Что такое широтная зональность? В чем она проявляется? Широтная зональность

Каждый знает, что на Земле распределение солнечного тепла происходит неравномерно из-за шарообразной формы планеты. В следствии этого образуются разные природные системы, где в каждой все компоненты тесно связаны друг с другом, и формируется природная зона, которая встречается на всех материках. Если проследить за животным и в одинаковых зонах, но на разных материках, то можно увидеть определенное сходство.

Закон географической зональности

Ученый В. В. Докучаев в свое время создал учение о природных зонах, и выразил мысль, что каждая зона - это природный комплекс, где живая и неживая природа тесно взаимосвязаны между собой. В дальнейшем на этой базе учения была создана первая квалификация, которая была доработана и более конкретизирована другим ученым Л.С. Бергом.

Формы зональности различны из-за разнообразия состава географической оболочки и влияния двух основных факторов: энергии Солнца и энергии Земли. Именно с этими факторами связана природная зональность, которая проявляется в распределении океанов, разнообразии рельефа и его строении. В результате этого образовались различные природные комплексы, и самым крупным из них является географический пояс, который близок к климатическим поясам описанным Б.П. Алисовым).

Выделяют следующие географические по два субэкваториальных, тропических и субтропических, умеренных, субполярных и полярных (арктический и антарктический). подразделяются на зоны, о которых стоит поговорить более конкретно.

Что такое широтная зональность

Природные зоны тесно связаны с климатическими поясами, а значит зоны как пояса постепенно сменяют друг друга, двигаясь от экватора к полюсам, где уменьшается солнечное тепло и меняются осадки. Такую смену крупных природных комплексов называют широтной зональностью, которая проявляется во всех природных зонах независимо от размера.

Что такое высотная зональность

На карте видно, если двигаться с севера на восток, что в каждом географическом поясе встречается географическая зональность, начиная с арктических пустынь, переходя к тундре, далее к лесотундре, тайге, смешанным и широколиственным лесам, лесостепи и степям, и, наконец, к пустыне и субтропикам. Они простираются с запада на восток полосами, но бывает и другое направление.

Многие знают, что чем выше поднимаешься в горы, тем соотношение тепла и влаги больше меняется в сторону низкой температуры и осадков в твердом виде, вследствие чего меняется растительный и животный мир. Ученые и географы дали такому направлению свое название - высотная зональность (или поясность), когда одна зона сменяет другую, опоясывая горы на разной высоте. При этом смена поясов происходит быстрее, чем на равнине, стоит только подняться на 1 км, и будет уже другая зона. Самый нижний пояс всегда соответствует тому, где находится гора, и чем ближе она расположена к полюсам, тем меньше этих зон можно встретить на высоте.

Закон географической зональности работает и в горах. От географической широты зависят сезонность, а также смена дня и ночи. Если гора находится близко к полюсу, то и там можно встретить полярную ночь и день, а если расположение близ экватора, то день всегда будет равен ночи.

Ледяная зона

Природная зональность, примыкающая к полюсам земного шара, называется ледяной. Суровый климат, где снег и лед лежат круглый год, а в самый теплый месяц температура не поднимается выше 0°. Снега покрывают всю землю даже несмотря не то, что солнце светит несколько месяцев круглосуточно, но совсем не прогревает ее.

При слишком суровых условиях в ледяной зоне проживает мало животных (белый медведь, пингвины, тюлени, моржи, песец, северный олень), еще меньше можно встретить растений, так как почвообразовательный процесс находится на начальной стадии развития, и в основном встречаются неорганизованные растения (лишайник, мох, водоросли).

Тундровая зона

Зона холода и сильных ветров, где продолжительная долгая зима и короткое лето, из-за чего почва не успевает прогреваться, и образуется слой многолетних мерзлых грунтов.

Закон зональности работает даже в тундре и делит ее на три подзоны, двигаясь с севера на юг: арктическая тундра, где растет в основном мох и лишайники, типичная лишайниково-моховая тундра, где появляются местами кустарнички, распространена от Вайгач до Колымы, и Южная кустарниковая тундра, где растительность состоит из трех уровней.

Отдельно стоит упомянуть лесотундру, которая простирается тонкой полосой и является переходной зоной между тундрой и лесами.

Таежная зона

Для России Тайга - самая большая природная зона, которая простирается от западных границ до Охотского и Японского морей. Тайга находится в двух климатических поясах, вследствие чего встречаются различия внутри нее.

Данная природная зональность сосредотачивает большое количество озер и болот, и именно здесь берут свое начало великие реки в России: Волга, Кама, Лена, Вилюй и другие.

Главное для растительного мира - хвойные леса, где господствует лиственница, менее распространены ель, пихта, сосна. Животный мир неоднороден и восточная часть тайги более богата, чем западная.

Леса, лесостепи и степи

В зоне смешанных и климат теплее и влажнее, и здесь хорошо прослеживается широтная зональность. Зима менее суровая, лето долгое и теплое, что способствует росту таких деревьев, как дуб, ясень, клен, липа, орешник. Благодаря сложным растительным сообществам в данной зоне разнообразный животный мир, и, например, на Восточно-Европейской равнине распространены зубр, выхухоль, кабан, волк, лось.

Зона смешанных лесов более богата, чем в хвойных, и встречаются крупные травоядные животные и большое разнообразие птиц. Географическая зональность отличается густотой речных водоемов, часть из которых зимой вовсе не замерзает.

Переходной зоной между степью и лесом является лесостепь, где идет чередование лесных и луговых фитоценозов.

Степная зона

Это еще один вид, который описывает природная зональность. Он резко отличается по климатическим условиям от выше названных зон, и главное отличие - недостаток воды, вследствие чего отсутствуют леса и преобладают злаковые растения и все различные травы, которые покрывают землю сплошным ковром. Несмотря на то, что в этой зоне не хватает воды, растения отлично переносят засуху, часто листья у них мелкие и во время зноя могут сворачиваться, чтобы предотвратить испарение.

Животный мир более разнообразен: встречаются копытные животные, грызуны, хищники. В России степь является наиболее освоенная человеком и главной зоной земледелия.

Степи встречаются на Северном и Южном полушарии, но постепенно они исчезают из-за распашки земли, пожаров, выпасов животных.

Широтная и высотная зональность встречается и в степях, поэтому их разделяют на несколько подвидов: горные (например, Кавказские горы), луговые (характерно для Западной Сибири), ксерофильные, где много дерновиднных злаков, и пустынные (ими стали степи Калмыкии).

Пустыня и тропики

Резкие изменения климатических условий обусловлено тем, что испаряемость превышает во много раз выпадение осадков (в 7 раз), и продолжительность такого периода составляет до полугода. Растительность данной зоны не богата, и в основном встречаются травы, кустарники, а леса можно увидеть только вдоль рек. Животный же мир более богатый и немного похож на тот, что встречается в степной зоне: много грызунов и пресмыкающихся, а копытные кочуют в близлежащих зонах.

Самой большой пустыней считается Сахара, а вообще данная природная зональность характерна для 11% всей земной поверхности, а если к ней добавить арктическую пустыню, то 20%. Пустыни встречаются как в умеренном поясе Северного полушария, так и в тропиках и субтропиках.

Однозначного определения тропикам не существует, выделяют географические пояса: тропический, субэкваториальный и экваториальный, где встречаются схожие по своему составу леса, но имеющие определенные различия.

Подразделяют все леса на саванны, лесные субтропики и Их общая черта в том, что деревья всегда стоят зелеными, и отличаются эти зоны по продолжительности сухих и дождливых периодов. В саваннах дождливый период длится 8-9 месяцев. Лесные субтропики характерны для восточных окраин материков, где происходит смена сухого периода зимы и влажного лета с муссонными дождями. Тропические леса характеризуются большой степенью увлажнения, и осадки могут превышать 2000 мм в год.

Широтная зональность

Региональная и локальная дифференциация эпигеосферы

Широтная зональность

Дифференциация эпигеосферы на геосистемы различных порядков определяется неодинаковыми условиями ее развития в разных частях. Как уже отмечалось, существуют два главных уровня физико-географической дифференциации - региональный и локальный (или топологический), в основе которых лежат глубоко различные причины.

Региональная дифференциация обусловлена соотношением двух главнейших внешних по отношению к эпигеосфере энергетических факторов - лучистой энергии Солнца и внутренней энергии Земли. Оба фактора проявляются неравномерно как в пространстве, так и во времени. Специфические проявления того и другого в природе эпигеосферы и определяют две наиболее общие географические закономерности - зональность и азональность.

Под широтной (географической, ландшафтной) зональностью 1

подразумевается закономерное изменение физико-географических процессов, компонентов и комплексов (геосистем) от экватора к полюсам. Первичная причина зональности - неравномерное распределение коротковолновой радиации Солнца по широте вследствие шарообразности Земли и изменения угла падения солнечных лучей на земную поверхность. По этой причине на единицу площади приходится неодинаковое количество лучистой энергии Солнца в зависимости от широты. Следовательно, для существования зональности достаточно двух условий - потока солнечной радиации и шарообразности Земли, причем теоретически распределение этого потока по земной поверхности должно иметь вид математически правильной кривой (рис. 5, Ra). В действительности, однако, широтное распределение солнечной энергии зависит и от некоторых других факторов, имеющих также внешнюю, астрономическую, природу. Один из них - расстояние между Землей и Солнцем.

По мере удаления от Солнца поток его лучей становится все слабее, и можно представить себе такое расстояние (например, на какое отстоит от Солнца планета Плутон), при котором разница

1Далее зту закономерность будем называть просто зональностью.

Рис. 5. Зональное распределение солнечной радиации:

Ra- радиация на верхней границе атмосферы; суммарная радиация: Rcc- на. поверхности суши, Rco- на поверхности Мирового океана, Rcз- средняя для поверхности земного шара; радиационный баланс: Rс- на поверхности суши, Rо- на поверхности океана, Rз- средняя для поверхности земного шара

между экваториальными и полярными широтами в отношении инсоляции теряет свое значение - везде окажется одинаково холодно (на поверхности Плутона расчетная температура около - 230° С). При слишком большом приближении к Солнцу, напротив, во всех частях планеты оказалось бы чрезмерно жарко. В обоих крайних случаях невозможно существование ни воды в жидкой фазе, ни жизни. Земля оказалась наиболее «удачно» расположенной планетой по отношению к Солнцу.

Масса Земли также влияет на характер зональности, хотя и кос-


венно: она позволяет нашей планете (в отличие, например, от «легкой» Луны) удерживать атмосферу, которая служит важным фактором трансформации и перераспределения солнечной энергии.

Существенную роль играет наклон земной оси к плоскости эклиптики (под углом около 66,5°), от этого зависит неравномерное поступление солнечной радиации по сезонам, что сильно усложняет зональное распределение тепла, а

также влаги и обостряет зональные контрасты. Если бы земная ось была

перпендикулярна плоскости эклиптики, то каждая параллель получала бы в течение всего года почти одинаковое количество солнечного тепла и на Земле практически не было бы сезонной смены явлений.

Суточное вращение Земли, обусловливающее отклонение движущихся тел, в том числе воздушных масс, вправо в северном полушарии и влево - в южном, также вносит дополнительные усложнения в схему зональности.

Если бы земная поверхность была сложена каким-либо одним веществом и не имела неровностей, распределение солнечной радиации оставалось бы строго зональным, т.е., несмотря на осложняющее влияние перечисленных астрономических факторов, ее количество изменялось бы строго по широте и на одной параллели было бы одинаковым. Но неоднородность поверхности земного шара - наличие материков и океанов, разнообразие рельефа и горных пород и т. д.- обусловливает нарушение математически регулярного распределения потока солнечной энергии. Поскольку солнечная энергия служит практически единственным источником физических, химических и биологических процессов на земной поверхности, эти процессы неизбежно должны иметь зональный характер. Механизм географической зональности очень сложен, она проявляется далеко не однозначно в разной «среде», в различных компонентах, процессах, а также в разных частях эпигеосферы. Первым непосредственным результатом зонального распределения лучистой энергии Солнца является зональность радиационного баланса земной поверхности. Однако уже в распределении приходящей радиации мы

наблюдаем явное нарушение строгого соответствия с широтой. На рис. 51хорошо видно, что максимум приходящей к земной поверхности суммарной радиации отмечается не на экваторе, чего следовало бы ожидать теоретически,

а на пространстве между 20-й и 30-й параллелями в обоих полушариях -

северном и южном. Причина этого явления состоит в том, что на данных широтах атмосфера наиболее прозрачна для солнечных лучей (над экватором в атмосфере много облаков, которые отражают солнечные

1В СИ энергия измеряется в джоулях, однако до недавнего времени тепловую энергию было принято измерять в калориях. Поскольку во многих опубликованных географических работах показатели радиационного и теплового режимов выражены в калориях (или килокалориях), приводим следующие соотношения: 1 Дж = 0,239 кал; 1 ккал = 4,1868*103Дж; 1 ккал/см2= 41,868


лучи, рассеивают и частично поглощают их). Над сушей контрасты в прозрачности атмосферы особенно значительны, что находит четкое отражение в форме соответствующей кривой. Таким образом, эпигеосфера не пассивно, автоматически реагирует на поступление солнечной энергии, а по- своему перераспределяет ее. Кривые широтного распределения радиационного баланса несколько более сглажены, но они не являются простой копией теоретического графика распределения потока солнечных лучей. Эти кривые не строго симметричны; хорошо заметно, что поверхность океанов характеризуется более высокими цифрами, чем суша. Это также говорит об активной реакции вещества эпигеосферы на внешние энергетические воздействия (в частности, из-за высокой отражающей способности суша теряет значительно больше лучистой энергии Солнца, чем океан).

Лучистая энергия, полученная земной поверхностью от Солнца и преобразованная в тепловую, затрачивается в основном на испарение и на теплоотдачу в атмосферу, причем величины этих расходных статей

радиационного баланса и их соотношения довольно сложно изменяются по

широте. И здесь мы не наблюдаем кривых, строго симметричных для суши и

океана (рис. 6).

Важнейшие следствия неравномерного широтного распределения тепла -

зональность воздушных масс, циркуляции атмосферы и влагооборота. Под влиянием неравномерного нагрева, а также испарения с подстилающей поверхности формируются воздушные массы, различающиеся по своим температурным свойствам, влагосодержанию, плотности. Выделяют четыре основных зональных типа воздушных масс: экваториальные (теплые и влажные), тропические (теплые и сухие), бореальные, или массы умеренных широт (прохладные и влажные), и арктические, а в южном полушарии антарктические (холодные и относительно сухие). Неодинаковый нагрев и вследствие этого различная плотность воздушных масс (разное атмосферное давление) вызывают нарушение термодинамического равновесия в тропосфере и перемещение (циркуляцию) воздушных масс.

Если бы Земля не вращалась вокруг оси, воздушные потоки в атмосфере имели бы очень простой характер: от нагретых приэкваториальных широт воздух поднимался бы вверх и растекался к полюсам, а оттуда возвращался бы к экватору в приземных слоях тропосферы. Иначе говоря, циркуляция должна была иметь меридиональный характер и у земной поверхности в северном полушарии постоянно дули бы северные ветры, а в южном - южные. Но отклоняющее действие вращения Земли вносит в эту схему существенные поправки. В результате в тропосфере образуется несколько циркуляционных зон (рис. 7). Основные из них соответствуют четырем зональным типам воздушных масс, поэтому в каждом полушарии их получается по четыре: экваториальная, общая для северного и южного полушарий (низкое давление, штили, восходящие потоки воздуха), тропическая (высокое давление, восточные ветры), умеренная


Рис. 6. Зональное распределение элементов радиационного баланса:

1 - вся поверхность земного шара, 2 - суша, 3 - океан; LE - затраты тепла на

испарение, Р - турбулентная отдача тепла в атмосферу

(пониженное давление, западные ветры) и полярная (пониженное давление, восточные ветры) . Кроме того, различают по три переходные зоны - субарктическую, субтропическую и субэкваториальную, в которых типы циркуляции и воздушных масс сменяются по сезонам вследствие того, что летом (для соответствующего полушария) вся система циркуляции атмосферы смещается к «своему» полюсу, а зимой - к экватору (и противоположному полюсу) . Таким образом, в каждом полушарии можно выделить по семь циркуляционных зон.

Циркуляция атмосферы - мощный механизм перераспределения тепла и влаги. Благодаря ей зональные температурные различия на земной поверхности сглаживаются, хотя все-таки максимум приходится не на экватор, а на несколько более высокие широты северного полушария (рис. 8), что особенно четко выражено на поверхности суши (рис. 9).

Зональность распределения солнечного тепла нашла свое выра-


Рис. 7. Схема общей циркуляции атмосферы:

жение в традиционном представлении о тепловых поясах Земли. Однако континуальный характер изменения температуры воздуха у земной поверхности не позволяет установить четкую систему поясов и обосновать критерии их разграничения. Обычно различают следующие пояса: жаркий (со средней годовой температурой выше 20° С), два умеренных (между годовой изотермой 20° С и изотермой самого теплого месяца 10°С) и два холодных (с температурой самого теплого месяца ниже 10°); внутри последних иногда выделяют «области вечного мороза» (с температурой самого теплого месяца ниже 0° С). Эта схема, как и некоторые ее варианты, имеет чисто условный характер, и ландшафтоведческое значение ее невелико уже в силу крайнего схематизма. Так, умеренный пояс охватывает огромный температурный интервал, в который укладывается целая зима ландшафтных зон - от тундровой до пустынной. Заметим, что подобные температурные пояса не совпадают с циркуляционными,

С зональностью циркуляции атмосферы тесно связана зональность влагооборота и увлажнения. Это отчетливо проявляется в распределении атмосферных осадков (рис. 10). Зональность распреде-

Рис. 8. Зональное распределение температуры воздуха на поверхности земного шара: I - январь, VII - июль


Рис. 9. Зональное распределение тепла в уме-

Ренно континентальном секторе северного полушария:

t - средняя температура воздуха в июле,

сумма температур за период со средними суточны-

ми температурами выше 10° С


ления осадков имеет свою специфику, своеобразную ритмичность: три максимума (главный - на экваторе и два второстепенных в умеренных широтах) и четыре минимума (в полярных и тропических широтах) . Количество осадков само по себе не определяет условий увлажнения или влагообеспеченности природных процессов и ландшафта в целом. В степной зоне при 500 мм годовых осадков мы говорим о недостаточном увлажнении, а в тундре при 400 мм - об избыточном. Чтобы судить об увлажнении, нужно знать не только количество влаги, ежегодно поступающей в геосистему, но и то количество, которое необходимо для ее оптимального функционирования. Наилучшим показателем потребности во влаге служит испаряемость, т. е. количество воды, которое может испариться с земной поверхности в данных климатических условиях при допущений, что запасы влаги не ограниченны. Испаряемость - величина теоретическая. Ее


Рис. 10. Зональное распределение атмосферных осадков, испаряемости и коэффи-

циента увлажнения на поверхности суши:

1 - средние годовые осадки, 2 - средняя годовая испаряемость, 3 - превышение осадков над испаряемостью,

4 - превышение испаряемости над осадками, 5 - коэффициент увлажнения (по Высоцкому - Иванову)

следует отличать от испарения, т. е. фактически испаряющейся влаги, величина которой ограничена количеством выпадающих осадков. На суше испарение всегда меньше испаряемости.

На рис. 10 видно, что широтные изменения осадков и испаряемости не совпадают между собой и в значительной степени даже имеют противоположный характер. Отношение годового количества осадков к

годовой величине испаряемости может служить показателем климатического

увлажнения. Этот показатель впервые ввел Г. Н. Высоцкий. Еще в 1905 г. он использовал его для характерисТики природных зон европейской России. Впоследствии ленинградский климатолог Н. Н. Иванов построил изолинии этого отношения, которое назвал коэффициентом увлажнения (К), для всей суши Земли и показал, что границы ландшафтных зон совпадают с определенными значениями К: в тайге и тундре он превышает 1, в лесостепи равен


1,0-0,6, в степи - 0,6 - 0,3, в полупустыне - 0,3 - 0,12, в пустыне -

менее 0,12 1.

На рис. 10 схематично показано изменение средних значений коэффициента увлажнения (на суше) по широте. На кривой имеются четыре критические точки, где К переходит через 1. Величина, равная 1, означает, что условия увлажнения оптимальны: выпадающие осадки могут (теоретически) полностью испариться, проделав при этом полезную «работу»; если их

«пропустить» через растения, они обеспечат максимальную продукцию биомассы. Не случайно в тех зонах Земли, где К близок к 1, наблюдается наиболее высокая продуктивность растительного покрова. Превышение осадков над испаряемостью (К > 1) означает, что увлажнение избыточное: выпадающие осадки не могут полностью вернуться в атмосферу, они стекают по земной поверхности, заполняют впадины, вызывают заболачивание. Если осадки меньше испаряемости (К < 1), увлажнение недостаточное; в этих условиях обычно отсутствует лесная растительность, биологическая продуктивность низка, резко падает величина стока,.в почвах развивается засоление.

Надо заметить, что величина испаряемости определяется в первую очередь запасами тепла (а также влажностью воздуха, которая, в свою очередь, тоже зависит от термических условий). Поэтому отношение осадков к испаряемости можно в известной мере рассматривать как показатель соотношения тепла и влаги, или условий тепло- и водообеспеченности природного комплекса (геосистемы). Существуют, правда, и другие способы выражения соотношений тепла и влаги. Наиболее известен индекс сухости, предложенный М. И. Будыко и А. А. Григорьевым: R/Lr, где R - годовой радиационный баланс, L

- скрытая теплота испарения, r - годовая сумма осадков. Таким образом, этот индекс выражает отношение «полезного запаса» радиационного тепла к количеству тепла, которое нужно затратить, чтобы испарить все атмосферные осадки в данном месте.

По физическому смыслу радиационный индекс сухости близок к коэффициенту увлажнения Высоцкого - Иванова. Если в выражении R/Lr разделить числитель и знаменатель на L, то мы получим не что иное, как

отношение максимально возможного при данных радиационных условиях

испарения (испаряемости) к годовой сумме осадков, т. е. как бы перевернутый коэффициент Высоцкого - Иванова - величину, близкую к 1/К. Правда, точного совпадения не получается, поскольку R/L не вполне соответствует испаряемости, и в силу некоторых других причин, связанных с особенностями расчетов обоих показателей. Во всяком случае, изолинии индекса сухости также в общих чертах совпадают с границами ландшафтных зон, но в зонах избыточно влажных величина индекса получается меньше 1, а в аридных зонах - больше 1.

1См.: Иванов Н. Н. Ландшафтно-климатические зоны земного шара// Записки

Геогр. об-ва СССР. Нов. серия. Т. 1. 1948.


От соотношения тепла и увлажнения зависит интенсивность многих других физико-географических процессов. Однако зональные изменения тепла и увлажнения имеют разную направленность. Если запасы тепла в общем нарастают от полюсов к экватору (хотя максимум несколько смещен от экватора в тропические широты), то увлажнение изменяется как бы ритмически, образуя «волны» на широтной кривой (см. рис. 10). В качестве самой первичной схемы можно наметить несколько главных климатических поясов по соотношению теплообеспеченности и увлажнения: холодные влажные (к северу и к югу от 50°), теплые (жаркие) сухие (между 50° и 10°) и жаркий влажный (между 10° с. ш. и 10° ю. ш.).

Зональность выражается не только в среднем годовом количестве тепла и влаги, но и в их режиме, т. е. во внутригодовых изменениях. Общеизвестно, что экваториальная зона отличается наиболее ровным температурным режимом, для умеренных широт типичны четыре термических сезона и т. д. Разнообразны зональные типы режима осадков: в экваториальной зоне осадки выпадают более или менее равномерно, но с двумя максимумами, в субэкваториальных широтах резко выражен летний максимум, в средиземноморской зоне- зимний максимум, для умеренных широт характерно равномерное распределение с летним максимумом и т. д. Климатическая зональность находит отражение во всех других географических явлениях - в процессах стока и гидрологическом режиме, в процессах заболачивания и формирования грунтовых вод, образования коры выветривания и почв, в миграции химических элементов, в органическом мире. Зональность отчетливо проявляется в поверхностной толще океана (табл. 1). Географическая зональность находит яркое выражение в органическом мире. Не случайно ландшафтные зоны получили свои названия большей частью по характерным типам растительности. Неменее выразительна зональность почвенного покрова, которая послужила В. В. Докучаеву отправным пунктом для разработки учения о зонах природы, для определения зональности как

«мирового закона».

Иногда еще встречаются утверждения, будто в рельефе земной поверхности и геологическом фундаменте ландшафта зональность не проявляется, и эти компоненты называют «азональными». Делить географические компоненты на

«зональные» и «азональные» неправомерно, ибо в любом из них, как мы увидим в дальнейшем, сочетаются как зональные черты, так и азональные (мы пока не касаемся последних). Рельеф в этом отношении не составляет исключения. Как известно, он формируется под воздействием так называемых эндогенных факторов, имеющих типично азональную природу, и экзогенных, связанных с прямым или косвенным участием солнечной энергии (выветривание, деятельность ледников, ветра, текучих вод и т. д.). Все процессы второй группы имеют зональный характер, и создаваемые ими формы рельефа, называемые скульптурными

Широтная зональность -- закономерное изменение физико-географических процессов, компонентов и комплексов геосистем от экватора к полюсам. Первичная причина зональности -- неравномерное распределение солнечной энергии по широте вследствие шарообразной формы Земли и изменении угла падения солнечных лучей на земную поверхность. Кроме того, широтная зональность зависит и от расстояния до Солнца, а масса Земли влияет на способность удерживать атмосферу, которая служит трансформатором и перераспределителем энергии. Зональность выражается не только в в среднегодовом количестве тепла и влаги, но и во внутригодовых изменениях. Климатическая зональность отражается на стоке и гидрологическом режиме, образовании коры выветривания, заболачивания. Большое влияние оказывается на органический мир, специфические формы рельефа. Однородный состав и большая подвижность воздуха сглаживают зональные различия с высотой.

Высотная поясность, высотная зональность -- закономерная смена природных условий и ландшафтов в горах по мере возрастания абсолютной высоты (высоты над уровнем моря).

Высотный пояс, высотная ландшафтная зона -- единица высотно-зонального расчленения ландшафтов в горах. Высотный пояс образует полосу, сравнительно однородную по природным условиям, часто прерывистую[

Высотная поясность объясняется изменением климата с высотой: на 1 км подъёма температура воздуха снижается в среднем на 6 °C, уменьшается давление воздуха, его запылённость, возрастает интенсивность солнечной радиации, до высоты 2--3 км увеличивается облачность и количество осадков. По мере нарастания высоты происходит смена ландшафтных поясов, в некоторой степени аналогичная широтной зональности. Величина солнечной радиации увеличивается вместе с радиационным балансом поверхности. В результате температура воздуха снижается по мере роста высоты. Кроме того, происходит уменьшение количества осадков из-за барьерного эффекта.

ЗОНЫ ГЕОГРАФИЧЕСКИЕ (греч. zone -- пояс) -- широкие полосы на земной поверхности, ограниченные сходными чертами гидроклиматических (энерготворимых) и биогенных (жизненно-пищевых) природных ресурсов.

Зоны -- часть географических поясов, но опоясывают сушу земного шара лишь то есть, у которых на всем протяжении пояса сохраняется избыточная влажность воздуха и почв. Это ландшафтные зоны тундр, тундролесий и тайги. Все остальные зоны в пределах одной географической широты сменяются при ослаблении океанического влияния, то есть при изменении соотношения тепла и влаги -- главного ландшафтообразующего фактора. Например, в полосе 40-50° северной широты и в Северной Америке и в Евразии зоны широколиственных лесов переходят в леса смешанные, затем в хвойные, в глубь континентов сменяются лесостепями, степями, полупустынями и даже пустынями. Возникают долготные зоны или секторы.

Некоторые географические термины имеют схожие, но не одинаковые названия. По этой причине люди часто путаются в их определениях, а это уже в корне может поменять смысл всего, что они говорят или пишут. Потому сейчас мы выясним все сходства и различия между широтной зональностью и высотной поясностью, чтобы навсегда избавиться от путаницы между ними.

Вконтакте

Суть понятия

Наша планета имеет форму шара, который, в свою очередь, наклонен под определенным углом относительно эклиптики. Данное положение вещей стало причиной того, что солнечный свет распределяется по поверхности неравномерно .

В одних регионах планеты всегда тепло и ясно, в других идут ливни, третьим присущ холод и постоянные заморозки. Мы называем это климатом, который меняется в зависимости от отдаления или приближения к .

В географии такое явление носит название «широтная зональность», так как изменение погодных условий на планете происходит именно в зависимости от широты. Теперь мы можем вынести четкое определение данному термину.

Что же такое широтная зональность? Это закономерное видоизменение геосистем, географических и климатических комплексов по направлению от экватора к полюсам. В повседневной речи такое явление мы часто называем «климатическими поясами», и у каждого из них имеется свое название и характеристика. Ниже будут приведены примеры, демонстрирующие широтную зональность, которые позволят четко запомнить суть этого термина.

Обратите внимание! Экватор, конечно же, центр Земли, и все параллели от него расходятся к полюсам как бы в зеркальном отображении. Но в силу того, что планета имеет определенный наклон относительно эклиптики, южное полушарие больше освещается , нежели северное. Поэтому климат на одинаковых параллелях, но в разных полушариях не всегда совпадает.

Мы разобрались с тем, что такое зональность и каковы ее особенности на уровне теории. Теперь давайте вспомним все это на практике, просто глядя на климатическую карту мира. Итак, экватор окружен (простите за тавтологию) экваториальным климатическим поясом . Температура воздуха здесь не меняется в течение года, впрочем, как и крайне низкое давление.

Ветра на экваторе слабые, а вот проливные дожди – дело частое. Ливни идут каждый день, но за счет высокой температуры влага быстро испаряется.

Продолжаем приводить примеры природной зональности, описывая тропический пояс:

  1. Здесь ярко выраженные сезонные перепады температуры, не такое большое количество осадков, как на экваторе, и не такое низкое давление.
  2. В тропиках, как правило, полгода идет дождь, вторые полгода – сухо и жарко.

Также в данном случае прослеживаются сходства южного и северного полушария. Тропический климат в обеих частях света одинаковый.

На очереди стоит умеренный климат, который охватывает большую часть северного полушария . Что же касается южного – там он простирается над океаном, едва захватывая хвостик Южной Америки.

Климат характерен наличием четырех ярко выраженных времен года, которые отличаются друг от друга температурой и количеством осадков. Со школы всем известно, что вся территория России находится преимущественно в этой природной зоне, поэтому каждый из нас с легкостью может описать все погодные условия, присущие ей.

Последний, арктический климат, отличается от всех остальных рекордно низкими температурами, которые практически не меняются в течение года, а также скудным количеством осадков. Господствует он на полюсах планеты, захватывает малую часть нашей страны, Северно-Ледовитый океан и всю Антарктиду.

На что влияет природная зональность

Климат – основная определяющая всей биомассы конкретного региона планеты. За счет той или иной температуры воздуха, давления и влажности формируется флора и фауна , видоизменяются почвы, мутируют насекомые. Немаловажно, что от активности Солнца, за счет которой климат, собственно, и формируется, зависит цвет кожи человека. Исторически так сложилось:

  • в экваториальной зоне проживает чернокожее население Земли;
  • в тропиках обитают мулаты. Эти расовые семьи наиболее стойки к ярким солнечным лучам;
  • северные регионы планеты занимают светлокожие люди, привыкшие большую часть времени проводить на холоде.

Из всего вышесказанного вытекает закон широтной зональности, который заключается в следующем: «Трансформация всей биомассы напрямую зависит от климатических условий».

Высотная поясность

Горы – неотъемлемая часть земного рельефа. Многочисленные хребты, словно ленты, раскиданы по всему земному шару, какие-то высокие и крутые, другие – покатые. Именно эти возвышенности мы понимаем как области высотной поясности, так как климат здесь существенно отличается от равнинного.

Все дело в том, что поднимаясь в более удаленные от поверхности слои , широта, на которой мы остаемся, уже не оказывает должного влияния на погоду . Меняется давление, влажность, температура. Исходя из этого, можно дать четкую трактовку термина. Зона высотной зональности – это смена погодных условий, природных зон и ландшафта по мере возрастания высоты над уровнем моря.

Высотная поясность

Наглядные примеры

Чтобы понять на практике, как меняется зона высотной поясности, достаточно сходить в горы. Поднимаясь выше, вы будете чувствовать, как понижается давление, падает температура. Перед глазами будет меняться и ландшафт. Если вы стартовали из зоны вечнозеленых лесов, то с высотой они перерастут в кустарники, позднее – в травяные и моховые заросли, а на вершине скалы вовсе исчезнут, оставив голую почву.

На основании этих наблюдений был сформирован закон, описывающий высотную поясность и ее особенности. При поднятии на большую высоту климат становится более холодным и суровым , животный и растительный миры скудеют, атмосферное давление становится предельно низким.

Важно! Отдельного внимания заслуживают почвы, находящиеся в области высотной поясности. Их метаморфозы зависят от природной зоны, в которой располагается горный хребет. Если речь идет о пустыне, то по мере возрастания высоты она будет трансформироваться в горно-каштановую почву, позднее – в чернозем. После на пути окажется горный лес, а за ним – луг.

Горные хребты России

Отдельное внимание стоит уделить хребтам, которые расположены в родной стране. Климат в наших горах напрямую зависит от их географического положения, поэтому несложно догадаться, что он весьма суров. Начнем, пожалуй, с области высотной поясности России в районе Уральского хребта.

У подножия гор тут располагаются малотребовательные к теплу березовые и хвойные леса, и по мере возрастания высоты они превращаются в моховые заросли. Высоким, но очень теплым считается Кавказский хребет.

Чем выше поднимаемся вверх, тем большим становится количество осадков. Температура при этом падает незначительно, а вот ландшафт меняется капитально.

Еще одна зона с высокой поясностью в России – дальневосточные регионы. Там у подножия гор расстилаются кедровые заросли, а верхушки скал покрыты вечными снегами.

Природные зоны широтная зональность и высотная поясность

Природные зоны Земли. География 7 класс

Вывод

Теперь мы можем выяснить, в чем заключаются сходства и отличия в этих двух терминах. У широтной зональности и высотной поясности есть нечто общее – это смена климата, которая влечет за собой смену всей биомассы.

В обоих случаях погодные условия меняются от более теплых к более холодным, трансформируется давление, скудеет фауна и флора. Чем отличаются друг от друга широтная зональность и высотная поясность? Первый термин имеет планетарный масштаб. За счет него формируются климатические пояса Земли. А вот высотная поясность – это изменение климата лишь в рамках определенного рельефа – гор. За счет того, что высота над уровнем моря возрастает, меняются погодные условия, которые также влекут за собой трансформацию всей биомассы. И это явление уже локальное.