Самодельный обогреватель для дома. Самодельные обогреватели для дома, дачи и гаража. Завершающий этап конструирования

От автора: здравствуйте, уважаемые друзья! Как правило, центральное отопление включают поздней осенью, а с учетом природных климатических условий во многих регионах холода наступают значительно раньше. Лучшее решение - это установка дополнительных источников тепла. Сегодня речь пойдет о том, как сделать инфракрасный обогреватель своими руками.

Главные элементы и принцип действия

Для создания инфракрасного обогревателя в домашних условиях необходимо, в первую очередь, изучить принцип его действия.

Как известно, от тепловых источников исходят электромагнитные волны, непосредственно обогревающие все окружающие их тела, в данном случае, в квартире - предметы мебели и людей. При этом воздух в помещении не нагревается, а все тепло исходит лишь от уже нагретых объектов. По данному принципу работают и инфракрасные обогреватели, включающие в себя несколько основных элементов:

  • источник излучения тепла. В инфракрасных промышленных обогревателях источниками служат тонкие нити из металла, которые нагреваются посредством проходящего сквозь них электрического тока, или же различные лампы, например, галогенные или накаливания;
  • рефлектор с повышенной отражающей способностью, основная функция которого - рассеивать тепло либо создавать самостоятельные обогреваемые зоны за счет отражения инфракрасных лучей;
  • контроллер также является одной из основных частей промышленных инфракрасных обогревателей. Он регулирует нагревательную степень излучателя. В самодельных обогревателях он может отсутствовать, однако его монтаж рекомендован для установки подходящего температурного диапазона и для автоматического нагрева устройства при падении температуры ниже пределов нормы, а также для охлаждения при повышенных температурных показателях.

Совет : для проверки рефлекторного эффекта рекомендуется использовать пищевую фольгу, которую необходимо некоторое время подержать над рукой. От фольги должно исходить тепло, являющееся отраженными и направленным к вашей руке лучами.

Принцип действия потолочных инфракрасных обогревателей такой же, что и у других устройств данного типа. Отличается лишь способ установки, от которого зависит определение наиболее комфортных обогреваемых зон.

Источник: electricdoma.ru

Данная схема показывает главное преимщество инфракрасных теплоносителей: тепло, обогревающее физические тела и поглащаемое ими, остается внутри. Потому бываеют теплее, чем потолок. При теплообеспечении конвективным способом полы всегда остаются холодными, так как сам материал не обогревается. Нагретый воздух поднимается вверх, смещая вниз холодный.

Самостоятельное изготовление недорогого обогревателя

Основой излучателя обычно выступают лампы или нити накала, получающие нагрев от электрического тока. Но есть более продуктивный вариант - использование . От батареи исходит излучение, распространяющееся во все стороны.

Для получения наибольшего эффекта используйте фольгу, предварительно разгладив ее поверхность для более высокого отражения. Наклейте ее на стены за радиаторы и батареи. Тепло, предположительно направляемое на стену, будет отражено в противоположном направлении, обогревая только помещение. За счет этого простого трюка поступление тепла увеличивается на 20%.

Совет: стоит отметить, что альтернативу фольге могут составить теплоизоляционные отражающие экраны из пенофола, покрытые фольгой с одной или двух сторон.

Использование имеющихся в доме устройств

Если у вас сохранился старый советский рефлектор, его смело можно использовать, чтобы сделать инфракрасный обогреватель. Помимо него, вам потребуется:

  • стальной стержень;
  • нихромовая нить;
  • диэлектрик из огнеупорного материала (например, тарелка из керамики)

Для изготовления обогревателя своими руками необходимо придерживаться инструкции.

  1. Удалить грязь с поверхности рефлектора.
  2. Измерить длину спирали, обвивающую конус рефлектора.
  3. Проверить шнур, активационные клеммы спирали и штепсель на наличие повреждений.
  4. Отрезать стальной стержень в длину, равную длине спирали.
  5. Накрутить на стержень нихромовую нить с разметкой 5 витков на каждый сантиметр.
  6. Медленно вынуть стержень из намотанной нити.
  7. Положить спираль на диэлектрик (например, тарелку) таким образом, чтобы витки не соприкасались.
  8. Подключить концы спирали к электроисточнику.
  9. Нагретая спираль компактно разместилась в канавках рефлекторного конуса.
  10. Соединить контакты со спиральными концами.

В результате вы заметите, что нить из нихрома нагревается лучше спирали, установленной в устройстве до внесения изменений. Эффективный излучатель, отражающий энергию от рефлекторных стенок и направляющий ее на тела, поглощающие тепло, готов.

Использование фольги и стекла

Для этого вам потребуется:

  • парафиновая свеча;
  • устройство для установки свечи;
  • клей ЭДП (Боксидка);
  • алюминиевая фольга;
  • два стекла одинакового размера;
  • герметичный материал;
  • провод с наконечником в виде штепселя;
  • салфетка х/б;
  • ватные палочки.

Инструкция по изготовлению.

  1. Удалить грязь, краску и пыль с поверхности стекла.
  2. Зажечь свечу и установить в поддоне.
  3. Держа стекла в руке, провести ими над пламенем так, чтобы они закоптились равномерно. Для этого рекомендуется заранее немного охладить их. Образовавшаяся темная копоть станет токопроводящим элементом.
  4. По периметру каждого стекла прочертить ровные линии ватными палочками. В результате должна получиться рамка из чистых полосок в 0,5 сантиметров толщиной.
  5. Измерить ширину темных прямоугольников из копоти.
  6. Вырезать из фольги два таких же прямоугольника, которые послужат электродными полосками.
  7. Первое стекло положить так, чтобы закопченная сторона была сверху.
  8. Нанести на его поверхность клей и распределить края фольги таким образом, чтобы они немного заходили за пределы стекла.
  9. Сверху уложить второе стекло закопченной стороной внутрь, чтобы она плотно прилегла к клеевой поверхности и для закрепления эффекта тщательно прижать.
  10. В стыковочных местах стекол нанести немного герметика.
  11. Проверить конструкцию на уровень мощности. Не превышающий показатели в 100 Вт на кв.м. обогреватель, можно спокойно подключать к электросети при помощи штепселя с проводом.
  12. Для подключения к сети взять брусок из дерева с двумя металлическими пластинами, которые укреплены с обоих концов. К одному из них необходимо припаять вилку на 12 вольт. Расположить брусок на стекле так, чтобы фольга, заходящая за края стекла, плотно прижималась к контактам из металла. Ваш эффективный и мощный электрообогреватель готов.

Совет: для правильного подсчета мощности устройства нужно, используя мультимер, измерить уровень сопротивления слоя, проводящего электрический ток. Учитывая зависимость силы тока от нагрузки, лучше использовать стабильные параметры – постоянное напряжение в 220 В и формулу N = U * U / R , где N – искомый показатель мощности, U - электрическое напряжение и R - сопротивление. Например, при сопротивлении в 24 Ома по формуле N =220*220/24 получается 2016 Вт. Этой мощности хватит для нормального обогрева помещения с площадью примерно 20 кв. м.

При получении более высокого показателя необходимо увеличить сопротивление, а при низкой мощности увеличить ее.

Что делать, если мощность сделанного обогревателя не соответствует нужным параметрам? Необходимо рассчитать этот показатель, учитывая площадь помещения (например, 15 метров) из расчета 100 Вт на кв. м. Получится 15*100=1500 Вт.

При постоянном сопротивлении в 220В выведите необходимый показатель, используя прежнюю формулу: R=220*220/1500=32 Om. Учитывая, что ранее у вас получилось 24 Ома, сопротивление должно быть увеличено. Значит, необходимо уменьшить закопченную полосу на стекле в ширину и рассчитать по формуле R=I*p/S, где R - сопротивление, I - длина слоя, проводящего ток (величина постоянная), p - удельное сопротивление (постоянная величина), S - площадь поперечного сечения слоя (напрямую зависит от ширины, широкий слой -меньшая площадь, узкий - большая).

Таким образом, для расчета необходимой величины сопротивления необходимо подобрать нужную ширину закопченной полоски, однако для этого придется разобрать стеклянное устройство.

Изготовление из слоистого пластика

Чтобы сделать инфракрасный обогреватель своими руками, вам понадобится:

  • 2 куска слоистого бумажного пластика, каждый по 1 кв.м;
  • клей боксидка;
  • пластины из меди;
  • графит в порошке;
  • штепсель и шнур;
  • древесина.

Для начала нужно смешать графит с клеем до образования густой массы с высокой степенью сопротивления. Затем нанести на пластик смесь из графита и боксидки зигзагообразными мазками, приложив шероховатой стороной к столу. Таким же образом следует приготовить второй пластик, а затем склеить два листа, крепко прижав друг к другу. На пластинах с противоположных сторон нужно закрепить медные элементы клеем.

Из древесины изготавливают рамку, в которую нужно вставить устройство, которое затем необходимо хорошо просушить. Далее нужно измерить сопротивление и провести подсчет мощности так же, как и в предыдущем варианте, за исключением того, что здесь сопротивление зависит от количества графитового порошка в клее - чем его больше, тем выше показатель сопротивления, и наоборот. После того как вы достигли нужной мощности, нужно подключить конструкцию к сети, предварительно соединив ее со штепселем.

Изготовление из инфракрасной пленки

Одним из самых современных и эффективных материалов для обогревателя является инфракрасная пленка, как правило, трехслойная.

Желающих сделать обогреватель своими руками не убывает: цены на фабричные приборы автономного обогрева не радуют, а их заявленные характеристики нередко оказываются завышенными сравнительно с реальными. Предъявлять претензии бесполезно: у производителей всегда есть «железная отмазка» – эффективность обогрева помещения сильно зависит от его теплотехнических свойств. Случаи, когда из производителя удавалось «выдавить» компенсацию за последствия несчастья, произошедшего по вине их изделия, также единичны. Правда, хотя бытовые обогреватели самостоятельно делать законом не запрещено, беда по вине самоделки будет серьезным отягчающим обстоятельством для ее изготовителя и владельца. Поэтому в данной статье далее описано, как правильно сконструировать и изготовить безопасные бытовые обогреватели нескольких систем, по тепловой эффективности не уступающие лучшим промышленным образцам.

Конструкции

Любители-мастеровые городят обогреватели нередко весьма замысловатой конструкции, см. фото на рис. Порой они сделаны аккуратно. Но подавляющее большинство описанных в рунете самодельных отопительных приборов объединяет одно: высокая степень создаваемой ими опасности, гармонично сочетающаяся с полным несоответствием ожидаемых технических характеристик действительным. В первую очередь это относится к надежности, долговечности и транспортабельности.

Сделать обогреватель для дома, хоз. помещений или походный автономный для дачи, туризма и рыбалки возможно следующих систем (слева направо на рис.):

  • С непосредственным подогревом воздуха на естественной конвекции – электрокамин.
  • С принудительным обдувом нагревателя – тепловентилятор.
  • С косвенным подогревом воздуха, на естественной конвекции или с принудительным обдувом – масляный или водо-воздушный обогреватель.
  • В виде излучающей тепловые (инфракрасные, ИК) лучи поверхности – термопанель.
  • Пламенный автономный.

Последний от печи, плиты или водогрейного котла отличается тем, что чаще всего не имеет встроенной горелки/топки, а использует бросовое тепло отопительно-варочных приборов. Впрочем, грань тут весьма размыта: обогреватели на газе со встроенной горелкой есть в продаже и делаются самостоятельно. На многих из них можно готовить или разогревать пищу. Здесь в конце также будет описан пламенный обогреватель, который не на дровах, не на жидком топливе, не на газу и совсем уж точно не печка. А прочие рассматриваются в порядке убывания степени их безопасности и надежности. Которые тем не менее при надлежащем исполнении и у «худших» образцов вполне соответствуют требованиям в бытовым автономным отопительным приборам.

Термопанель

Это достаточно сложный и трудоемкий, но наиболее безопасный и эффективный тип бытового электрического обогревателя: термопанель двустороннего излучения на 400 Вт комнату 12 кв. м в бетонном доме нагревает с +15 до +18 градусов. Потребная мощность электрокамина в таком случае – 1200-1300 Вт. Расход денежных средств на самостоятельное изготовление термопанели невелик. Работают термопанели в т. наз. дальнем (более удаленном от красной области видимого спектра) или длинноволновом ИК, поэтому тепло дают мягкое, не жгучее. Вследствие относительно слабого нагрева теплоизлучающих элементов, если они выполнены правильно (см. ниже), эксплуатационный износ термопанелей практически отсутствует, а долговечность и надежность их ограничены непредусмотренными внешними воздействиями.

Теплоизлучащий элемент (излучатель) термопанели состоит из тонкого плоского проводника из материала с высоким удельным электрическим сопротивлением, зажатого между 2-мя обкладками – пластинами из диэлектрика, прозрачного для ИК. Нагреватели термопанелей делаются по тонкопленочной технологии, а обкладки – из специального пластикового композита. То и другое в домашних условиях недоступно, поэтому многие любители пытаются делать излучатели тепла на основе углеродного покрытия, зажатого между 2-мя стеклами (поз. 1 на рис. ниже); обычное силикатное стекло почти прозрачно для ИК.

Такое техническое решение – типичный суррогат, ненадежный и недолговечный. Проводящую пленку получают либо из свечной сажи, либо намазывая на стекло эпоксидный компаунд с наполнителем из молотого графита или электротехнического угля. Главный порок обоих способов – неравномерная толщина пленки. Углерод в аморфной (уголь) или графитовой аллотропной модификации – полупроводник с высокой для данного класса веществ собственной проводимостью. Характерные для полупроводников эффекты проявляются в нем слабо, почти неуловимо. Но с повышением температуры проводящего слоя удельное электрическое сопротивление углеродной пленки не растет линейно, как у металлов. Следствие – тонкие места греются сильнее, выгорают. Плотность тока в более толстых растет, греются и они, тоже выгорают, и скоро выгорает вся пленка. Это т. наз. лавинообразное выгорание.

Кроме того, пленка из сажи очень нестойка, быстро осыпается сама по себе. В эпоксидный клей для получение нужной мощности обогревателя нужно вводить до 2-х объемов углеродного наполнителя. Вообще-то можно и до 3-х, а если в смолу перед введением отвердителя добавить 5-10% по объему пластификатора – дибутилфталата – то и до 5 объемов наполнителя. Но готовый к работе (не затвердевший) компаунд получается густым и вязким, как пластилин или жирная глина, и нанести его тонкой пленкой нереально – эпоксидка липнет ко всему на свете, кроме парафиновых углеводородов и фторопласта. Шпатель из последнего сделать можно, но компаунд за ним потянется грядочками и комками.

Наконец, графитовая и угольная пыль – очень вредные для здоровья (о силикозе у шахтеров слыхали?) и чрезвычайно пачкающиеся вещества. Снять или отстирать их следы невозможно, запачканные вещи приходится выбрасывать, они пачкают другие. Кто хоть раз имел дело с графитовой смазкой (это тот же мелко дробленый графит) – как говорится, жив я буду, не забуду. Т.е., самодельные излучатели для термопанели нужно делать каким-то другим способом. К счастью, расчет показывает, что для этого пригодна «старая добрая», проверенная многими десятилетиями и недорогая нихромовая проволока.

Расчет

Сквозь 3-мм оконнон стекло без опасности его перегрева растрескивания проходит ок. 8,5 Вт/кв. дм ИК. Из «пирога» излучателя термопанели в обе стороны уйдет 17 Вт. Зададимся размерами излучателя 10х7 см (0,7 кв. дм), таких кусков можно нарезать из боя и отходов порезки практически в неограниченном количестве. Тогда один излучатель отдаст нам комнату 11,9 Вт.

Примем мощность обогревателя в 500 Вт (см. выше). Тогда понадобится 500/11,9 = 42,01 или 42 излучателя. Конструктивно панель будет представлять матрицу 6х7 излучателей размерами без обрамления 600х490 мм. Накинем на обрамление до 750х550 мм – по эргономике проходит, достаточно компактно.

Потребляемый от сети ток – 500 Вт/220 В = 2,27 А. Электрическое сопротивление всего обогревателя – 220 В/2,27 А = 96,97 или 97 Ом (закон Ома). Сопротивление одного излучателя – 97 Ом/42 = 2,31 Ом. Удельное сопротивление нихрома почти точно 1,0 (Ом*кв. мм)/м, но какого сечения и длины нужна проволока для одного излучателя? Поместится ли нихромовая «змея» (поз. 2 на рис.) между стеклами 10х7 см?

Плотность тока в открытых, т.е. контактирующих с воздухом, нихромовых электроспиралях – 12-18 А/кв. мм. Светятся они при этом от темно- до светло красного (600-800 градусов Цельсия). Примем 700 градусов при плотности тока 16 А/кв. мм. При условии свободного излучения ИК температура нихрома от плотности тока зависит примерно по корню квадратному. Уменьшим ее вдвое, до 8 А/кв. мм, получим рабочую температуру нихрома в 700/(2^2) = 175 градусов, для силикатного стекла безопасно. Температура наружной поверхности излучателя при этом (без учета теплоотвода за счет конвекции) не превысит 70 градусов при наружной в 20 градусов – годится и по теплопередаче «мягким» ИК, и по безопасности, если прикрыть излучающие поверхности защитной сеткой (см. далее).

Номинальный рабочий ток в 2,27 А даст сечение нихрома 2,27/8 = 0,28375 кв. мм. По школьной формуле площади окружности находим диаметр проволоки – 0,601 или 0,6 мм. С запасом примем его 0,7 мм, тогда мощность обогревателя будет 460 Вт, т.к. она зависит от его рабочего тока по квадрату. 460 Вт для обогрева хватит, достаточно было бы и 400 Вт, а долговечность прибора возрастет в несколько раз.

1 м нихромовой проволоки диаметром 0,7 мм имеет сопротивление 2,041 Ом (0,7 в квадрате = 0,49; 1/0,49 = 2,0408…). Для получения сопротивления одного излучателя 2,31 Ом понадобится 2,31/2,041 = 1,132… или 1,13 м проволоки. Примем ширину нихромовой «змейки» в 5 см (по 1 см запаса с краев). На обворот 1-мм гвоздей (см. ниже) прибавим по 2,5 мм, итого 5,25 см на ветвь змейки. Ветвей понадобится 113 см/5,25 см = 21,52…, примем 21,5 ветви. Их общая ширина 22х0,07 см (диаметр проволоки) = 1,54 см. Примем длину змейки в 8 см (по 1 см запаса с коротких краев), тогда коэффициент укладки проволоки 1,54/8 = 0,1925. В паршивейших китайских маломощных силовых трансформаторах он ок. 0,25, т.е. нам на изгибы и промежутки между ветвями змейки места хватает с избытком. Уф-ф, принципиальные вопросы решены, можно переходить к ОКР (опытно-конструкторские работы) и техническому проектированию.

ОКР

Теплопроводность и прозрачность для ИК силикатного стекла сильно меняются от марки к марке и от партии к партии. Поэтому сначала нужно будет сделать 1 (один) излучатель, см. ниже, и провести его испытания. В зависимости от их результата, возможно, придется изменить диаметр проволоки, так что не закупайте нихрома сразу много. При этом изменятся номинальный ток и мощность обогревателя:

  • Проволока 0,5 мм – 1,6 А, 350 Вт.
  • Проволока 0,6 мм – 1,9 А, 420 Вт.
  • Проволока 0,7 мм – 2,27 А, 500 Вт.
  • Проволока 0,8 мм – 2,4 А, 530 Вт.
  • Проволока 0,9 мм – 2,6 А, 570 Вт.

Примечание: кто грамотный в электричестве – номинальный ток, как видите, меняется не по квадрату диаметра провода. Почему? С одной стороны, у тонких проводов относительно большая излучающая поверхность. С другой – при толстом проводе нельзя превышать допустимую пропускаемую стеклом мощность ИК.

Для испытаний готовый образец устанавливают вертикально, подперев чем-то негорючим и термостойким, на несгораемую поверхность. Затем подают в него номинальный ток от регулируемого источника питания (ИП) на 3 А и более или ЛАТРа. В последнем случае оставлять образец без присмотра нельзя все время испытаний! Ток контролируется цифровым тестером, щупы которого должны быть плотно сжаты с токоведущими проводами винтом с гайкой и шайбами. Если опытный образец запитан от ЛАТРа, тестер должен измерять силу переменного тока (предел AC 3А или AC 5А).

Прежде всего нужно проверить, как ведет себя стекло. Если оно в течение 20-30 мин перегревается и трескается, то, возможно, непригодна вся партия. Напр., в стекла б/у со временем въедается пыль и грязь. Резать их – сущая мука и гибель алмазного стеклореза. А трескаются такие стекла при значительно более слабом нагреве, чем новые того же сорта.

Далее спустя 1-1,5 часа проверяется сила излучения ИК. Температура стекла тут не показатель, т.к. основную часть ИК излучает нихром. Поскольку фотометра с ИК фильтром у вас скорее всего не найдется, придется проверять ладонями: их держат параллельно излучающим поверхностям на расстоянии ок. 15 см от них не менее 3-х мин. Затем в течение 5-10 мин должно чувствоваться ровное мягкое тепло. Если ИК от излучателя начинает жечь кожу сразу, диаметр нихрома уменьшаем. Если спустя 15-20 мин легкого жжения (как на солнечном пригреве в середине лета) не чувствуется, нихром нужно взять толще.

Как согнуть змею

Устройство излучателя самодельного панельного обогревателя дано на поз. 2 рис. выше; нихромовая змейка показана условно. Нарезанные в размер стеклянные обкладки очищаются от загрязнений и моются щеткой в воде с добавкой любого моющего для посуды, затем также со щеткой промываются под струей чистой воды. «Уши» – контактные ламели размером 25х50 мм из медной фольги – приклеиваются к одной из обкладок эпоксидным клеем или мгновенным цианоакрилатным (суперклеем). Заход «уха» на обкладку – 5 мм; наружу торчит 20 мм. Чтобы ламель не отвалилась, пока клей не схватился, под нее подкладывают что-нибудь толщиной 3 мм (толщина стекла обкладки).

Далее нужно сформировать самую змейку из нихромовой проволоки. Делается это на шаблоне-оправке, схема которой дана на поз. 3, а подробный чертеж – на рис. здесь. «Хвостики» для отжига змейки (см. ниже) нужно дать от 5 см. Обкусанные концы гвоздей зашлифовываются до округлости на наждачном камне, иначе готовую змейку снять, не смяв, будет невозможно.

Нихром довольно упруг, потому навитую на шаблон проволоку нужно отжечь, чтобы змейка держала форму. Делать это следует в полутьме или при слабом освещении. На змейку подают напряжение 5-6 В от ИП не менее чем на 3 А (вот для чего на дереве нужна огнеупорная накладка). Когда нихром засветится вишневым, ток выключают, дают нити полностью остыть, и повторяют эту процедуру 3-4 раза.

Следующий шаг – змейку прижимают пальцами через наложенную на нее фанерную полоску и аккуратно разматывают навитые на 2-мм гвозди хвостики. Каждый хвостик выпрямляют и формуют: на 2-мм гвозде остается четверть витка, а остальное обрезают вровень в краем шаблона. Остаток «хвостика» в 5 мм зачищают острым ножом.

Теперь змейку нужно снять с оправки, не покорежив, и закрепить на подложке, обеспечив надежный электрический контакт выводов с ламелями. Снимают парой ножей: их лезвия подсовывают снаружи под изгибы ветвей на 1-мм гвоздях, аккуратно поддевают и поднимают извитую нить нагревателя. Затем змейку кладут на подложку и немного подгибают, если требуется, выводы, чтобы легли прим. посередине ламелей.

Металлическими припоями с неактивным флюсом нихром не паяется, а остатки активного флюса со временем могут разъесть контакт. Поэтому нихром к меди «паяют» т. наз. жидким припоем – токопроводящей пастой; продается она в радиомагазинах. На контакт зачищенного нихрома с медью выдавливают капельку жидкого припоя и через кусочек полиэтиленовой пленки придавливают пальцем, чтобы паста не выпирала вверх от проволоки. Можно сразу вместо пальца придавить каким-то плоским грузиком. Снимают пригруз и пленку после отвердевания пасты, от часа до суток (время указывается на тюбике).

Застыл «припой» – пришло время собирать излучатель. Вдоль посередине выдавливаем на змейку тонкую, не толще 1,5 мм, «колбаску» обычного строительного силиконового герметика, это предотвратит сползание и замыкание изгибов проволоки. После этого тот же герметик выдавливаем валиком уже потолще, 3-4 мм, по контуру подложки, отступив от края прим. на 5 мм. Накладываем покровное стекло и очень аккуратно, чтобы не сползло вбок и не потянуло за собой змейку, придавливаем, пока не ляжет плотно, и откладываем излучатель на сушку.

Скорость высыхания силикона – 2 мм в сутки, но спустя 3-4 дня, как может показаться, брать излучатель дальше в работу еще нельзя, нужно дать высохнуть внутреннему валику, фиксирующему изгибы. Понадобится на это прим. неделя. Если делается много излучателей уже для рабочего обогревателя, их можно сушить штабелем. Нижний слой раскладывают на полиэтиленовой пленке, ею же застилают сверху. Элементы след. слоя укладывают поперек нижележащих, и т.д., разделяя слои пленкой. Штабель, для гарантии, сушится 2 недели. После сушки выступившие излишки силикона срезают лезвием безопасной бритвы или острым монтажным ножом. С контактных ламелей силиконовые наплывы также нужно полностью удалить, см. ниже!

Монтаж

Пока излучатели сохнут, делаем из реек твердого дерева (дуб, бук, граб) 2 одинаковые рамки (поз. 4 на рис. со схемой панельного обогревателя). Соединения выполняются врезкой вполдерева и скрепляются мелкими саморезами. МФД, фанера и древесные материалы на синтетических связующих (ДСП, OSB) не годятся, т.к. длительный нагрев, пусть и не сильный, им категорически противопоказан. Если у вас есть возможность вырезать детали рамок из текстолита или стеклотекстолита – вообще отлично, но эбонит, бакелит, текстолит, карболит и термопластичные пластики непригодны. Деревянные детали перед сборкой дважды пропитываются водно-полимерной эмульсией или разбавленным вдвое акриловым лаком на водной основе.

В одну из рамок укладываются готовые излучатели (поз. 5). Перекрывающиеся ламели электрически соединяются каплями жидкого припоя, как и перемычки на боковинах, образующие последовательное соединение всех излучателей. Подводящие провода (от 0,75 кв. мм) лучше припаять обычным легкоплавким припоем (напр. ПОС-61) с неактивной флюс-пастой (состав: канифоль, этиловый спирт, ланолин, см. на пузырьке или тюбике). Паяльник – 60-80 Вт, но паять нужно быстро, чтобы излучатель не расклеился.

Следующий шаг на этом этапе – накладываем вторую рамку и отмечаем на ней, где пришлись подводящие провода, под них нужно будет вырезать канавки. После этого раму с излучателями собираем на мелких саморезах, поз. 6. Приглядитесь внимательнее к расположению точек крепления: они не должны прийтись на токоведущие детали, иначе головки крепежа окажутся под напряжением! Также, чтобы исключить случайное прикосновение к краям ламелей, все торцы панели оклеиваются негорючим пластиком толщиной от 1 мм, напр. ПВХ с наполнителем из мела от кабельных каналов (коробов для проводки). С этой же целью, и для большей прочности конструкции, на все стыки стекла с деталями рамы наносится силиконовый герметик.

Завершающие шаги, во-первых, установка ножек высотой от 100 мм. Эскиз деревянной ножки панельного обогревателя дан на поз. 7. Второе – наложение на боковины панели защитной стальной сетки из тонкой проволоки с ячеей 3-5 мм. Третье – оформление кабельного ввода пластиковой коробокой: в ней размещаются контактные клеммы, световой индикатор. Возможно – тиристорный регулятор напряжения и защитное термореле. Все, можно включать и греться.

Термокартина

Если мощность описанной термопанели не превышает 350 Вт, из нее можно сделать обогреватель-картину. Для этого на тыльную сторону накладывают фольгоизол, то самый, который используется для теплоизоляции. Фольгированная его сторона должна быть обращена к панели, а пористая пластиковая наружу. Лицевую сторону обогревателя оформляют фрагментом фотообоев на пластике; тонкий пластик – не ахти какое препятствие для ИК. Чтобы картина-обогреватель лучше грела, вешать ее на стену нужно под углом ок. 20 градусов.

А фольга?

Как видим, самодельный панельный обогреватель дело достаточно трудоемкое. Нельзя ли упростить работу, применив вместо нихрома, скажем, алюминиевую фольгу? Толщина фольги рукава для запекания ок. 0,1 мм, вроде бы уже тонкая пленка. Нет, дело тут не в толщине пленки, а в удельном сопротивлении ее материала. У алюминия оно низкое, 0,028 (Ом*кв. мм)/м. Не приводя подробных (и очень скучных) расчетов, укажем их результат: площадь термопанели на мощность 500 Вт на алюминиевой пленке толщиной 0,1 мм оказывается почти 4 кв. м. Толстовата все же пленочка оказалась.

12 В

Самодельный тепловентилятор может быть достаточно безопасным в низковольтном, на 12 В, исполнении. Мощности свыше 150-200 Вт от него не добиться, слишком большой, тяжелый и дорогой понадобится понижающий трансформатор или ИП. Однако 100-120 Вт как раз хватит, чтобы держать в подвале или погребе небольшой плюс всю зиму, что гарантирует от промерзших овощей и полопавшихся от мороза банок с домашними заготовками, а 12 В – напряжение, допустимое в помещениях с любой степенью опасности поражения электротоком. Большее в подвал/погреб и подавать нельзя, т.к. они по электротехнической классификации особо опасные.

Основа обогревателя-тепловентилятора на 12 В – обычный красный рабочий пустотный (пустотелый) кирпич. Лучше всего подойдет полуторный толщиной 88 мм (вверху слева на рис.), но сгодится и двойной толщиной в 125 мм (там же внизу). Главное – чтобы пустоты были сквозными и одинаковыми.

Устройство «кирпичного» тепловентилятора на 12 В для подвала дано там же на рис. Посчитаем нихромовые спирали-нагреватели для него. Берем мощность 120 Вт, это с некоторым запасом. Ток, соотв., 10 А, сопротивление нагревателя 1,2 Ом. С одной стороны, спирали продуваются. С другой – этот обогреватель должен долгое время работать без присмотра в довольно тяжелых условиях. Поэтому все спирали лучше включить параллельно: перегорит одна, остальные вытянут. И мощность регулировать удобно – достаточно отключить 1-2-несколько спиралей.

В пустотном кирпиче 24 канала. Ток спирали каждого канала 10/24 = 0,42 А. Мало, нихром нужен очень тонкий и, значит, ненадежный. Этот вариант сгодился бы для бытового тепловентилятора до 1 кВт и более. Тогда нагреватель нужно рассчитывать, как описано выше, на плотность тока в 12-15 А/кв. мм, и поделить получившуюся длину проволоки на 24. К каждому отрезку добавляется по 20 см на 10-см соединительные «хвостики», а середина свивается в спираль диаметром 15-25 мм. «Хвостиками» все спирали соединяются последовательно при помощи хомутиков из медной фольги: ее ленту шириной 30-35 мм навивают в 2-3 слоя на сложенные нихромовые проволоки и закручивают на 3-5 витков парой малых пассатижей. Для питания вентиляторов придется поставить маломощный трансформатор на 12 В. Такой обогреватель хорошо подойдет для гаража или прогрева автомобиля перед поездкой: как все тепловентиляторы, он быстро прогревает середину помещения, не тратя тепло на теплопотери сквозь стены.

Примечание: компьютерные вентиляторы часто называют кулерами (досл. – охладителями). На самом деле кулер это все охлаждающее устройство. Напр., кулер процессора – ребристый радиатор в блоке с вентилятором. А вентилятор сам по себе он и в Америке вентилятор.

Но вернемся в подвал. Посмотрим, сколько нихрома понадобится на уменьшенную до 10 А/кв. мм по соображениям надежности плотность тока. Сечение провода, ясно без расчетов – 1 кв. мм. Диаметр, см. расчеты выше – 1,3 мм. Такой нихром в продаже находится без затруднений. Необходимая длина на сопротивление 1,2 Ом – 1,2 м. А какова общая длина каналов в кирпиче? Толщину берем полуторную (меньше весит), 0,088 м. 0,088х24 = 2,188. Так нам достаточно просто продеть отрезок нихрома сквозь пустоты кирпича. Можно через одну, т.к. каналов по расчету нужно 1,2/0,088 = 13,(67), т.е. 14-ти хватит. Вот и обогрели подвал. И вполне надежно – такой толстый нихром и крепкая кислота не скоро разъест.

Примечание: кирпич в корпусе фиксируется мелкими стальными уголками на болтиках. В мощную цепь 12 В обязательно должно быть включено автоматическое защитное устройство, напр. пробка-автомат на 25 А. Недорого и вполне надежно.

ИП и ИБП

Трансформатор на железе для обогрева подвала лучше взять (сделать) с отводами мощной обмотки на 6, 9, 12, 15 и 18 В, это позволит регулировать мощность обогрева в широких пределах. 1,2 мм нихром с обдувом потянет и 25-30 А. Для питания вентиляторов тогда нужна отдельная обмотка на 12 В 0,5 А и тоже отдельный кабель с тонкими жилами. Для питания нагревателя нужны жилы от 3,5 кв. мм. Мощный кабель может быть самый дрянной – ПУНП, КГ, на 12 В утечек и пробоя можно не опасаться.

Может быть, у вас нет возможности применить понижающий трансформатор, но завалялся импульсный блок питания (ИБП) от негодного компьютера. Его 5 В канала по мощности хватит; стандарт – 5 В 20 А. Тогда, во-первых, нужно пересчитать нагреватель на 5 В и мощность 85-90 Вт, чтобы не перегружать ИБП (диаметр провода выходит 1,8 мм; длина та же). Во-вторых, для питания 5 В нужно соединить вместе все красные провода (+5 В) и столько же черных (общий провод GND). 12 В для вентиляторов берут с любого желтого провода (+12 В) и любого черного. В-третьих, нужно закоротить на общий провод цепь логического запуска PC-ON, иначе ИБП просто не включится. Обычно провод PC-ON зеленый, но нужно проверить: снять с ИБП кожух и посмотреть обозначения на плате, сверху или со стороны монтажа.

ТЭНы

Для обогревателей след. типов придется покупать ТЭН: электроприборы на 220 В с открытыми нагревателями чрезвычайно опасны. Тут, простите за выражение, нужно думать в первую очередь о собственной шкуре с имуществом, есть формальный запрет или нет. С 12-вольтовыми приборами легче: по статистике, степень опасности уменьшается пропорционально квадрату отношения напряжений питания.

Если у вас уже есть электрокамин, но греет плоховато, имеет смысл заменить в нем простой воздушный ТЭН с гладкой поверхностью (поз. 1 на рис.) на оребренный, поз. 2. Характер конвекции тогда существенно изменится (см. ниже) и обогрев улучшится при мощности оребренного ТЭНа в 80-85% от гладкого.

Патронный ТЭН в корпусе из нержавеющей стали (поз. 3) может греть и воду, и масло в баке из любого конструкционного материала. Будете брать такой – обязательно проверьте, чтобы в комплекте были прокладки из маслотермобензостойкой резины или силиконовые.

Медный водяной ТЭН для бойлера снабжается трубкой для термодатчика и магниевым протектором, поз. 4, что хорошо. Но греть им можно только воду и только в баке из нержавейки либо эмалированном. Теплоемкость масла много меньше, чем у воды, и в масле корпус медного ТЭНа скоро прогорит. Последствия – до тяжелейших и фатальных. Если бак из алюминия или обычной конструкционной стали, то электрокоррозия вследствие наличия контактной разности потенциалов металлов очень быстро съест протектор, а вслед за тем проест корпус ТЭНа.

Т. наз. сухие ТЭНы (поз. 5), как и патронные, способны греть и масло, и воду без дополнительных мер защиты. Кроме того, их нагревательный элемент можно менять, не вскрывая бака и не сливая оттуда жидкость. Недостаток один – очень дороги.

Камин

Усовершенствовать обычный электрокамин, или сделать себе свой эффективный на основе покупного ТЭНа можно с помощью дополнительного кожуха, создающего вторичный контур конвекции. Из обычного электрокамина, во-первых, воздух идет вверх довольно горячей, но слабой струей. Она быстро полнимается к потолку и греет через него более пол соседей, чердак или крышу, чем хозяйскую комнату. Во-вторых, идущее вниз от ТЭНа ИК таким же образом греет соседей снизу, подпол или подвал.

В конструкции, показанной на рис. справа, ИК, направленное вниз, отражается во внешний кожух и греет воздух в нем. Тягу еще более усиливает подсос горячим воздухом из внутреннего кожуха менее нагретого из внешнего в сужении последнего. В результате воздух из электрокамина с двойным контуром конвекции выходит широкой умеренно нагретой струей, расплывается в стороны, не доходя до потолка, и эффективно обогревает помещение.

Масло и вода

Описанный выше эффект дают также масляные и водо-воздушные обогреватели, благодаря чему и пользуются популярностью. Масляные обогреватели промышленного производства делаются герметичными с несменяемой заправкой, но повторять из самостоятельно ни в коем случае не рекомендуется. Без точного расчета объема корпуса, внутренней конвекции в нем и степени заполнения маслом возможен разрыв корпуса, авария электросети, вылив и загорание масла. Недолив так же опасен, как перезалив: в последнем случае масло просто рвет корпус давлением при нагреве, а в первом сначала закипает. Если же сделать корпус заведомо большего объема, то обогреватель греть будет несоразмерно слабо сравнительно с потреблением электроэнергии.

В любительских условиях возможно сооружение масляного или водо-воздушного обогревателя открытого типа с расширительным баком. Схема его устройства приведена на рис. Когда-то таких делали довольно много, для гаражей. Воздух от радиатора идет нагретым слабо, разность температур внутри и снаружи поддерживается минимальной, отчего и теплопотери уменьшаются. Но с появлением панельных обогревателей масляные самоделки сходят на нет: термопанели лучше во всех отношениях и вполне безопасны.

Если же вы все-таки решите делать себе масляный обогреватель, учтите – он должен быть надежно заземлен, а заполнять его нужно только и только очень дорогим трансформаторным маслом. Любое жидкое масло постепенно битуминизируется. Повышение температуры ускоряет этот процесс. Моторные масла разрабатываются с учетом того, что масло циркулирует среди движущихся деталей под воздействием вибраций. Битуминозные частицы в нем образуют взвесь, только загрязняющую масло, почему его и приходится время от времени менять. В обогревателе же им ничто не помешает оседать нагаром на ТЭНе и в трубках, отчего ТЭН перегревается. Если же он лопнет – последствия аварий масляных обогревателей почти всегда оказываются очень тяжелыми. Трансформаторное масло потому и дорого, что битуминозные частицы в нем не оседают в нагар. Источников сырья для минерального трансформаторного масла в мире мало, а себестоимость синтетического высока.

Пламенные

Мощные газовые обогреватели для больших помещений с каталитическим дожиганием дороги, но рекордно экономичны и эффективны. В любительских условиях их воспроизвести невозможно: нужна микроперфорированная керамическая пластина с платиновым напылением в порах и специальная горелка из деталей, выполненных с прецизионной точностью. В розницу то или другое обойдется дороже, чем новый обогреватель с гарантией.

Туристы, охотники и рыболовы давно придумали обогреватели-дожигатели малой мощности в виде приставки к походному примусу. Выпускаются такие и в промышленных масштабах, поз. 1 на рис. Эффективность их не ахти, но палатку обогреть до отбоя в спальные мешки хватает. Конструкция дожигателя довольно сложна (поз. 2), поэтому и стоят фабричные палаточные обогреватели недешево. Любители таких делают тоже немало, из консервных банок или, напр. из автомобильных масляных фильтров. В этом случае обогреватель может работать и от газового пламени, и от свечи, см. видео:

Видео: портативные обогреватели из масляного фильтра

С появлением в широком обиходе жаропрочных и жаростойких сталей любители побывать на природе все больше отдают предпочтение газовым походным обогревателям с дожиганием на сетке, поз. 3 и 4 – они экономичнее и греют лучше. И опять-таки, любительское творчество объединило тот и другой варианты в мини-обогреватель комбинированного типа, поз. 5., способный работать и от газовой горелки, и от свечи.

Чертеж самодельного мини-обогревателя на дожигании приведен на рис. справа. Если он используется эпизодически или временно, то может быть целиком выполнен из консервных банок. На увеличенный вариант для дачи пойдут банки от томатной пасты и т.п. Замена перфорированной крышки сетчатой существенно уменьшает время прогрева и расход топлива. Больший и очень долговечный вариант можно собрать из автомобильных дисков, см. след. ролик. Это уже считай что печка, т.к. на нем можно готовить.

Видео: обогреватель-печка из колесного диска

От свечи

Осветительная свеча, между прочим, довольно сильный источник тепла. Долгое время это ее свойство считалось помехой: в старину на балах дамы и кавалеры обливались потом, косметика текла, пудра сбивалась комьями. Как они после этого еще и амуры крутили, без горячего водопровода и душа, современному человеку понять трудно.

Тепло от свечи в холодном помещении пропадает зря по той же причине, по которой одноконтурный конвекционный обогреватель греет плоховато: горячие отходящие газы слишком быстро поднимаются вверх и остывают, давая копоть. Между тем заставить их догорать и давать тепло проще, чем газовое пламя, см. рис. В этой системе 3-контурный дожигатель собран из керамических цветочных горшков; обожженная глина – хороший ИК-излучатель. Предназначен обогреватель на свече для местного обогрева, скажем, чтобы не дрожать, сидя за компьютером, но тепла всего от одной свечки дает удивительно много. Нужно только, пользуясь им, приоткрывать форточку, а ложась спать обязательно гасить свечу: кислорода на горение она потребляет тоже много.

Масляный обогреватель. Хотя продается множество , сделать похожую модель можно самому. Схема масляного обогревателя и принцип его работы заключается в нагреве жидкого технического масла, помещенного в герметичную емкость, при . Чтобы изготовить масляный обогреватель своими руками, понадобятся следующие материалы:

  • герметичная емкость;
  • техническое масло;
  • ТЭНы;
  • слесарный инструмент.

Для корпуса будущего маслонагревателя можно использовать металлическую батарею, баллон от газа, автомобильный радиатор или сварить емкость самостоятельно.

Емкость заполняется маслом не до верха, а на 85%, так как при нагревании жидкость расширяется. В верхней части бака должен находится воздух или потребуется установка расширительного бачка. Масло используют термостойкое.

Обогрев при помощи свечи. Самый простой походный вариант – сделать обогреватель из свечи. Туристы используют для этого пустые консервные банки или баночки из-под напитков. Свечной обогреватель делается из двух баночек и свечи в металлической таблетке. Он имеет следующий принцип работы: внутрь металлической емкости помещается горящая свеча, которая нагревает баночку изнутри. Благодаря закрытому пространству тепло аккумулируется и входит наружу сквозь пробитые сверху отверстия. Несмотря на примитивность и простоту модели, этот мини-обогреватель популярен у туристов.

Глиняный горшочек и свеча могут стать не плохим обогревателем

Делать свечной обогреватель своими руками начинают с обработки баночек: у одной удаляют верхнюю часть, а на дне гвоздем пробивают множество отверстий по периметру. У второй отрезают дно, вырезая несколько «лепестков» сверху, чтобы присоединить дно к отрезанной верхней части первой баночки. Помещают внутрь горящую свечу , вставляя дно в корпус.

Используя энергию горящей свечи, можно сделать декоративный обогреватель из глиняных горшков и свечки для спальной или гостиной. Свеча помещается под несколько перевернутых керамических горшков, скрепленных между собой толстым и длинным железным болтом. Железо накаляется от пламени, а горшки и воздушная прослойка между ними сохраняют это тепло, а затем отдают в окружающее пространство. Работать такая «ловушка тепла» может сутками, важно не оставлять ее без присмотра. Это небольшое дополнение к основному отоплению дома и возможность создать романтическую атмосферу.

ИК-устройства. Сделать простейший инфракрасный обогреватель своими руками сможет даже ребенок, поместив за батарею светоотражающую пленку или фольгу. Тепловые лучи в этом случае, отражаясь от зеркальной поверхности, будут нагревать окружающие предметы, а не противоположную стену. Особенностью инфракрасного излучения является нагрев предметов, а не воздуха. Такой вид обогрева ощущается, как наиболее комфортный.

Изготовить сложнее. Принцип работы прибора: над пламенем сетчатый рассеиватель тепла, а под него – отражатель (рефлектор). В качестве рефлектора можно использовать чашу из нержавеющей стали, но лучший материал – алюминий, он отражает только тепловые волны. В качестве топлива используют большой газовый баллон или маленький баллончик, на который одевается насадка-горелка. Такой обогреватель для палатки выручает любителей зимней рыбалки.

Для обогрева палатки при зимней рыбалке мастера изготавливают газовый обогреватель пушки – горелку помещают в металлическую трубу, приваривают ножки и присоединяют металлический шланг для отвода газов.

Нагреватель из старой батареи. Если в доме после ремонта остались старые радиаторы, то можно смастерить электрический обогреватель из чугунной батареи своими руками. У чугуна высокий коэффициент теплоотдачи, поэтому снабдив конструкцию ТЭНом, терморегулятором и заполнив водой или трансформаторным маслом, можно получить . Декоративный внешний вид изделия будет дополнительным преимуществом.

Новые виды нагревателей. Один из простейших по процедуре изготовления обогревателей – модель из термопленки. Термоплёнка наклеивается на подложку, к ней подсоединяются электроконтакты и провод. Такой вариант удобно повесить на стену и можно завесить картиной или ковром.

ПОСМОТРЕТЬ ВИДЕО

В 2007 году был разработан новый прибор парокапельный нагреватель, принцип работы которого схож с действием водонагревателя: помещенная в запаянные трубки вода нагревается при помощи ТЭНа, превращается в пар, поднимается по трубкам, а затем остывает и, сконденсировавшись, возвращается в нижнюю часть прибора. Цикл повторяется многократно. Специфика прибора – низкое потребление электроэнергии и высокий КПД. Многие умельцы взяли на вооружение новинку и делают подобное устройство самостоятельно.

Самодельные обогреватели для дома, дачи или похода выручат в сложных и экстремальных условиях, поэтому знание их особенностей и умение сделать не будут лишними.

Инфракрасные обогреватели еще недавно были диковинкой. Сейчас они переходят в разряд привычных приборов, которые используются повсеместно: дома, на даче, в производственных цехах и даже на открытых площадках. Дошло до того, что многие «Кулибины», замерзнув в гараже, из подручных средств мастерят инфракрасный обогреватель своими руками. Ниже мы и рассмотрим несколько способов изготовления ИК из подручных средств.

В отличие от других типов обогревателей, ИК не греет воздух в помещении. Он работает по принципу нашего светила: разогревает предметы, которые попадаются на пути движения инфракрасного излучения. А разогретые поверхности делятся теплом с окружающим воздухом.

Инфракрасный обогреватель состоит из двух основных элементов:

Оба эти элемента собираются в термостойком корпусе.

Для изготовления рефлектора используется алюминий или полированная сталь. Задача отражателя – сформировать поток излучения и направить его в нужную зону.

В качестве нагревательного элемента (излучателя) используются лампы:

  • галогенные;
  • карбоновые и кварцевые.

Обогреватели с галогенными лампами стоят дешевле, чем с карбоновыми или кварцевыми. Но у них есть один недостаток, который не способствует использованию прибора в жилых помещениях: их работа сопровождается свечением лампы. Согласитесь, что такой обогреватель в спальне не поставишь, да и в детской тоже. Хотя, на балконах и лоджиях, если они не объединены с основным помещением, можно.

В отличие от галогенных, карбоновые и кварцевые лампы света не дают (но их цена выше). Собственно, это их единственное отличие от галогенных ламп. Некоторые продавцы утверждают, что карбон и кварц кроме обогрева помещения еще и оздоравливает жильцов. Не стоит воспринимать такие заявления всерьез: медики однозначно заявляют, что инфракрасный обогреватель никакого влияния на здоровье человека не оказывают.

Кроме излучателя и рефлектора, в конструкции нагревателя присутствуют датчик пожароопасности и термостаты. Первые автоматически отключают обогреватель при его перегреве или опрокидывании, вторые – служат для поддержания заданной температуры.

Изготовление инфракрасного обогревателя своими руками

ИК обогреватель из старого рефлектора

Вам понадобится:

  • рефлектор советского производства;
  • нихромовая нить;
  • стальной стержень;
  • диэлектрик огнеупорный.

Совет: В качестве диэлектрика вы можете использовать тарелку любого диаметра, изготовленную из глазурованной керамики.

Ваши действия:

  • тщательно очистите отражатель рефлектора от грязи и пыли;
  • проверьте целостность сетевого шнура, вилки, соединения с клеммами для подключения спирали;
  • измерьте длину спирали, навиваемой на керамический конус прибора;
  • возьмите стальной стержень такой же длины и навейте на него нихромовую нить. Шаг навивки – 2 мм;
  • по окончании навивки снимите спираль со стержня;
  • уложите спираль в свободном состоянии (ее витки не должны соприкасаться) на огнеупорный диэлектрик;
  • к концам спирали подключите ток из сетевой розетки;
  • разогретую спираль отключите и уложите в канавку керамического конуса обогревателя;
  • подключите ее к клеммам питания.

Из стекла и фольги

Необходимые материалы:

  • стекло: два куска одного размера;
  • фольга алюминиевая;
  • герметик;
  • свеча парафиновая;
  • сетевой провод с вилкой;
  • клей эпоксидный;
  • ватные палочки;
  • чистая х/б салфетка;
  • держатель для свечи.

Что делаем:

  • удаляем с поверхности стекла пыль, грязь, жир, следы краски, если таковые имеются и т. д.;
  • зажигаем свечку и плавно перемещаем над ее пламенем стеклянные пластины (поочередно и только с одной стороны). В результате этой операции на стекле должен образоваться равномерный слой копоти. Он в нагревателе будет служить проводником;

Совет: Если перед обработкой стекло охладить, слой копоти ляжет на его поверхность ровнее.

  • при помощи ватных палочек формируем по периметру стекла прозрачную «рамочку» шириной примерно в пять миллиметров;
  • из листа алюминиевой фольги вырезаем два прямоугольника. Их ширина должна равняться ширине токопроводящего слоя (той самой копоти, которую вы усердно осаживали на стекло в начале работы). Полоски фольги в нашем ИК будут выступать в роли электродов;
  • стеклянную пластину размещаем закопченной стороной вверх и наносим на ее поверхность эпоксидный клей;
  • на края пластины накладываем фольгу таким образом, чтобы их концы выходили за пределы стекла;
  • полученную конструкцию осторожно накрываем второй стеклянной пластиной (закопченной стороной внутрь) и склеиваем «пирог», тщательно прижимая его слои друг другу;
  • периметр конструкции герметизируем;
  • замеряем сопротивление проводящего слоя;
  • используя полученный результат, рассчитываем мощность нагревателя по формуле:

N = R x I 2 , где

N – мощность (Вт);

R – сопротивление (Ом);

I — сила тока (А).


Если все сложилось удачно и мощность не превысила допустимую нормативами величину, можете подключать самодельный инфракрасный нагреватель к розетке. Если не угадали – разбирайте прибор и начинайте все заново.

На заметку: Для ориентировки имейте в виду, что сопротивление тем меньше, чем шире полоса сажи. Следовательно, температура нагрева стекла будет выше.

ИК на базе слоистого пластика

Вам потребуется:

  • бумажный слоистый пластик площадью 1 кв. м – 2 заготовки;
  • клей эпоксидный;
  • медная шина для изготовления клемм;
  • дерево для изготовления рамки;
  • сетевой шнур с вилкой.

Графит можно «добыть» из батареек, отслуживших свой срок.

Что надо сделать:

Графит для обогревателя
  • смешиваем эпоксидный клей с графитом до получения густой массы (таким образом готовится будущий проводник с большим сопротивлением);
  • укладываем на рабочий стол пластиковую заготовку шероховатой стороной вверх;
  • наносим на поверхность пластика эпоксидно-графитовую смесь зигзагообразными мазками;
  • аналогично готовим вторую пластину;
  • накладываем пластины друг на друга обработанными сторонами друг к другу, и склеиваем их;
  • с противоположных сторон графитового проводника прикрепляем медные клеммы;
  • по периметру конструкции сооружаем фиксирующую деревянную рамку;
  • оставляем в покое изделия до полного высыхания графитово-эпоксидного слоя;
  • измеряем сопротивление проводника и рассчитываем мощность (см. вариант 2).

Величина сопротивления проводника зависит от количества графита в массе. Если в результате тестирования выяснилось, что сопротивление проводника слишком низкое – приготовьте новый эпоксидно-графитовый состав, увеличив дозу графита. Соответственно высокое сопротивление можно снизить, уменьшив количество графитового порошка в проводнике.

После того, как вы добьетесь положительного результата, можете подсоединить сетевой шнур к клеммам и включить прибор в розетку. Можно усовершенствовать конструкцию, установив простенький терморегулятор.

Мы рассмотрели лишь малую толику способов изготовления инфракрасных обогревателей. На самом деле существует великое множество вариантов, ведь домашние мастера стремятся использовать разные вещи, отслужившие свое. Их разнообразие и определяет количество изобретений самодельных инфракрасных обогревателей.

Остались вопросы? Задавайте их в комментариях!

Когда в доме слишком холодно, то трудно назвать такое жилище уютным. Порой случаются аварии на основных теплотрассах, а желание обогреть квартиру становится первостепенным. Сделать обогреватель своими руками по силам каждому, поэтому тема, как осуществить задуманное, очень актуальна. Но в любом новом деле нужны знания. Если надоело мёрзнуть, надёжная теплоустановка не помешает.

Такой масляный обогреватель можно сделать своими руками

Классификация теплоустройств

Существует огромное количество самодельных обогревателей. Сделать их можно из подручного материала. Многие народные умельцы стараются, как могут. Из-за этого часто появляются такие конструкции, которые становятся причинами больших бед. Прежде чем приступить к работе, мудрый хозяин подумает о безопасности.

Несмотря на многообразие, все устройства делятся на определённые группы по основным техническим характеристикам.

Вот перечень их отличий:

  1. Масляные и водяные. Батарея, наполненная подогреваемой жидкостью, по-прежнему является наиболее распространённым видом обогревателей из-за своей относительной безопасности и надёжности.
  2. Электрокамины. Приборы с открытым элементом для нагревания воздуха. Один из самых опасных видов подобных устройств. Пожары, ожоги, поражение электротоком - это основные проблемы, которые несёт с собой неправильно сделанный или эксплуатируемый прибор подобного типа.
  3. Тепловентиляторы. Принцип нагревателя тот же, что и в предыдущем варианте, только воздух здесь подаётся в помещение специальным вентилятором, вмонтированным в устройство. Очень удобен для быстрого обогрева определённого места.
  4. Термопанели. Самый безопасный и надёжный вид самодельных обогревателей. Сделать его очень просто из готовых инфракрасных панелей. Кто-то отваживается на самостоятельное изготовление таких панелей из подручного материала.
  5. Пламенные. Обогреватели, в которых используется открытый огонь. Очень редко применяются в домашних условиях, но популярны на рыбалке, в походных условиях, для обогрева сараев и гаражей. Само собой, что при таком виде обогрева соблюдению правил пожарной безопасности уделяют повышенное внимание.

Виды обогревателей для домашнего использования

При выборе конструкции будущего прибора важно обращать внимание не только на его безопасность, но и на эффективность. Поэтому сначала определяют, каким требованиям и целям должен соответствовать будущий обогреватель.

Вот некоторые критерии такой оценки:

  • безопасность;
  • продуктивность;
  • экономичность;
  • простота сборки и обслуживания;
  • компактность;
  • удобство;
  • эффективность.

Сопоставив все за и против каждого вида и определившись с целями, выбирают наиболее подходящий вариант, чтобы сделать в домашних условиях обогреватель, способный служить долго и надёжно.

В том видео вы узнаете, как сделать каталитический обогреватель;

Пошаговые схемы сборки

Выбору экономичного и эффективного варианта уделяют достаточно времени, чтобы потом не пришлось разочароваться. Сама сборка электрообогревателя своими руками не столь сложна, чтобы с ней не мог справиться начинающий мастер. Принцип сборки почти всех конструкций похож, поэтому, освоив изготовление одного прибора, легко перейти на другой.

Масляная батарея

Большой популярностью пользуются масляные обогреватели . Принцип действия их очень простой: масло, находящееся внутри труб, нагревается вставленным внутрь тэном. Такой прибор очень прост в изготовлении, имеет хорошие показатели КПД и безопасности.


Сделать собственноручно масляный обогреватель несложно, нужно лишь следовать инструкции

Делают его так:

  1. Берут нагревательный ТЭН (мощность - 1 кВт) и электропровод с вилкой для розетки. Некоторые умельцы устанавливают тепловое реле для автоматического управления. Его тоже приобретают в магазине.
  2. Готовят корпус. Для этого сгодится старая батарея водоотопления или радиатор автомобиля. Можно сварить корпус аппарата из труб самостоятельно, если есть навыки сварщика.
  3. Делают два отверстия в корпусе: внизу - для вставки ТЭНа, вверху - для заливки масла и его замены.
  4. Вставляют ТЭН в нижнюю часть корпуса и хорошо герметизируют место крепления.
  5. Заливают масло из расчёта 85% от внутреннего объёма корпуса.
  6. Подсоединяют приборы контроля и автоматики, хорошо изолируют электросоединения.

После этого обогреватель готов к использованию. Предварительно его проверяют в разных режимах работы.

Инфракрасный обогреватель своими руками;

Мини-обогреватель для гаража

Иногда требуется очень компактный обогреватель для определённых целей. В таких ситуациях может выручить мини-тепловентилятор, сделанный из обычной консервной банки.

Чтобы его изготовить, делают следующие шаги:

  1. Готовят большую жестяную банку из-под кофе или других продуктов, вентилятор от компьютера, трансформатор на 12 Вт, проволоку из нихрома сечением 1 мм, диодный выпрямитель.
  2. Из текстолита вырезают рамку по диаметру банки и проделывают в ней два маленьких отверстия для натяжения спирали накаливания.
  3. Вставляют в отверстия концы нихромовой спирали и припаивают их к зачищенным электропроводкам. Для вариативности режимов и надёжности подсоединяют несколько спиралей параллельно и устанавливают регулятор мощности.
  4. Собирают электрооснастку обогревателя. Хорошо пропаивают и изолируют все соединения.
  5. Монтируют вентилятор внутрь банки болтами и кронштейном.
  6. Хорошо закрепляют электропровода, чтобы они не перегревались и не попадали в полости вентилятора при перемещениях обогревателя.
  7. Для доступа воздуха просверливают около 30 отверстий в дне банки.
  8. Для безопасности спереди надевают металлическую решётку или крышку с отверстиями.
  9. Для устойчивости делают из толстой проволоки специальную подставку.
  10. Включают в сеть и проверяют устройство.

Такой маленький электрический обогреватель очень быстро согреет в гараже, если надо произвести срочный ремонт. Он понадобится зимой на даче, когда нет времени разводить огонь в основной печи.

Инфракрасная панель для обогрева

В последнее время всё большей популярностью пользуются инфракрасные керамические обогреватели. Своими руками такое устройство сделать намного сложнее, если не покупать готовые термопанели, но вполне возможно.


Сделать подобный современный инфракрасный обогреватель можно в домашних условиях

Для этого делают следующее:

  1. Готовят материалы: мелкий графитный порошок, эпоксидный клей, 2 металлопластиковые или керамические пластины по 1 м², 2 медные клеммы, деревянные заготовки для рамки, электропровода и выключатель, может быть регулятор мощности при более сложном варианте.
  2. Расчерчивают на обеих пластинах зеркально схему расположения спиралей на внутренней стороне. Расстояние от края около 20 мм, между витками и клемами - не менее 10 мм.
  3. Графит перемешивают с эпоксидной смолой 1 к 2.
  4. Кладут на стол плиты со схемой, гладкой стороной вниз.
  5. Наносят тонким слоем смесь графита и клея по схеме.
  6. Один из листов кладут сверху на второй лист, гладкой стороной к себе. Крепко прижимают их друг к другу.
  7. Вставляют клемы в обозначенных заранее местах вывода.
  8. Дают просохнуть.
  9. Присоединяют электрические провода и проверяют работоспособность.
  10. Делают деревянную рамку для устойчивости.
  11. Оснащают устройство терморегулятором.

Сделав такой обогреватель, хозяин может быть спокоен за его надёжность. Этот вариант самый безопасный для эксплуатации и очень экономичный.

Самодельный обогреватель своими руками;

Техника безопасности

Сделать обогреватель несложно. Намного труднее сохранить здание от пожара при использовании самодельных устройств. Соблюдение правил техники пожарной безопасности - неотъемлемая часть любых работ с термонагревателями.

Всегда следует помнить:

  1. Нельзя использовать неисправные электроприборы.
  2. Нельзя оставлять такие приборы без присмотра и один на один с маленькими детьми.
  3. Заботливые родители стараются всегда проверять недоступность для детей опасных частей нагревателей.
  4. При возникновении возгорания сразу отключают электропитание прибора, а потом тушат его. Немедленно вызывают МЧС.

В качестве мер безопасности мудрые родители всегда учат своих детей правильному обращению с термонагревателями и объясняют, что можно делать, а что - нельзя и почему. Соблюдая правила пожарной безопасности и пользуясь только проверенными и надёжными нагревателями, живущие в доме будут наслаждаться теплом и уютом долгие годы.

Алгоритм работы по изготовлению обогревателя собственноручно;