Возрастание и убывание функции примеры. Достаточные признаки возрастания и убывания функции
Монотонность
Очень важным свойством функции является ее монотонность. Зная это свойство различных специальных функций, можно определить поведение различных физических, экономических, социальных и многих других процессов.
Выделяют следующие виды монотонности функций:
1) функция возрастает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует большее значение функции;
2) функция убывает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует меньшее значение функции;
3) функция неубывает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что ;
4) функция невозрастает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что .
2. Для первых двух случаев еще применяют термин «строгая монотонность».
3. Два последних случая являются специфическими и задаются обычно в виде композиции из нескольких функций.
4. Отдельно отметим, что рассматривать возрастание и убывание графика функции следует именно слева-направо и никак иначе.
2. Четность/нечетность.
Функция называется нечетной , если при изменении знака аргумента, она меняет свое значение на противоположное. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция изменит свой знак. График такой функции симметричен относительно начала координат.
Примерами нечетных функций являются и др.
Например, график действительно обладает симметричностью относительно начала координат:
Функция называется четной , если при изменении знака аргумента, она не меняет свое значение. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция в результате не изменится. График такой функции симметричен относительно оси .
Примерами четных функций являются и др.
К примеру, покажем симметричность графика относительно оси :
Если функция не относится ни к одному из указанных видов, то ее называют ни четной ни нечетной или функцией общего вида . У таких функций нет симметрии.
Такой функцией, например, является недавно рассмотренная нами линейная функция с графиком:
3. Особым свойством функций является периодичность.
Дело в том, что периодичными функциями, которые рассматриваются в стандартной школьной программе, являются только тригонометрические функции. Мы уже подробно о них говорили при изучении соответствующей темы.
Периодичная функция – это функция, которая не меняет свои значения при добавлении к аргументу определенного постоянного ненулевого числа.
Такое минимальное число называют периодом функции и обозначают буквой .
Формульная запись этого выглядит следующим образом: .
Посмотрим на это свойство на примере графика синуса:
Вспомним, что периодом функций и является , а периодом и – .
Как мы уже знаем, для тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:
У них период равен . И о функциях:
У них период равен .
Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.
Ограниченность.
Функцию y=f(x)называют ограниченной снизу на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.
Функцию y=f(x)называют ограниченной сверху на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.
Если промежуток Х не указывается, то считают, что функция ограничена на всей области определения. Функция ограниченная и сверху, и снизу называется ограниченной.
Ограниченность функции легко читается по графику. Можно провести некоторую прямую у=а, и если функция выше этой прямой, то ограниченность снизу.
Если ниже, то соответственно сверху. Ниже представлен график ограниченной снизу функции. График ограниченной функции, ребята, попробуйте нарисовать сами.
Тема: Свойства функций: промежутки возрастания и убывания; наибольшее и наименьшее значения; точки экстремума (локального максимума и минимума), выпуклость функции.
Промежутки возрастания и убывания.
На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.
Вот формулировки признаков возрастания и убывания функции на интервале:
· если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
· если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .
Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:
· найти область определения функции;
· найти производную функции;
· решить неравенства и на области определения;
На основании достаточных признаков находятся промежутки возрастания и убывания функции.
Вот формулировки признаков:
- если производная функции y = f(x) положительна для любого x из интервала X , то функция возрастает на X ;
- если производная функции y = f(x) отрицательна для любого x из интервала X , то функция убывает на X .
Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:
- найти область определения функции;
- найти производную функции;
- к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна.
Рассмотрим пример для разъяснения алгоритма.
Пример.
Найти промежутки возрастания и убывания функции .
Решение.
Первым шагом является нахождение обрасти определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .
Переходим к производной функции:
Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x = 0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.
Таким образом, и .
В точке x = 2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x = 0 функция не определена, поэтому эту точку не включаем в искомые интервалы.
Приводим график функции для сопоставления с ним полученных результатов.
Ответ: функция возрастает при , убывает на интервале (0; 2] .
- Точки экстремума функции одной переменной. Достаточные условия экстремума
Пусть функция f(x), определенная и непрерывная в промежутке , не является в нем монотонной. Найдутся такие части [ , ] промежутка , в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т.е. между и.
Говорят, что функция f(x) имеет в точке максимум (или минимум), если эту точку можно окружить такой окрестностью (x 0 - ,x 0 +), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство.
f(x) < f(x 0)(или f(x)>f(x 0))
Иными словами, точка x 0 доставляет функции f(x) максимум (минимум), если значение f(x 0) оказывается наибольшим (наименьшим) из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки. Отметим, что самое определение максимума (минимума) предполагает, что функция задана по обе стороны от точки x 0 .
Если существует такая окрестность, в пределах которой (при x=x 0) выполняется строгое неравенство
f(x)
то говорят, что функция имеет в точке x 0 собственный максимум (минимум), в противном случае – несобственный.
Если функция имеет максимумы в точках x 0 и x 1 , то, применяя к промежутку вторую теорему Вейерштрасса, видим, что наименьшего своего значения в этом промежутке функция достигает в некоторой точке x 2 между x 0 и x 1 и имеет там минимум. Аналогично, между двумя минимумами непременно найдется максимум. В том простейшем (и на практике – важнейшим) случае, когда функция имеет вообще лишь конечное число максимумов и минимумов, они просто чередуются.
Заметим, что для обозначения максимума или минимума существует и объединяющий их термин – экстремум.
Понятия максимум (max f(x)) и минимум (min f(x)) являются локальными свойствами функции и имеют место в определенной точке х 0 . Понятия наибольшего (sup f(x)) и наименьшего (inf f(x)) значений относятся к конечному отрезку и являются глобальными свойствами функции на отрезке.
Из рисунка 1 видно, что в точках х 1 и х 3 локальные максимумы, а в точках х 2 и х 4 – локальные минимумы. Однако, наименьшего значения функция достигает в точке х=а, а наибольшего – в точке х=b.
Поставим задачу о разыскании всех значений аргумента, доставляющих функции экстремум. При решении ее основную роль будет играть производная.
Предположим сначала, что для фунции f(x) в промежутке(a,b) существует конечная производная. Если в точке х 0 функция имеет экстремум, то, применяя к промежутку (х 0 - ,х 0 +), о которой была речь выше, теорему Ферма, заключаем, что f(x)=0 этом состоит необходимое условие экстремума. Экстремум следует искать только в тех точках, где производная равна нулю.
Не следует, думать, однако, что каждая точка, в которой производная равна нулю, доставляет функции экстремум: указанное только что необходимое условие неявляется достаточным
Производной. Если производная функции положительна для любой точки интервала, то функция возрастает, если отрицательна – убывает.
Чтобы найти промежутки возрастания и убывания функции, нужно найти область ее определения, производную, решить неравенства вида F’(x) > 0 и F’(x)
Решение.
3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³
Решение.
1. Найдем область определения функции. Очевидно, что выражение, стоящее в знаменателе, должно всегда быть отличным от нуля. Поэтому 0 исключается из области определения: функция определена при x ∈ (-∞; 0)∪(0; +∞).
2. Вычислим производную функции:
y’(x) = ((3·x² + 2·x - 4)’ ·x² – (3·x² + 2·x - 4) · (x²)’)/x^4 = ((6·x + 2) ·x² – (3·x² + 2·x - 4) ·2·x)/x^4 = (6·x³ + 2·x² – 6·x³ – 4·x² + 8·x)/x^4 = (8·x – 2·x²)/x^4 = 2· (4 - x)/x³.
3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³
4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .
4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .
Источники:
- как найти на функции промежутки убывания
Функция представляет собой строгую зависимость одного числа от другого, или значения функции (y) от аргумента (х). Каждый процесс (не только в математике), может быть описан своей функцией, которая будет иметь характерные особенности: промежутки убывания и возрастания, точки минимумов и максимумов и так далее.
Вам понадобится
- - бумага;
- - ручка.
Инструкция
Пример 2.
Найти промежутки убывания f(x)=sinx +x.
Производная данной функции будет равна: f’(x)=cosx+1.
Решая неравенство cosx+1
Интервалом монотонности функции можно назвать промежуток, в котором функция либо только возрастает, либо только убывает. Ряд определенных действий поможет найти такие диапазоны для функции, что нередко требуется в алгебраических задачах подобного рода.
Инструкция
Первым шагом в решении задачи по определению интервалов, в которых функция монотонно возрастает или убывает, станет вычисление данной функции. Для этого узнайте все значения аргументов (значения по оси абсцисс), для которых можно найти значение функции. Отметьте точки, в которых наблюдаются разрывы. Найдите производную функции. Определив выражение, которое представляет собой производную, приравняйте его к нулю. После этого следует найти корни получившегося . Не про область допустимых .
Точки, в которых функция либо в которых ее производная равна нулю, представляют собой границы интервалов монотонности . Эти диапазоны, а также точки, их разделяющие, следует последовательно внести в таблицу. Найдите знак производной функции в полученных промежутках. Для этого подставьте в выражение, соответствующее производной, любой аргумент из интервала. Если результат положительный, функция в данном диапазоне возрастает, в обратном случае - убывает. Результаты вносятся в таблицу.
В строку, обозначающую производную функции f’(x), записывается соответствующий значениям аргументов : «+» - если производная положительна,«-» - отрицательна или «0» – равна нулю. В следующей строке отметьте монотонность самого исходного выражения. Стрелка вверх соответствует возрастанию, вниз – убыванию. Отметьте функции. Это точки, в которых производная равна нулю. Экстремум может быть либо точкой максимума, либо точкой минимума. Если предыдущий участок функции возрастал, а текущий убывает, это точка максимума. В случае, когда до данной точки функция убывала, а теперь возрастает – это точка минимума. Внесите в таблицу значения функции в точках экстремума.
Источники:
- что такое определение монотонность
Исследование поведения функции, имеющей сложную зависимость от аргумента, проводится с помощью производной. По характеру изменения производной можно найти критические точки и участки роста или убывания функции.
Экстремумы функции
Определение 2
Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.
Определение 3
Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.
Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.
Определение 4
$x_0$ называется критической точкой функции $f(x)$, если:
1) $x_0$ - внутренняя точка области определения;
2) $f"\left(x_0\right)=0$ или не существует.
Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.
Теорема 2
Достаточное условие экстремума
Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:
1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)
2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.
3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)
Данная теорема проиллюстрирована на рисунке 1.
Рисунок 1. Достаточное условие существования экстремумов
Примеры экстремумов (Рис. 2).
Рисунок 2. Примеры точек экстремумов
Правило исследования функции на экстремум
2) Найти производную $f"(x)$;
7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.
Возрастание и убывание функции
Введем, для начала, определения возрастающей и убывающей функций.
Определение 5
Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1
Определение 6
Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.
Исследование функции на возрастание и убывание
Исследовать функции на возрастание и убывание можно с помощью производной.
Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:
1) Найти область определения функции $f(x)$;
2) Найти производную $f"(x)$;
3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;
4) Найти точки, в которых $f"(x)$ не существует;
5) Отметить на координатной прямой все найденные точки и область определения данной функции;
6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;
7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.
Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов
Пример 1
Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$
Так как первые 6 пунктов совпадают, проведем для начала их.
1) Область определения - все действительные числа;
2) $f"\left(x\right)=6x^2-30x+36$;
3) $f"\left(x\right)=0$;
\ \ \
4) $f"(x)$ существует во всех точках области определения;
5) Координатная прямая:
Рисунок 3.
6) Определить знак производной $f"(x)$ на каждом промежутке:
\ \}