующая теорема. Но не все так сложно как может показаться на первый взгляд неопытному студенту. Изучив как раз ряд Тейлора, можно с легкостью понять ряд Лорана - обобщенный случай на расширение пространства чисел. Любое разложение функции в ряд можно производить только в точке области определения функции. Следует учитывать свойства таких функций, например, как периодичность или бесконечная дифференцируемость. Также предлагаем вам воспользоваться таблицей готовых разложений в ряд Тейлора элементарных функций, поскольку одна функция может быть представлена до десятков отличных от друг друга степенных рядов, что можно видеть из применения нашего калькулятора онлайн. Онлайн ряд Маклорена проще простого определить, если воспользоваться уникальным сервисом сайт, вам достаточно только ввести правильную записанную функцию и представленный ответ получите в считанные секунды, он будет гарантированно точным и в стандартно записанном виде. Можете переписать результат сразу в чистовик на сдачу преподавателю. Правильно бы сначала определить аналитичность рассматриваемой функции в кольцах, а затем однозначно утверждать, что она разложима в ряд Лорана во всех таких кольцах. Важен момент чтобы не упустить из вида содержащие отрицательных степеней членов ряда Лорана. На этом сосредоточьтесь как можно сильнее. Применяйте с пользой теорему Лорана о разложении функции в ряд по целым степеням.