Влияние окиси углерода на здоровье людей. Вредное воздействие на атмосферу и окружающую природную среду CO и NO2

(окись углерода, угарный газ - CO) - газ без цвета и запаха; почти не поглощается активированным углем; горит синим пламенем с образованием CO 2 и выделением тепла; концентрационные пределы взрываемости (КПВ) в смеси с воздухом 12,5-74,2%; смесь CO: O 2 = 2: 1 (по объему) взрывается при зажигании. CO образуется при сгорании органических видов топлива (древесина, уголь, бумага, масла, бензины , газы, взрывчатые вещества и др.) в условиях недостатка О 2 ; при взаимодействии CO 2 с раскаленным углем, при конверсии метана в присутствии различных катализаторов .

Естественный уровень CO в атмосфере 0,01-0,9 мг/м 3 (в северном полушарии в 3 раза выше); 90% атмосферного CO образуется в результате естественных процессов (вулканические и болотные газы , лесные и степные пожары , жизнедеятельность наземной и океанической флоры и фауны, окисление метана в тропосфере). Сотни миллионов тонн CO поступают в атмосферу ежегодно в результате деятельности человека: автотранспорт, железнодорожный и морской транспорт; неисправность газопроводов и газоаппаратуры; металлургия, химическая индустрия (крекинг-процесс, производство формалина, углеводородов , аммиака , соды, фосгена , метилового спирта, муравьиной и щавелевой кислот, метана и др., производство и переработка синтетических волокон), угледобывающая промышленность (добыча угля и углеподающие трассы, поверхностное окисление угля в шахтах, тление терриконов); производство табака, хлеба; светокопирование; переработка отходов; сжигание топлива в быту.

В промышленности CO получают путем неполного окисления природного газа или газификацией угля и кокса. CO является одним из исходных соединений в органическом синтезе, используется как восстановитель в металлургии, производстве карбонилов, ароматических альдегидов, формамида, гексагидроксибензола, хлорида алюминия, метанола, синтетического бензина, синтола.

В основе биологического действия CO лежит образование карбоксигемоглобина (HbCO), при этом CO занимает место кислорода. В результате синтезируется HbCO вместо оксигемоглобина (HbO 2). Сродство гемоглобина (Hb) человека к CO приблизительно в 240 раз выше, чем к О 2 . HbCO затрудняет подачу кислорода к тканям и высвобождение кислорода, доставленного молекулами Hb в ткани. CO связывается также с мышечным гемоглобином (миоглобином ), что приводит к образованию карбоксимиоглобина и существенно влияет на обмен веществ в мышцах (особенно сердечной мышцы). В обычных условиях в организме человека образуется небольшое количество CO и уровень эндогенного HbCO составляет 0-0,7%. Нормой для разных категорий населения принято считать следующие уровни HbCO: беременные женщины - 0,4-2,6%, здоровые дети - 0,5-4,7%, взрослые - 1-5%, пациенты с гемолитической анемией - до 6%, курильщики (1 пачка в день) - 3-7%.

Тяжесть отравления зависит от концентрации и длительности воздействия CO, наличия сопутствующих хронических заболеваний и особенностей состояния здоровья человека, интенсивности дыхания. К группам риска при отравлении угарным газом относятся: беременные женщины, курильщики, лица с повышенной легочной вентиляцией (дети и подростки, лица, связанные с тяжелым физическим трудом или работающие в условиях нагревающего микроклимата , с высокой температурой тела), лица, страдающие заболеваниями сердечно-сосудистой системы (напр., ишемической болезнью сердца, церебральным или общим атеросклерозом), системной гипоксией, анемией, гипертиреозом. Мужчины более чувствительны к отравлению CO, чем женщины.

Легкие отравления протекают без потери сознания или с кратковременным обмороком, могут сопровождаться сонливостью, тошнотой, рвотой. Отравления средней тяжести характеризуются потерей сознания различной длительности, после чего сохраняется общая слабость; могут быть провалы памяти, двигательные расстройства, судороги. При тяжелых отравлениях потеря сознания длится более 2 ч, происходят клонические и тонические судороги, непроизвольное мочеиспускание и дефекация.

Первые признаки типичной картины отравления при вдыхании угарного газа в концентрациях до 1000 мг/м 3 появляются уже через 5-10 мин: тяжесть и ощущение сдавливания головы, боль в лобных и височных областях, головокружение, затем присоединяются слабость, чувство страха и жажды, ощущение недостатка воздуха, пульсация височных артерий, тошнота, рвота. В дальнейшем, при сохранении сознания - мышечная слабость, оцепенелость и безучастность (или даже ощущение приятной истомы), из-за чего человек вскоре не может покинуть опасную зону ; сонливость, спутанность и потеря сознания. В редких случаях наблюдаются атипические формы отравления - внезапная потеря сознания без предварительных симптомов либо острые психические расстройства во время или через 2-3 недели после воздействия высоких концентраций CO.

Последствиями острого отравления могут быть: продолжительные головные боли и головокружения, обмороки, энцефалопатии, психозы (редко), паркинсонизм; стойкие нарушения функции кишечника и мочевого пузыря; расстройства периферической нервной системы (двигательные, чувствительные и трофические); снижение остроты зрения и слуха, нарушение функции вестибулярного аппарата; трофические расстройства кожи, ногтей, волос; поражение органов дыхания, мышц, суставов; нарушение работы сердца (гипотония, тахикардия, экстрасистолия, стенокардия, инфаркт миокарда); гипертиреоз; поражение печени, надпочечников, почек; снижение иммунитета. Кроме того, у молодых пострадавших - хореоидные гиперкинезы, у пожилых - депрессия, деменция, амнезия, прогрессирующая кахексия.

Повторное воздействие . CO не накапливается в организме. Существует определенная адаптация к хроническому воздействию CO (увеличение концентрации гемоглобина и гематокрита). Хроническое отравление диагностируют по профессиональному анамнезу, клинической картине, содержанию HbCO в крови. Жалобы и симптомы интоксикации многообразны и неспецифичны: физическая и психическая астения, нарушения со стороны кардиореспираторной системы (одышка, сердцебиение, боли в области сердца, аритмия, экстрасистолия, стенокардия, гипотония), нервной системы (красный дермографизм, тремор, вялость рефлексов, невриты, расстройства речи, парезы, энцефалопатии и др.); эритроцитоз и ретикулоцитоз крови позже переходят в анемию; нарушаются все виды обмена. Признаки нарушения др. органов и систем в целом сходны с признаками острого отравления CO.

Профилактика . Локализация источников выделения CO путем герметизации оборудования, организации эффективного воздухообмена . Применение средств индивидуальной защиты - фильтрующих противогазов марки CO или М (время защитного действия при концентрации CO в воздухе 6200 мг/м 3 - 150 или 90 мин соответственно) - допускается лишь при наличии в воздухе 18% кислорода и не более 0,5% углекислого газа . Следует применять также кислородные изолирующие противогазы.

ПДК О. у. в воздухе рабочей зоны - 20 мг/м 3 ; пары; 4-й класс опасности (ГН 2.2.5.686-98); CAS .

О. у. - основной загрязнитель воздуха жилых помещений, опасный фактор пожара . Особенно высокая концентрация CO наблюдается в жилых помещениях с печным отоплением с использованием твердого топлива при нарушении правил эксплуатации печей. Для предохранения образования и проникновения CO в помещение вьюшечную задвижку можно полностью закрывать только тогда, когда дрова целиком прогорят, угли начинают темнеть и над ними уже не появляются голубые огоньки. Если печь топится углем, то для предохранения образования CO окончание топки производят так: убедившись, что стенки печи прогрелись в достаточной степени, полностью очищают топливник от остатков топлива, а затем закрывают вьюшечную задвижку. Остатки топлива дожигают во время следующей топки. У детей, живущих в домах с газовыми плитами, отмечено сокращение объема легких и увеличение числа респираторных заболеваний по сравнению с детьми, живущими в домах с электрическими плитами. Если нет возможности заменить газовую плиту на электрическую, то, по крайней мере, необходимо тщательно следить за исправностью конфорок у плиты, правильно регулировать доступ воздуха, не включать на полную мощность газовую плиту, желательно избегать ставить низко на конфорку кастрюли и сковородки больших размеров. Но в любом случае необходимо использовать кухонные воздухоочистители. Средства защиты: фильтрующие противогазы марки CO, самоспасатели СПИ-20, ПДУ-3 и др.

Окись углерода прекращает доставку кислорода к тканям теля

Более полувека ученые подозревали, что концентрации окиси углерода, обнаруженные в наших городах, являются опасными для здоровья. Но только за последние несколько лет были получены необходимые данные для надежных выводов, Теперь мы знаем, что окись углерода, содержащаяся в воздухе, представляет реальную опасность для здоровья.

В атмосфере с большим содержанием окиси углерода наступает смерть от удушья (асфиксии). Это другой способ сказать, что ткани тела умирают от кислородного голодания. При меньших концентрациях окиси углерода отмечаются другие, более тонкие эффекты.

Чтобы осознать опасность малых концентраций окиси углерода, нам необходимо познакомиться с процессом переноса кислорода к тканям тела. Кислород поступает в легкие при каждом вдохе. В альвеолах (крошечных мешочках на концах разветвленных наподобие дерева бронхов) кислород переходит в кровяное русло. В крови кислород присоединяется к гемоглобину, сложным белковым молекулам, содержащимся в красных кровяных тельцах (эритроцитах). Эритроциты разносят связанный с гемоглобином кислород через сеть артерий и капилляров (мельчайших сосудов кровеносной системы) по всему телу. В капиллярах кислород через их стенки попадает в клетки тканей тела.

Двуокись углерода, один из конечных продуктов жизнедеятельности клеток, направляется в обратном направлении - из клеток в поток крови. Часть двуокиси углерода занимает место кислорода, присоединяясь к гемоглобину, а другая часть остается в жидком компоненте крови в виде бикарбонат-ионов. Кровь, содержащая теперь большое количество двуокиси углерода, возвращается по венам в легкие. Здесь двуокись углерода диффундирует из крови в альвеолы, тогда как кислород из воздуха в альвеолах попадает в кровь. Затем двуокись углерода удаляется из легких при выдохе.

Эта нормальная картина переноса нарушается, когда во вдыхаемом воздухе присутствует окись углерода. Даже очень малые количества окиси углерода обрывают перенос кислорода, поскольку ее молекулы присоединяются к гемоглобину в 200 раз легче, чем кислород. Окись углерода, прочно связанная с гемоглобином, оттесняет кислород от его переносчика к клеткам тканей. Чем больше окиси углерода содержится в воздухе, тем больше гемоглобина прочно связывается с ней и становится неспособным переносить кислород. Гемоглобин, соединившийся с окисью углерода, называется карбоксигемоглобином. В отличие от этого гемоглобин, связанный с кислородом, называется оксигемоглобином. В таблице показано, что даже очень малые количества газообразной окиси углерода в воздухе приводят к образованию большого количества карбоксигемоглобина в крови.

Обратите внимание на то, что в таблице приведено содержание карбоксигемоглобина после 8-10 ч вдыхания содержащего окись углерода воздуха. Этот уровень именуется равновесным значением. Более длительное воздействие окиси углерода при данной концентрации не приведет к увеличению доли карбоксигемоглобина в крови. Отметим также, что даже при полном отсутствии окиси углерода во вдыхаемом воздухе какое-то небольшое количество гемоглобина все-таки оказывается связанным. Эта окись углерода образуется в организме в процессе нормального метаболизма.

6.8. Влияние оксида углерода (II) на организм человека.

СО вытесняет О 2 из оксигемоглобина [ОНb] крови, образуя карбоксигемоглобин , содержание О 2 может снижаться с 18-20 % до 8 % (аноксимия), а разница между содержанием НbО в артериальной и венозной крови уменьшается с 7-8 % до 2-4 %. Способность вытеснять О 2 из соединения с гемоглобином объясняется гораздо более высоким сродством последнего к СО, чем к О 2 . Кроме того в присутствии СО в крови ухудшается способность НbО к диссоциации, а отдача О 2 к тканям происходит только при очень низком парциальном давлении и его в тканевой среде. При острых отравлениях в соответствии с концентрацией СО и О 2 во вдыхаемом воздухе через некоторое время в крови устанавливается равновесие: определенный процент Нb оказывается связанным с СО, остальная часть с О 2 . Равновесие между концентрацией СО в крови и в воздухе достигается в течение довольно длительного времени – тем раньше, чем больше минутный объем дыхания. Когда содержание СО во вдыхаемом воздухе и в растворе в жидкой части крови уменьшается, начинается отщепление СО от СОНb и обратное выделение его через легкие. Диссоциация СОНb происходит в 3600 раз медленнее, чем НbО. СО способна оказывать непосредственное токсическое действие на клетки, нарушая тканевое дыхание и уменьшая потребление тканями О 2 .

СО нарушает фосфорный обмен; нарушение азотистого обмена вызывает азотемию, изменение содержания белков плазмы, снижение активности холинэстеразы крови и уровня витамина В6. Угарный газ влияет на углеводный обмен, усиливает распад гликогена в печени, нарушая утилизацию глюкозы, повышая уровень сахара в крови. Поступление СО из легких в кровь обусловлено концентрацией СО во вдыхаемом воздухе и длительностью ингаляции. Выделение СО происходит главным образом через дыхательные пути.

Больше всего при отравлении страдает ЦНС. При вдыхании небольшой концентрации (до 1 мг/л) – тяжесть и ощущение сдавливания головы, сильная боль во лбу и висках, головокружение, дрожь, жажда, учащение пульса, тошнота, рвота, повышение температуры тела до 38-40 С. Слабость в ногах свидетельствует о распространении действия на спинной мозг.

7. Способы борьбы с массовым загрязнением ионами свинца.

Совершенствование производственных технологий:

Изменение технологии производства свинца и его сплавов.

Проведение технического перевооружения аккумуляторных заводов.

Отказ от использования свинцовых пигментов в производстве декоративных красок, замена их ферритами, титанитами, алюминатами.

Внедрение передовых технологических процессов и оборудования для производства высокооктановых, не содержащих свинец, бензинов.

Дооборудование автотранспортных средств с целью замены этилированного бензина альтернативными видами топлива. Интересной альтернативой бензину представляется метиловый спирт, полностью сгорающий до углекислого газа и воды.

До недавнего времени метанол использовался главным образом для производства различных органических производных, однако в настоящее время все более заметна роль в производстве моторных топлив. В Германии и других странах 7-15 % метилового спирта добавляют к бензину с целью экономии последнего. Полная же его замена метиловым спиртом сдерживается необходимостью конструкционных изменений в двигателе и ещё недостаточными объемами промышленного выпуска подобного горючего, доступность которого определится технологическими успехами в производстве водорода из воды. Если же в качестве углеродсодержащего компонента удастся использовать углекислый газ, избыток которого накапливается в атмосфере, то технология производства метанола существенно удешевится.

Как топливо будущего рассматривается и гидразин, достоинства которого определяются неисчерпаемостью и дешевизной сырья: азот из воздуха и водород из воды. К недостаткам следует отнести канцерогенность самого гидразина и выделение им аммиака при разложении.

Водородное топливо. В наши дни очень серьезно обсуждается эта проблема. Двигатель не будет подвержен большим конструкционным изменениям.Водородное топливо в 10 раз калорийнее бензина, а в атмосферу выбрасываются только пары воды. Если оно будет применено, то, по-видимому, не раньше, чем истощится природное органическое топливо и будут созданы термоядерная и солнечная энергетики, способные обеспечить дешевой энергией технологию разложения воды.

Автомобильное газовое топливо, топливо для автомобильных двигателей, бывает двух видов: сжиженный газ, компримированный газ. Сжиженный газ состоит из пропана или смеси пропана с бутаном. Эти УВ, находящиеся при комнатной температуре и нормальном давлении в газообразном состоянии, под давлением сжижаются и могут закачиваться в специальные баллоны. Сжиженный газ получают при добыче нефти и природного газа и производят также на нефтеперегонных заводах. Компримированный (сжатый) - природный газ метан. Ученые всего мира расценивают ХХ1 век как “эпоху метана” прежде всего потому, что это экологически чистое (основными продуктами сгорания являются углекислый газ и вода) и надежное топливо и, что особенно важно, его запасы значительно превышают запасы нефти. Имеющиеся в России запасы природного газа позволяют сохранить достигнутый уровень его добычи в течение минимум двух столетий. Широкое использование сжатого природного газа в качестве моторного топлива и массовое переоборудование автотранспорта города позволит резко снизить количество вредных токсичных выбросов:

окислов углерода в 2-2,5 раза

окислов азота в 1,3 раза

УВ в 1,4 раза

ТЭС – полное отсутствие

Дымность отработанных газов дизельных двигателей в 8-10 раз.

Техническое устройство газобаллонного оборудования практически исключает возгорание автомобиля при самых невероятных автомобильных авариях или при неумелой эксплуатации, потому что компримированный природный газ легче воздуха, а баллоны достаточно прочны. Установка газобаллонного оборудования не приводит к потере возможности работать на бензине. Заправленный бензином бак можно держать в резерве.

Таблица №8. Достоинства и недостатки жидкого и сжатого газа, как вида топлива для автомобильных двигателей.

Газ Достоинства Недостатки
Природный газ Высокое октановое число, дешевизна, экологическая чистота продуктов сгорания, повышение моторесурса двигателя. Тяжелая емкость для хранения – толстостенные баллоны, что приводит к снижению грузоподъемности автомобиля; взрывоопасен, плохой запуск двигателя при отрицательной температуре
Пропан-бутановая смесь. Высокое октановое число, экологически чистые продукты сгорания, повышение моторесурса двигателя, большая теплотворная способность, находится при меньшем давлении, система газобаллонного оборудования более надежна При утечке газа представляется большая опасность, при попадании на кожу вызывает обморожения, дороже природного газа, сложность получения.

Автомобильное газовое топливо не ядовито и не загрязняет почву и подземные воды. Благодаря высокому октановому числу и простому составу оно наилучшим образом подходит для карбюраторных двигателей и находит все большее применение.

Электромобиль. Первый электромобиль, использовавший энергию гальванических элементов, был создан в 1837 году. Изобретение свинцовых аккумуляторов дало толчок электромобильному буму, но, достигнув апогея, этот бум к началу нашего века сошел почти на нет, проиграв в соревновании с автомобилем. Аккумулятор, способный обеспечить энергий небольшой отрезок пути и нуждающийся в регулярной подзарядке, не выдержал конкуренции с двигателями внутреннего сгорания.

И тем не менее, возможно, мы будем свидетелями нового электромобильного бума. Особенно перспективен электромобиль – экологически чистый транспорт – в городских условиях, где загазованность воздуха максимальна а, дистанции перевозок сравнительно невелики. Уже созданы и испытаны в реальных городских условиях электромобили, имеющие запас хода 100-150 км. Для города чаще всего этого вполне достаточно.

Главная задача – создание более энергоемких аккумуляторов. Известно много перспективных разработок, среди которых наиболее многообещающая – натрий-серный аккумулятор, способный обеспечить пробег 500 км с одной подзарядкой, которую можно проводить в ночное время, когда нагрузка электросети минимальна.

Замена двигателя внутреннего сгорания электромотором возможна различными путями, нелегкими и длительными. К 2000 г США планирует иметь 8,6 млн электромобилей. Число кажется солидным, но если иметь в виду, что общий автопарк страны к тому времени приблизится к 200 млн. автомобилей, то очевидно, что и к началу века электромобиль еще не будет серьезным конкурентом автомобилю.

Да, автомобиль победил электромобиль в экономическом, энергетическом и техническом соревновании, но он не выдержал экологического “испытания”. Ставить крест на автомобиле ещё рано, но кажется, что пик использования бензинового двигателя внутреннего сгорания уже позади. Постепенно будут изменяться химический состав топлива, а также принципы преобразования энергии. Человечество добьется экологически чистого транспорта. Это неизбежно.

Переход на более современные технологии производства консервированных продуктов. Выяснилось, что одним из существенных источников поступления свинца в организм человека являются консервированные продукты. К примеру, содержание свинца в мышцах тунца при сушке и размалывании увеличивается в 400 раз, а после упаковки в запаянные консервные банки – в 4000 раз. Причина этого понятна – при сушке концентрация увеличивается за счет потери влаги, а при упаковке в банки используется припой, содержащий свинец. Так, при исследовании консервов “Мясо тушеное” после 11-16 лет хранения в их составе было обнаружено 19-28 частей на 1 млн. частей свинца. Правда, это исключительный случай. Обычно содержание металла не превышает 2-3 части на 1 млн. Однако учеными установлено, что переход свинца в продукт не связан с длительностью хранения консервов. Многие исследователи мира рекомендуют не применять при консервировании пищевых продуктов полуду, которая содержит свинец. Эксперты Всемирной организации здравоохранения сообщают, что молоко, обработанное фабричным путем, содержит значительно больше свинца, чем свежее коровье молоко, которое имеет концентрацию свинца, близкому к женскому молоку.

Совершенствование способов очистки.

1) Создание мощностей по переработке вторичного свинцового сырья.

2) Реабилитация территорий, загрязненных свинцом. Существует несколько способов выведения свинца из пищевой цепи путем введения в почвы некоторых веществ. Предложены специальные ”антисвинцовые” препараты. Так, в Японии запатентовано средство для обработки почв, содержащее меркапто-8-триазин он связывает свинец и другие тяжелые металлы и выводит их из биологического круговорота. В Германии предложено в тех же целях вносить в почву хелатные смолы. И в нашей стране ведутся широкие поиски активных химических средств. Так, на кафедре ботаники Московского лесотехнического института получен ряд составов, включающих азотнокислый торий, пятиокись ванадия, азотнокислой кобальт и некоторые другие соединения. Эти составы названы адаптогенами. Они помогают растениям “приспособиться” к воздействию повышенных концентраций вредных веществ. Адаптогены уже прошли широкую проверку и показали свою высокую эффективность.

Отмечено благоприятное действие и неорганического фосфора на жизненный цикл “освинцованных” растений.

3) Замена антидетонатора ТЭС более “чистыми” соединениями, но не уступающими по свойствам ТЭС.

Возможны несколько путей повышения октанового числа бензина без помощи тетраэтилсвинца. Одним из таких путей заключается в применении антидетонаторов, не уступающих или по крайней мере приближающихся по свойствам к ТЭС, но не обладающих его отрицательными качествами.

Достойными соперниками ТЭС оказались некоторые карбонилы металлов.

Таблица №9. Реальные соперники тетраэтилсвинца.

Формула
Название Пентакарбонил железа Декакарбонил марганца Тетракарбонил никеля
Причина невостребованности Не достаточно устойчив. Отрицательные качества усугубляются его превращением при горении бензина в оксид железа (III), который оседает на стенки цилиндра и резко ускоряет износ двигателя Не достаточно устойчив Чрезвычайно ядовит
Формула

C 5 H 5 Mn(CO) 3

CH 3 C 5 H 4 (CO) 3

Название Дегизобутилен пентакарбонил железа Циклопентадиенил трикрбонил марганца (ЦТМ) Метил-ЦТМ
Причина невостребованности Нет окончательных данных о его влиянии на двигатель и окружающую среду. Дорогостоящий, но высокоэффективный, устойчивый и нетоксичный антидетонатор Нет. Высокоэффективный, в достаточной степени устойчивый и нетоксичный антидетонатор. Как более дешёвый, чем ЦТМ, начинает вытеснять ТЭС.

4) Совершенствование автомагистралей, внедрение рациональных схем движения в черте города. Организация строгого контроля качества работы ДВС по экологическим параметрам.

Количество автомобилей на планете растет, оно уже превзошло полумиллиардный рубеж. Объем же газообразных выбросов увеличивается чуть ли не в геометрической прогрессии, потому что загруженность дорог и особенно улиц городов автомобилями приводит к снижению скоростей, машины часто останавливаются и трогаются с места, двигатели работают без нагрузки (холостой ход). А именно в этих режимах наблюдается повышенное выделение в окружающую среду вредных веществ.

Таблица №10. Мероприятия по снижению загрязнения атмосферного воздуха выбросами автомобильного транспорта на 1997-1999 гг по городу Нижний Тагил.

Продолжают обустройство нефтяных месторождений по временным схемам - без пунктов сбора, подготовки и транспорта нефтяного газа. На базе Пермского межотраслевого научно-исследовательского института экологии топливно-энергетического комплекса сформирован специализированный Центр по борьбе с разливами нефти, создаются подобные службы и на нефтегазовых предприятиях. Но говорить о развитой система...

И ее ресурсами. Таким образом, экология является мировоззренческой, синтетической областью знаний, интегрирующей естественнонаучные и гуманитарные знания. Стратегической задачей экологии является развитие теории взаимодействия природы и общества на основе нового взгляда, рассматривающего человеческое общество как неотъемлемую часть биосферы. 2. Среды жизни, экологические факторы Все...

Почва, город, экология /под ред. академика РАН Добровольского/. М.: Фонд «За экономическую грамотность», 1997. 29. Салеева Л.П. Содержание экологического образования // Биология в школе, 1987. №3. 30. Ситаров В.А., Пустовойтов В.В. Социальная экология: Учебное пособие для студентов высш. пед. учебн. заведений/. М.: Издательский центр «Академия», 2000. 280 с. 31. Социально- ...

Наименование мероприятия Сроки выполнения Эффект от выполнения мероприятия
Оборудование стационарных постов ГАИ приборами для контроля выбросов выхлопных газов автотранспорта на СО 1997-1999
Строительство и пуск в эксплуатацию объездной дороги Салда-Красноуральск 1998-2000
Проведение на основных магистралях города проверки экологического состояния автотранспорта, включая иногородний транспорт с применением штрафных санкций. 1998-1999
Проведение операции “Чистый воздух” по контролю выбросов от автотранспорта 1998-1999 Снижение выбросов загрязняющих веществ от автотранспорта
Рационализация работы светофоров

Воздействие оксида углерода на организм человека

Концентрация

мг/м3

Длительность

воздействия

Симптомы отравления

20 мин

Снижение цветовой и световой чувствительности глаз Снижение точности зрительного восприятия

пространства и ночного зрения.

80-111

3,5 часа

Снижение скорости зрительного восприятия, ухудшение выполнения психологических и психомоторных тестов, координации мелких точных движений и аналитического мышления.

4-5 часов

Сильная головная боль, слабость, головокружение, туман перед глазами, тошнота и рвота, коллапс..Головная боль,

общаямышечная слабость, тошнота.

1350

1 час

Сердцебиение. Легкое пошатывание, одышка при легкой мышечной работе, расстройства зрения и слуха. Пульсирующая головная боль, спутанность в мыслях. Учащение дыхания и пульса; кома, прерываемая судорогами;

чейнстоксово дыхание.

1760

20 мин

Потеря сознания, коллапс

1800

1-1,5 часа

То же. Ослабление дыхания и сердечной деятельности. Может наступить смерть.

3500

5-10 мин

Головная боль, головокружение, рвота, потеря сознания.

3400

20-30 мин

Слабый пульс, замедление и остановка дыхания. Смерть.

14000

1-3 мин

Потеря сознания, рвота, смерть.

В подложечной области, в суставах, невралгические боли, потливость, учащенные позывы к мочеиспусканию, иногда - обморочное состояние после работы. Отмечаются стойкий ярко-красный дермографизм, дрожание конечностей, экстра-пирамидные расстройства - нарушение координации движений, прыгающая походка, понижение или усиление сухожильных рефлексов (Ре1гу), тремор пальцев вытянутых рук, лабиринтные нарушения, нистагм при поворотах головы и вращении тела, расстройства кожной чувствительности, вялость или полное отсутствие зрачковых реакций, невриты и.полиневриты. Возможны расстройства речи, невралгии, в тяжелых случаях - порезы, в частности лицевого нерва (маскооб­разное лицо), энцефалопатии, психозы (деменции, шизофреноподобные состояния и др.), апоплектиформные и эпилептиформные судорожные припадки. Иногда картина расстройства центральной нервной системы напоминает паркинсонизм. Могут быть церебро-сосудистые и дизнцефальныё кризы, усиленная потливость кистей рук, акроцианоз, трофические расстройства кожи, крапивница, иногда преждевременное поседение и выпадение волос.

При хронических отравлениях наблюдаются более тяжелые заболевания Сердечно-сосудистой системы, чем при острых, особенно у лиц, занимающихся физическим трудом.Отмечаются аритмия, учащение пульса, экстрасистолия, не­устойчивость пульса и кровяного давления со склонностью к снижению последнего (но изредка может развиться гипертоническая болезнь (Sumari; Ре1гу), сенокардические явления. На ЭКГ - нарушения атриовентрикулярной и внутрижелудочковой проводимости. Возможны инфаркты миокарда. Поражения сердца обычно выявляются через 1-1,5 года после отравления, иногда уже после прекращения контакта с СО. Наблюдаются также повышение проницаемости капилляров в разных органах, повреждения эндотелия и тромбозы коронарных сосудов.

По материалам

"Вредные вещества в промышленности". Справочник для химиков инженеров и врачей. Издательство "Химия" 1977 г.

Оксид углерода (угарный газ).

Оксид углерода - бесцветный газ, не имеющий запаха, немного легче воздуха, плохо растворим в воде, имеет температуру кипения: - 191,5°С. На воздухе загорается при температуре 700°С и сгорает синим пламенем до СО 2 .

Источники поступления в окружающую среду.

Монооксид углерода входит в состав атмосферы (10%). В атмосферу оксид углерода попадает в составе вулканических и болотных газов, в результате лесных и степных пожаров, выделения микроорганизмами, растениями, животными и человеком. Из поверхностных слоев океанов в год выделяется 220х10 6 тонн оксида углерода в результате фоторазложения красных, сине-зеленых и др. водорослей, продуктов жизнедеятельности планктона. Естественный уровень содержания оксида углерода в атмосферном воздухе - 0,01-0,9 мг/м 3 .

Угарный газ попадает в атмосферу от промышленных предприятий, в первую очередь металлургии. В металлургических процессах при выплавке 1 млн. тонн стали образуется 320-400 тонн оксида углерода. Большое количество СО образуется в нефтяной промышленности и на химических предприятиях (крекинг нефти, производство формалина, углеводородов, аммиака и др.). Еще одним немаловажным источником оксида углерода является табачный дым. Высока концентрация оксида углерода в угольных шахтах, на углеподающих трассах. Оксид углерода образуется при неполном сгорании топлива в печах и двигателях внутреннего сгорания. Важным источником оксида углерода является автомобильный транспорт.

В результате деятельности человека в атмосферу ежегодно поступает 350-600х10 6 тонн угарного газа. Около 56-62% этого количества приходится на долю автотранспорта (содержание оксида углерода в выхлопных газах может достигать величины 12%).

Поведение в окружающей среде.

При обычных условиях монооксид углерода инертен. Он химически не взаимодействует с водой. Растворимость СО в воде около 1:40 по объему. В растворе способен восстанавливать соли золота и платины до свободных металлов уже при обычной температуре. Не реагирует СО также с щелочами и кислотами. Взаимодействует с едкими щелочами только при повышенных температурах и высоких давлениях.

Убыль оксида углерода в окружающей среде происходит за счет его разложения почвенными грибами. Кроме того, при избытке кислорода в почвах тяжелого механического состава, богатых органическими веществами, имеет место переход СО в СО 2 .

Воздействие на организм человека.

Оксид углерода чрезвычайно ядовит. Допустимое содержание СО в производственных помещениях составляет 20 мг/м 3 в течение рабочего дня, 50 мг/м 3 в течение 1 часа, 100 мг/м 3 в течение 30 минут, в атмосферном воздухе города максимальная разовая (за 20 мин) - 5 мг/м 3 , среднесуточная ПДК - 3 мг/м 3 . Естественный уровень содержания оксида углерода в атмосферном воздухе - 0,01-0,9 мг/м 3 .

СО вдыхается вместе с воздухом и поступает в кровь, где конкурирует с кислородом за молекулы гемоглобина. Оксид углерода, имея двойную химическую связь, соединяется с гемоглобином более прочно, чем молекула кислорода. Чем больше СО содержится в воздухе, тем больше молекул гемоглобина связывается с ним и тем меньше кислорода достигает клеток организма. Нарушается способность крови доставлять кислород к тканям, вызываются спазмы сосудов, снижается иммунологическая активность человека, сопровождающиеся головной болью, потерей сознания и смертью. По этим причинам СО в повышенных концентрациях представляет собой смертельный яд.

СО нарушает фосфорный обмен. Нарушение азотистого обмена вызывает зотемию, изменение содержания белков плазмы, снижение активности холинэстеразы крови и уровня витамина В 6 . Угарный газ влияет на углеводный обмен, усиливает распад гликогена в печени, нарушая утилизацию глюкозы, повышая уровень сахара в крови. Поступление СО из легких в кровь обусловлено концентрацией СО во вдыхаемом воздухе и длительностью ингаляции. Выделение СО происходит главным образом через дыхательные пути.

Больше всего при отравлении страдает ЦНС. При вдыхании небольшой концентрации (до 1 мг/л) - тяжесть и ощущение сдавливания головы, сильная боль во лбу и висках, головокружение, дрожь, жажда, учащение пульса, тошнота, рвота, повышение температуры тела до 38-40°С. Слабость в ногах свидетельствует о распространении действия на спинной мозг.

Чрезвычайная ядовитость СО, отсутствие у него цвета и запаха, а также очень слабое поглощение его активированным углем обычного противогаза делают этот газ особенно опасным.

Аммиак.

Аммиак - бесцветный газ с резким запахом, температура плавления - 80°С, температура кипения - 36°С, хорошо растворяется в воде, спирте и ряде других органических растворителей. Синтезируют из азота и водорода. В природе образуется при разложении азотсодержащих органических соединений.

Нахождение в природе.

В природе образуется при разложении азотсодержащих органических соединений.

Резкий запах аммиака известен человеку с доисторических времен, так как этот газ образуется в значительных количествах при гниении, разложении и сухой перегонке содержащих азот органических соединений, например мочевины или белков. Не исключено, что на ранних стадиях эволюции Земли в ее атмосфере было довольно много аммиака. Однако и сейчас ничтожные количества этого газа всегда можно обнаружить в воздухе и в дождевой воде, поскольку он непрерывно образуется при разложении животных и растительных белков.

Антропогенные источники поступления в окружающую среду.

Основными источниками выделения аммиака являются азотнотуковые комбинаты, предприятия по производству азотной кислоты и солей аммония, холодильные установки, коксохимические заводы и животноводческие фермы. В районах техногенного загрязнения концентрации аммиака достигают величин 0,015-0,057 мг/м 3 , в контрольных районах - 0,003-0,005 мг/м 3 .

Влияние на организм человека.

Этот газ токсичен. Человек способен почувствовать запах аммиака в воздухе уже в ничтожной концентрации - 0,0005 мг/л, когда еще нет большой опасности для здоровья. При повышении концентрации в 100 раз (до 0,05 мг/л) проявляется раздражающее действие аммиака на слизистую оболочку глаз и верхних дыхательных путей, возможна даже рефлекторная остановка дыхания. Концентрацию 0,25 мг/л с трудом выдерживает в течение часа даже очень здоровый человек. Еще более высокие концентрации вызывают химические ожоги глаз и дыхательных путей и становятся опасными для жизни. Внешние признаки отравления аммиаком могут быть весьма необычными. У пострадавших, например, резко снижается слуховой порог: даже не слишком громкие звуки становятся невыносимы и могут вызвать судороги. Отравление аммиаком вызывает также сильное возбуждение, вплоть до буйного бреда, а последствия могут быть весьма тяжелыми - до снижения интеллекта и изменения личности. Очевидно, аммиак способен поражать жизненно важные центры, так что при работе с ним надо тщательно соблюдать меры предосторожности.

Хроническое воздействие сублетальных доз аммиака приводит к вегетативным расстройствам, повышению возбудимости парасимпатического отдела нервной системы, жалобы на слабость, недомогание, насморк, кашель, боли в груди.

Класс опасности вещества - 4.