Степень окисления li. Степень окисления. Что делать, если неизвестны степени окисления двух элементов
Формальный заряд атома в соединениях — вспомогательная величина, обычно ее используют в описаниях свойств элементов в химии. Этот условный электрический заряд и есть степень окисления. Его значение изменяется в результате многих химических процессов. Хотя заряд является формальным, он ярко характеризует свойства и поведение атомов в окислительно-восстановительных реакциях (ОВР).
Окисление и восстановление
В прошлом химики использовали термин «окисление», чтобы описать взаимодействие кислорода с другими элементами. Название реакций произошло от латинского наименования кислорода - Oxygenium. Позже выяснилось, что другие элементы тоже окисляют. В этом случае они восстанавливаются — присоединяют электроны. Каждый атом при образовании молекулы изменяет строение своей валентной электронной оболочки. В этом случае появляется формальный заряд, величина которого зависит от количества условно отданных или принятых электронов. Для характеристики этой величины ранее применяли английский химический термин "oxidation number", который в переводе означает «окислительное число». При его использовании исходят из допущения, что связывающие электроны в молекулах или ионах принадлежат атому, обладающему более высоким значением электроотрицательности (ЭО). Способность удерживать свои электроны и притягивать их от других атомов хорошо выражена у сильных неметаллов (галогенов, кислорода). Противоположными свойствами обладают сильные металлы (натрий, калий, литий, кальций, другие щелочные и щелочноземельные элементы).
Определение степени окисления
Степенью окисления называют заряд, который атом приобрел бы в том случае, если бы принимающие участие в образовании связи электроны полностью сместились к более электроотрицательному элементу. Есть вещества, не имеющие молекулярного строения (галогениды щелочных металлов и другие соединения). В этих случаях степень окисления совпадает с зарядом иона. Условный или реальный заряд показывает, какой процесс произошел до того, как атомы приобрели свое нынешнее состояние. Положительное значение степени окисления — это общее количество электронов, которые были удалены из атомов. Отрицательное значение степени окисления равно числу приобретенных электронов. По изменению состояния окисления химического элемента судят о том, что происходит с его атомами в ходе реакции (и наоборот). По цвету вещества определяют, какие произошли перемены в состоянии окисления. Соединения хрома, железа и ряда других элементов, в которых они проявляют разную валентность, окрашены неодинаково.
Отрицательное, нулевое и положительное значения степени окисления
Простые вещества образованы химическими элементами с одинаковым значением ЭО. В этом случае связывающие электроны принадлежат всем структурным частицам в равной степени. Следовательно, в простых веществах элементам несвойственно состояние окисления (Н 0 2 , О 0 2 , С 0). Когда атомы принимают электроны или общее облако смещается в их сторону, заряды принято писать со знаком "минус". Например, F -1 ,О -2 , С -4 . Отдавая электроны, атомы приобретают реальный или формальный положительный заряд. В оксиде OF 2 атом кислорода отдает по одному электрону двум атомам фтора и находится в состоянии окисления О +2 . Считают, что в молекуле или многоатомном ионе более электроотрицательные атомы получают все связывающие электроны.
Сера — элемент, проявляющий разные валентность и степени окисления
Химические элементы главных подгрупп зачастую проявляют низшую валентность равную VIII. Например, валентность серы в сероводороде и сульфидах металлов — II. Для элемента характерны промежуточные и высшая валентность в возбужденном состоянии, когда атом отдает один, два, четыре или все шесть электронов и проявляет соответственно валентности I, II, IV, VI. Такие же значения, только со знаком "минус" или "плюс", имеют степени окисления серы:
- в сульфиде фтора отдает один электрон: -1;
- в сероводороде низшее значение: -2;
- в диоксиде промежуточное состояние: +4;
- в триоксиде, серной кислоте и сульфатах: +6.
В своем высшем состоянии окисления сера только принимает электроны, в низшей степени — проявляет сильные восстановительные свойства. Атомы S +4 могут проявлять в соединениях функции восстановителей или окислителей в зависимости от условий.
Переход электронов в химических реакциях
При образовании кристалла поваренной соли натрий отдает электроны более электроотрицательному хлору. Степени окисления элементов совпадают с зарядами ионов: Na +1 Cl -1 . Для молекул, созданных путем обобществления и смещения электронных пар к более электроотрицательному атому, применимы только представления о формальном заряде. Но можно предположить, что все соединения состоят из ионов. Тогда атомы, притягивая электроны, приобретают условный отрицательный заряд, а отдавая, — положительный. В реакциях указывают, какое число электронов смещается. Например, в молекуле диоксида углерода С +4 О - 2 2 указанный в верхнем правом углу индекс при химическом символе углерода отображает количество электронов, удаленных из атома. Для кислорода в этом веществе характерно состояние окисления -2. Соответствующий индекс при химическом знаке О — количество добавленных электронов в атоме.
Как подсчитать степени окисления
Подсчет количества отданных и присоединенных атомами электронов может отнять много времени. Облегчают эту задачу следующие правила:
- В простых веществах степени окисления равны нулю.
- Сумма окисления всех атомов или ионов в нейтральном веществе равна нулю.
- В сложном ионе сумма степеней окисления всех элементов должна соответствовать заряду всей частицы.
- Более электроотрицательный атом приобретает отрицательное состояние окисления, которое записывают со знаком "минус".
- Менее электроотрицательные элементы получают положительные степени окисления, их записывают со знаком "плюс".
- Кислород в основном проявляет степень окисления, равную -2.
- Для водорода характерное значение: +1, в гидридах металлов встречается: Н-1.
- Фтор — наиболее электроотрицательный из всех элементов, его состояние окисления всегда равно -4.
- Для большинства металлов окислительные числа и валентности совпадают.
Степень окисления и валентность
Большинство соединений образуются в результате окислительно-восстановительных процессов. Переход или смещение электронов от одних элементов к другим приводит к изменению их состояния окисления и валентности. Зачастую эти величины совпадают. В качестве синонима к термину «степень окисления» можно использовать словосочетание «электрохимическая валентность». Но есть исключения, например, в ионе аммония азот четырехвалентен. Одновременно атом этого элемента находится в состоянии окисления -3. В органических веществах углерод всегда четырехвалентен, но состояния окисления атома С в метане СН 4 , муравьином спирте СН 3 ОН и кислоте НСООН имеют другие значения: -4, -2 и +2.
Окислительно-восстановительные реакции
К окислительно-восстановительным относятся многие важнейшие процессы в промышленности, технике, живой и неживой природе: горение, коррозия, брожение, внутриклеточное дыхание, фотосинтез и другие явления.
При составлении уравнений ОВР подбирают коэффициенты, используя метод электронного баланса, в котором оперируют следующими категориями:
- степени окисления;
- восстановитель отдает электроны и окисляется;
- окислитель принимает электроны и восстанавливается;
- число отданных электронов должно быть равно числу присоединенных.
Приобретение электронов атомом приводит к понижению его степени окисления (восстановлению). Утрата атомом одного или нескольких электронов сопровождается повышением окислительного числа элемента в результате реакций. Для ОВР, протекающих между ионами сильных электролитов в водных растворах, чаще используют не электронный баланс, а метод полуреакций.
Химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип.
Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .
1. Степени окисления металлов в соединениях всегда положительные.
2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .
3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
- если с атомом металла, то степень окисления отрицательная;
- если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
Элементы с неизменными степенями окисления.
Элемент |
Характерная степень окисления |
Исключения |
Гидриды металлов: LIH -1 |
||
Степенью окисления называют условный заряд частицы в предположении, что связь полностью разорвана (имеет ионных характер). H - Cl = H + + Cl - , Связь в соляной кислоте ковалентная полярная. Электронная пара в большей степени смещена в сторону атома Cl - , т.к. он более электроотрицацельный элемент. Как определить степень окисления?Электроотрицательность - это способность атомов притягивать к себе электроны других элементов. Степень окисления указывается над элементом: Br 2 0 , Na 0 , O +2 F 2 -1 , K + Cl - и т.д. Она может быть отрицательной и положительной. Степень окисления простого вещества (несвязанное, свободное состояние) равна нулю. Степень окисления кислорода у большинстве соединений равна -2 (исключение составляют пероксиды Н 2 О 2 , где она равна -1 и соединения с фтором - O +2 F 2 -1 , O 2 +1 F 2 -1 ). - Степень окисления простого одноатомного иона равна его заряду: Na + , Ca +2 . Водород в своих соединениях имеет степень окисления равную +1 (исключения составляют гидриды - Na + H - и соединения типа C +4 H 4 -1 ). В связях «металл-неметалл» отрицательную степень окисления имеет тот атом, который обладает большей электрооприцательностью (данные об элеткроотрицательности приведены в шкале Полинга): H + F - , Cu + Br - , Ca +2 (NO 3 ) - и т.д. Правила определения степени окисления в химических соединениях.Возьмем соединение KMnO 4 , необходимо определить степень окисления у атома марганца. Рассуждения:
К + Mn X O 4 -2 Пусть Х - неизвестная нам степень окисления марганца. Количество атомов калия - 1, марганца - 1, кислорода - 4. Доказано, что молекула в целом электронейтральна, поэтому ее общий заряд должен быть равен нулю. 1*(+1) + 1*(X ) + 4(-2) = 0, Х = +7, Значит, степень окисления марганца в перманганате калия = +7. Возьмем другой пример оксида Fe 2 O 3 . Необходимо определить степень окисления атома железа. Рассуждение:
2*(Х) + 3*(-2) = 0, Вывод: степень окисления железа в данном оксиде равна +3. Примеры. Определить степени окисления всех атомов в молекуле. 1. K 2 Cr 2 O 7 . Степень окисления К +1 , кислорода О -2 . Учитывая индексы: О=(-2)×7=(-14), К=(+1)×2=(+2). Т.к. алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, то число положительных степеней окисления равно числу отрицательных. Степени окисления К+О=(-14)+(+2)=(-12). Из этого следует, что у атома хрома число положительных степеней равно 12, но атомов в молекуле 2, значит на один атом приходится (+12):2=(+6). Ответ: К 2 + Cr 2 +6 O 7 -2 . 2. (AsO 4) 3- . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е. - 3. Составим уравнение: х+4×(- 2)= - 3 . Ответ: (As +5 O 4 -2) 3- . |
Умение находить степень окисления химических элементов является необходимым условием для успешного решения химический уравнений, описывающих окислительно-восстановительные реакции. Без него вы не сможете составить точную формулу вещества, получившегося в результате реакции между различными химическими элементами. В результате решение химических задач, построенных на подобных уравнениях, будет либо невозможным, либо ошибочным.
Понятие степени окисления химического элементаСтепень окисления – это условная величина, с помощью которой принято описывать окислительно-восстановительные реакции. Численно она равна количеству электронов, которое отдает атом приобретающий положительный заряд, или количеству электронов, которое присоединяет к себе атом, приобретающий отрицательный заряд.
В окислительно-восcтановительных реакциях понятие степень окисления используется для определения химических формул соединений элементов, получающихся в результате взаимодействия нескольких веществ.
На первый взгляд может показаться, что степень окисления эквивалентна понятию валентности химического элемента, но это не так. Понятие валентность используется для количественного выражения электронного взаимодействия в ковалентных соединениях, то есть в соединениях, образованных за счет образования общих электронных пар. Степень окисления используется для описания реакций, которые сопровождаются отдачей или присоединением электронов.
В отличии от валентности, являющейся нейтральной характеристикой, степень окисления может иметь положительное, отрицательное, или нулевое значение. Положительное значение соответствует числу отданных электронов, а отрицательная числу присоединенных. Нулевое значение означает, что элемент находится либо в форме простого вещества, либо он был восстановлен до 0 после окисления, либо окислен до нуля после предшествующего восстановления.
Как определить степень окисления конкретного химического элемента
Определение степени окисления для конкретного химического элемента подчиняется следующим правилам:
- Степень окисления простых веществ всегда равна нулю.
- Щелочные металлы, которые находятся в первой группе периодической таблицы, имеют степень окисления +1.
- Щелочноземельные металлы, занимающие в периодической таблице вторую группу, имеют степень окисления +2.
- Водород в соединениях с различными неметаллами всегда проявляет степень окисления +1, а в соединениях с металлами +1.
- Степень окисления молекулярного кислорода во всех соединениях, рассматриваемых в школьном курсе неорганической химии, равна -2. Фтора -1.
- При определении степени окисления в продуктах химических реакций исходят из правила электронейтральности, в соответствии с которым сумма степеней окисления различных элементов, входящих в состав вещества, должна быть равна нулю.
- Алюминий во всех соединениях проявляет степень окисления равную +3.
Различают высшую, низшую и промежуточную степени окисления. Высшая степень окисления, как и валентность, соответствует номеру группы химического элемента в периодической таблице, но имеет при этом положительное значение. Низшая степень окисления численно равна разности между числом 8 группой элемента. Промежуточной степенью окисления будет любой число в диапазоне от низшей степени окисления до высшей.
Чтобы помочь вам сориентироваться в многообразии степеней окисления химических элементов предлагаем вашему вниманию следующую вспомогательную таблицу. Выберите в ней интересующий вас элемент и вы получите значения его возможных степеней окисления. В скобках будут указаны редко встречающиеся значения.
Современная формулировка Периодического закона, открытого Д. И. Менделеевым в 1869 г.:
Свойства элементов находятся в периодической зависимости от порядкового номера.
Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Периодической системы.
Проследим, например, изменение высших и низших степеней окисления у элементов IA – VIIA-групп во втором – четвертом периодах по табл. 3.
Положительные степени окисления проявляют все элементы, за исключением фтора. Их значения увеличиваются с ростом заряда ядер и совпадают с числом электронов на последнем энергетическом уровне (за исключением кислорода). Эти степени окисления называют высшими степенями окисления. Например, высшая степень окисления фосфора Р равна +V.
Отрицательные степени окисления проявляют элементы, начиная с углерода С, кремния Si и германия Ge. Значения их равны числу электронов, недостающих до восьми. Эти степени окисления называют низшими степенями окисления. Например, у атома фосфора Р на последнем энергетическом уровне недостает трех электронов до восьми, значит, низшая степень окисления фосфора Р равна – III.
Значения высших и низших степеней окисления повторяются периодически, совпадая по группам; например, в IVA-группе углерод С, кремний Si и германий Ge имеют высшую степень окисления +IV, а низшую степень окисления – IV.
Эта периодичность изменения степеней окисления отражается на периодическом изменении состава и свойств химических соединений элементов.
Аналогично прослеживается периодическое изменение электроотрицательности элементов в 1-6-м периодах IA– VIIA-групп (табл. 4).
В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо).
В каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Фтор F обладает наивысшей, а цезий Cs – наинизшей электроотрицательностью среди элементов 1-6-го периодов.
У типичных неметаллов – высокая электроотрицательность, а у типичных металлов – низкая.
Примеры заданий частей А, В1. В 4-м периоде число элементов равно
2. Металлические свойства элементов 3-го периода от Na до Сl
1) силиваются
2) ослабевают
3) не изменяются
4) не знаю
3. Неметаллические свойства галогенов с увеличением порядкового номера
1) возрастают
2) понижаются
3) остаются без изменений
4) не знаю
4. В ряду элементов Zn – Hg – Со – Cd один элемент, не входящий в группу, – это
5. Металлические свойства элементов повышаются по ряду
1) In – Ga – Al
2) К – Rb – Sr
3) Ge – Ga – Tl
4) Li – Be – Mg
6. Неметаллические свойства в ряду элементов Аl – Si – С – N
1) увеличиваются
2) уменьшаются
3) не изменяются
4) не знаю
7. В ряду элементов О – S – Se – Те размеры (радиусы) атома
1) уменьшаются
2) увеличиваются
3) не изменяются
4) не знаю
8. В ряду элементов Р – Si – Аl – Mg размеры (радиусы) атома
1) уменьшаются
2) увеличиваются
3) не изменяются
4) не знаю
9. Для фосфора элемент с меньшей электроотрицательностью – это
10. Молекула, в которой электронная плотность смещена к атому фосфора, – это
11. Высшая степень окисления элементов проявляется в наборе оксидов и фторидов
1) СlO 2 , РСl 5 , SeCl 4 , SO 3
2) PCl, Аl 2 O 3 , КСl, СО
3) SeO 3 , ВСl 3 , N 2 O 5 , СаСl 2
4) AsCl 5 , SeO 2 , SCl 2 , Cl 2 O 7
12. Низшая степень окисления элементов – в их водородных соединениях и фторидах набора
1) ClF 3 , NH 3 , NaH, OF 2
2) H 3 S + , NH+, SiH 4 , H 2 Se
3) CH 4 , BF 4 , H 3 O + , PF 3
4) PH 3 , NF+, HF 2 , CF 4
13. Валентность для многовалентного атома одинакова в ряду соединений
1) SiH 4 – AsH 3 – CF 4
2) РН 3 – BF 3 – ClF 3
3) AsF 3 – SiCl 4 – IF 7
4) H 2 O – BClg – NF 3
14. Укажите соответствие между формулой вещества или иона и степенью окисления углерода в них
ОПРЕДЕЛЕНИЕ
Степень окисления - это количественная оценка состояния атома химического элемента в соединении, основанная на его электроотрицательности.
Она принимает как положительные, так и отрицательные значения. Чтобы указать степень окисления элемента в соединении нужно поставить сверху над его символом арабскую цифру с соответствующим знаком («+» или «-»).
Следует помнить, что степень окисления — величина, не имеющая физического смысла, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.
Таблица степени окисления химических элементов
Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.
Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N 2 , H 2 , Cl 2).
Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.
В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .
При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.
Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).
Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно (+1) и (+2).
Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера - (-2), 0, (+2), (+4), (+6) и др.).
Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:
Порядковый номер |
Русское / англ. название |
Химический символ |
Степень окисления |
Водород / Hydrogen |
|||
Гелий / Helium |
|||
Литий / Lithium |
|||
Бериллий / Beryllium |
|||
(-1), 0, (+1), (+2), (+3) |
|||
Углерод / Carbon |
(-4), (-3), (-2), (-1), 0, (+2), (+4) |
||
Азот / Nitrogen |
(-3), (-2), (-1), 0, (+1), (+2), (+3), (+4), (+5) |
||
Кислород / Oxygen |
(-2), (-1), 0, (+1), (+2) |
||
Фтор / Fluorine |
|||
Натрий / Sodium |
|||
Магний / Magnesium |
|||
Алюминий / Aluminum |
|||
Кремний / Silicon |
(-4), 0, (+2), (+4) |
||
Фосфор / Phosphorus |
(-3), 0, (+3), (+5) |
||
Сера / Sulfur |
(-2), 0, (+4), (+6) |
||
Хлор / Chlorine |
(-1), 0, (+1), (+3), (+5), (+7), редко (+2) и (+4) |
||
Аргон / Argon |
|||
Калий / Potassium |
|||
Кальций / Calcium |
|||
Скандий / Scandium |
|||
Титан / Titanium |
(+2), (+3), (+4) |
||
Ванадий / Vanadium |
(+2), (+3), (+4), (+5) |
||
Хром / Chromium |
(+2), (+3), (+6) |
||
Марганец / Manganese |
(+2), (+3), (+4), (+6), (+7) |
||
Железо / Iron |
(+2), (+3), редко (+4) и (+6) |
||
Кобальт / Cobalt |
(+2), (+3), редко (+4) |
||
Никель / Nickel |
(+2), редко (+1), (+3) и (+4) |
||
Медь / Copper |
+1, +2, редко (+3) |
||
Галлий / Gallium |
(+3), редко (+2) |
||
Германий / Germanium |
(-4), (+2), (+4) |
||
Мышьяк / Arsenic |
(-3), (+3), (+5), редко (+2) |
||
Селен / Selenium |
(-2), (+4), (+6), редко (+2) |
||
Бром / Bromine |
(-1), (+1), (+5), редко (+3), (+4) |
||
Криптон / Krypton |
|||
Рубидий / Rubidium |
|||
Стронций / Strontium |
|||
Иттрий / Yttrium |
|||
Цирконий / Zirconium |
(+4), редко (+2) и (+3) |
||
Ниобий / Niobium |
(+3), (+5), редко (+2) и (+4) |
||
Молибден / Molybdenum |
(+3), (+6), редко (+2), (+3) и (+5) |
||
Технеций / Technetium |
|||
Рутений / Ruthenium |
(+3), (+4), (+8), редко (+2), (+6) и (+7) |
||
Родий / Rhodium |
(+4), редко (+2), (+3) и (+6) |
||
Палладий / Palladium |
(+2), (+4), редко (+6) |
||
Серебро / Silver |
(+1), редко (+2) и (+3) |
||
Кадмий / Cadmium |
(+2), редко (+1) |
||
Индий / Indium |
(+3), редко (+1) и (+2) |
||
Олово / Tin |
(+2), (+4) |
||
Сурьма / Antimony |
(-3), (+3), (+5), редко (+4) |
||
Теллур / Tellurium |
(-2), (+4), (+6), редко (+2) |
||
(-1), (+1), (+5), (+7), редко (+3), (+4) |
|||
Ксенон / Xenon |
|||
Цезий / Cesium |
|||
Барий / Barium |
|||
Лантан / Lanthanum |
|||
Церий / Cerium |
(+3), (+4) |
||
Празеодим / Praseodymium |
|||
Неодим / Neodymium |
(+3), (+4) |
||
Прометий / Promethium |
|||
Самарий / Samarium |
(+3), редко (+2) |
||
Европий / Europium |
(+3), редко (+2) |
||
Гадолиний / Gadolinium |
|||
Тербий / Terbium |
(+3), (+4) |
||
Диспрозий / Dysprosium |
|||
Гольмий / Holmium |
|||
Эрбий / Erbium |
|||
Тулий / Thulium |
(+3), редко (+2) |
||
Иттербий / Ytterbium |
(+3), редко (+2) |
||
Лютеций / Lutetium |
|||
Гафний / Hafnium |
|||
Тантал / Tantalum |
(+5), редко (+3), (+4) |
||
Вольфрам / Tungsten |
(+6), редко (+2), (+3), (+4) и (+5) |
||
Рений / Rhenium |
(+2), (+4), (+6), (+7), редко (-1), (+1), (+3), (+5) |
||
Осмий / Osmium |
(+3), (+4), (+6), (+8), редко (+2) |
||
Иридий / Iridium |
(+3), (+4), (+6), редко (+1) и (+2) |
||
Платина / Platinum |
(+2), (+4), (+6), редко (+1) и (+3) |
||
Золото / Gold |
(+1), (+3), редко (+2) |
||
Ртуть / Mercury |
(+1), (+2) |
||
Талий / Thallium |
(+1), (+3), редко (+2) |
||
Свинец / Lead |
(+2), (+4) |
||
Висмут / Bismuth |
(+3), редко (+3), (+2), (+4) и (+5) |
||
Полоний / Polonium |
(+2), (+4), редко (-2) и (+6) |
||
Астат / Astatine |
|||
Радон / Radon |
|||
Франций / Francium |
|||
Радий / Radium |
|||
Актиний / Actinium |
|||
Торий / Thorium |
|||
Проактиний / Protactinium |
|||
Уран / Uranium |
(+3), (+4), (+6), редко (+2) и (+5) |
Примеры решения задач
ПРИМЕР 1
- Степень окисления фосфора в фосфине равна (-3), а в ортофосфорной кислоте - (+5). Изменение степени окисления фосфора: +3 → +5, т.е. первый вариант ответа.
- Степень окисления химического элемента в простом веществе равна нулю. Степень окисления фосфора в оксиде состава P 2 O 5 равна (+5). Изменение степени окисления фосфора: 0 → +5, т.е. третий вариант ответа.
- Степень окисления фосфора в кислоте состава HPO 3 равна (+5), а H 3 PO 2 — (+1). Изменение степени окисления фосфора: +5 → +1, т.е. пятый вариант ответа.
ПРИМЕР 2
Задание | Степень окисления (-3) углерод имеет в соединении: а) CH 3 Cl; б) C 2 H 2 ; в) HCOH; г) C 2 H 6 . |
Решение | Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять степень окисления углерода в каждом из предложенных соединений.
а) степень окисления водорода равна (+1), а хлора - (-1). Примем за «х» степень окисления углерода: x + 3×1 + (-1) =0; Ответ неверный. б) степень окисления водорода равна (+1). Примем за «у» степень окисления углерода: 2×у + 2×1 = 0; Ответ неверный. в) степень окисления водорода равна (+1), а кислорода - (-2). Примем за «z» степень окисления углерода: 1 + z + (-2) +1 = 0: Ответ неверный. г) степень окисления водорода равна (+1). Примем за «a» степень окисления углерода: 2×а + 6×1 = 0; Верный ответ. |
Ответ | Вариант (г) |