Что такое безразличное равновесие. Устойчивость и неустойчивость равновесия

Рыночное равновесие называют устойчивым, если при отклонении от равновесного состояния в действие вступают рыночные силы, восстанавливающие его. В противном случае равновесие неустойчиво.

Чтобы проверить, соответствует ли ситуация, представленная на рис. 4.7, устойчивому равновесию, допустим, что цена повысилась с Р 0 до P 1. В результате на рынке образуется избыток в размере Q2 – Q1. По поводу того, что произойдет вслед за этим, существуют две версии: Л. Вальраса и А. Маршалла.

По мнению Л. Вальраса, при избытке возникает конкуренция между продавцами. Для привлечения покупателей они начнут снижать цену. По мере уменьшения цены объем спроса будет возрастать, а объем предложения сокращаться до тех пор, пока не восстановится исходное равновесие. В случае отклонения цены вниз от своего равновесного значения спрос будет превышать предложение. Между покупателями начнется конкуренция

Рис. 4.7. Восстановление равновесия. Давление: 1 – по Маршаллу; 2 – по Вальрасу

за дефицитный товар. Они станут предлагать продавцам более высокую цену, что позволит увеличить предложение. Так будет продолжаться до возвращения цены к равновесному уровню Р0. Следовательно, по Вальрасу комбинация Р0, Q0 представляет устойчивое рыночное равновесие.

По-иному рассуждал А. Маршалл. Когда объем предложения меньше равновесного значения, тогда цена спроса превышает цену предложения. Фирмы получают прибыль, которая стимулирует расширение производства, и объем предложения будет расти, пока не достигнет равновесного значения. В случае превышения равновесного объема предложения цена спроса окажется ниже цены предложения. В такой ситуации предприниматели несут убытки, что приведет к сокращению производства до равновесного безубыточного объема. Следовательно, и по Маршаллу точка пересечения кривых спроса и предложения на рис. 4.7 представляет устойчивое рыночное равновесие.

По версии Л. Вальраса, в условиях дефицита активной стороной рынка являются покупатели, а в условиях избытка – продавцы. По мнению А. Маршалла, доминирующей силой в формировании рыночной конъюнктуры всегда являются предприниматели.

Однако два рассмотренных варианта диагностики устойчивости рыночного равновесия приводят к одинаковому результату только в случаях положительного наклона кривой предложения и отрицательного – кривой спроса. Когда это не так, тогда диагноз устойчивости равновесных состояний рынка по Вальрасу и Маршаллу не совпадают. Четыре варианта таких состояний показаны на рис. 4.8.

Рис. 4.8.

Ситуации, представленные на рис. 4.8, а, в, возможны в условиях растущего эффекта от масштаба, когда производители могут снижать цену предложения по мере увеличения выпуска. Положительный наклон кривой спроса в ситуациях, показанных на рис. 4.8, б, г, может отражать парадокс Гиффена или эффект сноба.

По Вальрасу отраслевое равновесие, представленное на рис. 4.8, а, б, является неустойчивым. Если цена поднимется до Р 1, то на рынке возникнет дефицит: QD > QS. В таких условиях конкуренция покупателей вызовет дальнейшее повышение цены. Если цена опустится до Р0, то предложение превысит спрос, что по Вальрасу должно привести к дальнейшему понижению цены. По Маршаллу сочетание Р*, Q* представляет устойчивое равновесие. При меньшем, чем Q*, предложении цена спроса окажется выше цены предложения, а это стимулирует увеличение выпуска. В случае повышения Q* цена спроса станет ниже цены предложения, поэтому оно уменьшится.

Когда кривые спроса и предложения расположены так, как показано на рис. 4.8, в, г, тогда по логике Вальраса равновесие в точке Р*, Q* устойчиво, поскольку при P1 > Р* возникает избыток, а при Р0 < Р* –дефицит. По логике Маршалла–это варианты неустойчивого равновесия, так как при Q < Q* цена предложения оказывается выше цены спроса, предложение будет уменьшаться, а в случае Q > Q* – наоборот.

Расхождения между Л. Вальрасом и А. Маршаллом при описании механизма функционирования рынка вызваны тем, что, по мнению первого, рыночные цены совершенно гибки и мгновенно реагируют на любые изменения конъюнктуры, а по мнению второго, цены недостаточно гибки и при возникновении диспропорций между спросом и предложением объемы рыночных сделок быстрее реагируют на них, чем цены. Интерпретация процесса установления рыночного равновесия по Вальрасу соответствует условиям совершенной конкуренции, а по Маршаллу – несовершенной конкуренции в коротком периоде.

  • Л. Вальрас (1834–1910) – основатель концепции общего экономического равновесия.

Всех сил, приложенных к телу относительно оси вращения, проходящей через любую точку O, равна нулю ΣΜO(Fί)=0. Такое определение ограничивает как поступательное движение тела, так и вращательное.

В состоянии равновесия тело находится в покое (вектор скорости равен нулю) в выбранной системе отсчета .

Определение через энергию системы

Так как энергия и силы связаны фундаментальными зависимостями , это определение эквивалентно первому. Однако определение через энергию может быть расширено для того, чтобы получить информацию об устойчивости положения равновесия.

Виды равновесия

Приведём пример для системы с одной степенью свободы . В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной . Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:

Неустойчивое равновесие

В случае, когда вторая производная < 0, потенциальная энергия системы находится в состоянии локального максимума. это означает, что положение равновесия неустойчиво . Если система будет смещена на небольшое расстояние, то она продолжит своё движение за счёт сил, действующих на систему.

Устойчивое равновесие

Вторая производная > 0: потенциальная энергия в состоянии локального минимума, положение равновесия устойчиво . Если систему сместить на небольшое расстояние, она вернётся назад в состояние равновесия.

Безразличное равновесие

Вторая производная = 0: в этой области энергия не варьируется, а положение равновесия является безразличным . Если система будет смещена на небольшое расстояние, она останется в новом положении.

Устойчивость в системах с большим числом степеней свободы

Если система имеет несколько степеней свободы, то можно получить различные результаты для различных направлений, однако равновесие будет устойчиво только в том случае, если оно устойчиво во всех направлениях .


Wikimedia Foundation . 2010 .

Смотреть что такое "Устойчивое равновесие" в других словарях:

    устойчивое равновесие

    См. в ст. Устойчивость сообщества. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    устойчивое равновесие - pastovioji pusiausvyra statusas T sritis chemija apibrėžtis Būsena, kuriai esant sistema, dėl trikdžių praradusi pusiausvyrą, trikdžiams nustojus veikti vėl pasidaro pusiausvira. atitikmenys: angl. stable equilibrium rus. устойчивое равновесие… … Chemijos terminų aiškinamasis žodynas

    устойчивое равновесие - stabilioji pusiausvyra statusas T sritis fizika atitikmenys: angl. stable equilibrium vok. gesichertes Gleichgewicht, n; stabiles Gleichgewicht, n rus. устойчивое равновесие, n pranc. équilibre stable, m … Fizikos terminų žodynas

    устойчивое равновесие - Равновесие механической системы, при котором в случае любого достаточно малого изменения ее положения и сообщения ей любых достаточно малых скоростей, система во все последующее время будет занимать положения, сколь угодно близкие к… … Политехнический терминологический толковый словарь

    устойчивое равновесие системы - Равновесие, при котором после устранения причин, вызвавших какие либо возможные отклонения системы, она возвращается в исходное или близкое к нему положение. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР.… … Справочник технического переводчика

    устойчивое равновесие атмосферы - Состояние атмосферы, когда вертикальный градиент температуры воздуха меньше сухого адиабатического градиента и не происходит вертикального движения воздуха … Словарь по географии

    равновесие системы устойчивое - Равновесие, при котором система возвращается в исходное или близкое к нему положение после устранения причин, вызвавших возможное отклонение системы [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN stable… … Справочник технического переводчика

    РАВНОВЕСИЕ, равновесия, мн. нет, ср. (книжн.). 1. Состояние неподвижности, покоя, в котором находится какое нибудь тело под воздействием равных, противоположно направленных и потому взаимно уничтожающихся сил (мех.). Равновесие сил. Устойчивое… … Толковый словарь Ушакова

  • 48. Образования вспомогательного аппарата мышц (фасции, фасциальные связки, фиброзные и костно-фиброзные каналы, синовиальные влагалища, слизистые сумки, сесамовидные кости, блоки) и их функции.
  • 49. Мышцы живота: топография, начало, прикрепление и функции.
  • 50. Мышцы вдоха. Мышцы выдоха.
  • 52. Мышцы шеи: топография, начало, прикрепление и функции.
  • 53. Мышцы, сгибающие позвоночник.
  • 54. Мышцы, разгибающие позвоночник.
  • 55. Мышцы передней поверхности предплечья: начало, прикрепление и функции.
  • 56. Мышцы задней поверхности предплечья: начало, прикрепление и функции.
  • 57. Мышцы, производящие движения пояса верхней конечности вперед и назад.
  • 58. Мышцы, производящие движения пояса верхней конечности вверх и вниз.
  • 59. Мышцы, сгибающие и разгибающие плечо.
  • 60. Мышцы, отводящие и приводящие плечо.
  • 61. Мышцы, супинирующие и пронирующие плечо.
  • 62. Мышцы, сгибающие (основные) и разгибающие предплечье.
  • 63. Мышцы, супинирующие и пронирующие предплечье.
  • 64. Мышцы, сгибающие и разгибающие кисть и пальцы.
  • 65. Мышцы, отводящие и приводящие кисть.
  • 66. Мышцы бедра: топография и функции.
  • 67. Мышцы, сгибающие и разгибающие бедро.
  • 68. Мышцы, отводящие и приводящие бедро.
  • 69. Мышцы, супинирующие и пронирующие бедро.
  • 70. Мышцы голени: топография и функции.
  • 71. Мышцы, сгибающие и разгибающие голень.
  • 72. Мышцы, супинирующие и пронирующие голень.
  • 73. Мышцы, сгибающие и разгибающие стопу.
  • 74. Мышцы, отводящие и приводящие стопу.
  • 75. Мышцы супинирующие и пронирующие стопу.
  • 76. Мышцы, удерживающие своды стопы.
  • 77. Общий центр тяжести тела: возрастные, половые и индивидуальные особенности его расположения.
  • 78. Виды равновесия: угол устойчивости, условия сохранения равновесия тела.
  • 79. Анатомическая характеристика антропометрического, спокойного и напряженного положения тела.
  • 80. Вис на выпрямленных руках: анатомическая характеристика, особенности механизма внешнего дыхания.
  • 81. Общая характеристика ходьбы.
  • 82. Анатомическая характеристика 1,2 и 3 фаз двойного шага.
  • 83. Анатомическая характеристика 4, 5 и 6 фаз двойного шага.
  • 84. Прыжок в длину с места: фазы, работа мышц.
  • 85. Анатомическая характеристика сальто назад.
  • 78. Виды равновесия: угол устойчивости, условия сохранения равновесия тела.

    В физических упражнениях человеку нередко необходимо сохранять неподвижное положение тела, например, исходные положения (стартовые), конечные положения (фиксирование штанги после ее поднятия), промежуточные (упор углом на кольцах). Во всех таких случаях тело человека как биомеханическая система находится в равновесии. В равновесии могут находиться и тела, связанные с сохраняющим положение человеком (например, штанга, партнер в акробатике). Чтобы сохранить положение тела, человек должен находиться в равновесии. Положение тела определяется его позой, его ориентацией и местоположением в пространстве, а также отношением к опоре. Следовательно, для сохранения положения тела человеку нужно фиксировать позу и не допускать, чтобы приложенные силы изменили позу и переместили его тело с данного места в каком-либо направлении или вызвали его поворот относительно опоры.

    Силы уравновешиваемые при сохранении положения

    К биомеханической системе приложены силы тяжести, опорной реакции, веса и мышечной тяги партнера или противника и другие, которые могут быть и возмущающими, и уравновешивающими силами в зависимости от положения звеньев тела относительно их опоры.

    Во всех случаях, когда человек сохраняет положение, находится в равновесии изменяемая система тел (не абсолютно твердое тело или материальная точка).

    В условиях занятий физическими упражнениями при сохранении положения к телу человека чаще всего приложены силы тяжести его тела и веса других тел, а также силы реакции опоры, препятствующие свободному падению. Без участия мышечных тяг сохраняются только пассивные положения (например, положения лежа на полу, на воде).

    При активных положениях система взаимно подвижных тел (звеньев тела) благодаря напряжениям мышц как бы отвердевает, становится подобной единому твердому телу; мышцы человека своей статической работой обеспечивают сохранение и позы, и положения в пространстве. Значит, в активных положениях для сохранения равновесия к силам внешним добавляются внутренние силы мышечной тяги.

    Все внешние силы делят на возмущающие (опрокидывающие, отклоняющие) , которые направлены на изменение положения тела, и уравновешивающие , которыми уравновешивается действие возмущающих сил. Силы мышечной тяги чаще всего служат силами уравновешивающими. Но в определенных условиях они могут быть и силами возмущающими, т. е. направленными на изменение и позы и расположения тела в пространстве.

    Условия равновесия системы тел

    Для равновесия тела человека (системы тел) необходимо, чтобы главный вектор и главный момент внешних сил были равны нулю, а все внутренние силы обеспечивали сохранение позы (формы системы).

    Если главный вектор и главный момент равны нулю, тело не сдвинется и не повернется, его линейное и угловое ускорения равны нулю. Для системы тел эти условия также необходимы, но уже недостаточны. Равновесие тела человека как системы тел требует еще сохранения позы тела. Когда мышцы достаточно сильны и человек умеет использовать их силу, он удержится в очень трудном положении. А менее сильному человеку такой позы не удержать, хотя по расположению и величине внешних сил равновесие возможно. У разных людей существуют свои предельные позы, которые они еще в состоянии сохранять.

    Виды равновесия твердого тела

    Вид равновесия твердого тела определяется по действию силы тяжести в случае сколь угодно малого отклонения: а) безразличное равновесие - действие силы тяжести не изменяется; б) устойчивое - оно всегда возвращает тело в прежнее положение (возникает момент устойчивости); в) неустойчивое - действие силы тяжести всегда вызывает опрокидывание тела (возникает момент опрокидывания); г) ограниченно-устойчивое - до потенциального барьера положение тела восстанавливается (возникает момент устойчивости), после него тело опрокидывается (возникает момент опрокидывания).

    В механике твердого тела различают три вида равновесия: безразличное, устойчивое и неустойчивое. Эти виды различаются по поведению тела, незначительно отклоняемого от уравновешенного положения. Когда тело человека полностью сохраняет позу («отвердение»), к нему применимы законы равновесия твердого тела.

    Безразличное равновесие характерно тем, что при любых отклонениях сохраняется равновесие. Шар, цилиндр, круговой конус на горизонтальной плоскости (нижняя опора) можно повернуть как угодно, и они останутся в покое. Линия действия силы тяжести (G) в таком теле (линия тяжести) всегда проходит через точку опоры, совпадает с линией действия силы опорной реакции (R); они уравновешивают друг друга. В спортивной технике безразличного равновесия ни на суше, ни в воде практически не встречается.

    Устойчивое равновесие характерно возвратом в прежнее положение при любом отклонении. Оно устойчиво при сколь угодно малом отклонении по двум причинам; а) центр тяжести тела поднимается выше (h), создается запас потенциальной энергии в поле земного тяготения; б) линия тяжести (G) не проходит через опору, появляется плечо силы тяжести (d) и возникает момент силы тяжести (момент устойчивости Муст = Gd), возвращающий тело (с уменьшением потенциальной энергии) в прежнее положение. Такое равновесие встречается у человека при верхней опоре. Например, гимнаст в висе на кольцах; рука, свободно висящая в плечевом суставе. Сила тяжести тела сама возвращает тело в прежнее положение.

    Неустойчивое равновесие характерно тем, что сколь угодно малое отклонение вызывает еще большее отклонение и тело само в прежнее положение вернуться не может. Таково положение при нижней опоре, когда тело имеет точку или линию (ребро тела) опоры. При отклонении тела: а) центр тяжести опускается ниже (- h), убывает потенциальная энергия в поле земного тяготения; б) линия тяжести (G) с отклонением тела удаляется от точки опоры, увеличиваются плечо (d) и момент силы тяжести (момент опрокидывания Мопр. = Gd); он все дальше отклоняет тело от прежнего положения. Неустойчивое равновесие в природе практически почти не осуществимо.

    В физических упражнениях чаще всего встречается еще один вид равновесия, когда имеется площадь опоры, расположенная внизу (нижняя опора). При незначительном отклонении тела центр его тяжести поднимается (+ h) и появляется момент устойчивости (Mуст = Gd). Налицо признаки устойчивого равновесия; момент силы тяжести тела вернет его в прежнее положение. Но это продолжается лишь при отклонении до определенных границ, пока линия тяжести не дойдет до края площади опоры. В этом положении уже возникают условия неустойчивого равновесия: при дальнейшем отклонении тело опрокидывается; при малейшем отклонении в обратную сторону - возвращается в прежнее положение. Границе площади опоры соответствует вершина «потенциального барьера» (максимум потенциальной энергии). В пределах между противоположными барьерами («потенциальная яма») во всех направлениях осуществляется ограниченно-устойчивое равновесие.

    Устойчивость объекта характеризуется его способностью, противодействуя нарушению равновесия, сохранять положение. Различают статические показатели устойчивости как способность сопротивляться нарушению равновесия и динамические как способность восстановить равновесие.

    Статическим показателем устойчивости твердого тела служит (в ограниченно-устойчивом равновесии) коэффициент устойчивости. Он равен отношению предельного момента устойчивости к моменту опрокидывающему. Когда коэффициент устойчивости покоящегося тела равен единице и больше нее, опрокидывания нет. Если же он меньше единицы, равновесие не может быть сохранено. Однако сопротивление только этих двух механических факторов (двух моментов сил) для системы тел, если она может изменять конфигурацию, не исчерпывает действительной картины. Следовательно, коэффициент устойчивости тела и зафиксированной системы тел характеризует статическую устойчивость как способность сопротивляться нарушению равновесия. У человека при определении устойчивости всегда надо еще учитывать активное противодействие мышечных тяг и готовность к сопротивлению.

    Динамическим показателем устойчивости твердого тела служит угол устойчивости. Это угол, образованный линией действия силы тяжести и прямой, соединяющей центр тяжести с соответствующим краем площади опоры. Физический смысл угла устойчивости состоит в том, что он равен углу поворота, на который надо повернуть тело для начала его опрокидывания. Угол устойчивости показывает, в каких пределах еще восстанавливается равновесие. Он характеризует степень динамической устойчивости: если угол больше, то и устойчивость больше. Этот показатель удобен для сравнения степени устойчивости одного тела в разных направлениях (если площадь опоры не круг и линия силы тяжести не проходит через его центр).

    Сумма двух углов устойчивости в одной плоскости рассматривается как угол равновесия в этой плоскости. Он характеризует запас устойчивости в данной плоскости, т. е. определяет размах перемещений центра тяжести до возможного опрокидывания в ту или другую сторону (например, у слаломиста при спуске на лыжах, гимнастки на бревне, борца в стойке).

    В случае равновесия биомеханической системы для применения динамических показателей устойчивости нужно учесть существенные уточнения.

    Во-первых, площадь эффективной опоры человека не всегда совпадает с поверхностью опоры. У человека, как и у твердого тела, поверхность опоры ограничена линиями, соединяющими крайние точки опоры (или внешние края нескольких площадей опоры). Но у человека часто граница площади эффективной опоры расположена внутри контура опоры, так как мягкие ткани (стопа босиком) или слабые звенья (концевые фаланги пальцев в стойке на руках на полу) не могут уравновесить нагрузку. Поэтому линия опрокидывания смещается кнутри от края опорной поверхности, площадь эффективной опоры меньше площади опорной поверхности.

    Во-вторых, человек никогда не отклоняется всем телом относительно линии опрокидывания (как кубик), а перемещается относительно осей каких-либо суставов, не сохраняя полностью позы (например, при положении стоя -движения в голеностопных суставах).

    В-третьих, при приближении к граничному положению нередко становится трудно сохранить позу и наступает не просто опрокидывание «отвердевшего тела» вокруг линии опрокидывания, а изменение позы с падением. Это существенно отличается от отклонения и опрокидывания твердого тела вокруг грани опрокидывания (кантование).

    Таким образом, углы устойчивости в ограниченно-устойчивом равновесии характеризуют динамическую устойчивость как способность восстановить равновесие. При определении устойчивости тела человека необходимо также учитывать границы площади эффективной опоры, надежность сохранения позы до граничного положения тела и реальную линию опрокидывания.

    Следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

    Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

    ${\overrightarrow{F}}={\overrightarrow{F_1}}+{\overrightarrow{F_2}}+...= 0$

    Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

    Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

    Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

    Произведение модуля силы $F$ на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки.

    Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

    В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил. Оба эти условия не являются достаточными для покоя.

    Рисунок 1. Безразличное равновесие. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю

    Катящееся по горизонтальной поверхности колесо -- пример безразличного равновесия (рис. 1). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

    Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

    При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия.

    Рисунок 2. Различные виды равновесия шара на опоре. (1) -- безразличное равновесие, (2) -- неустойчивое равновесие, (3) -- устойчивое равновесие

    Шар, находящийся в верхней точке сферического выступа, -- пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 2).

    Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси -- состояние равновесия неустойчиво (рис. 3).

    Рисунок 3. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C -- центр массы диска; ${\overrightarrow{F}}_т\ $-- сила тяжести; ${\overrightarrow{F}}_{у\ }$-- упругая сила оси; d -- плечо

    Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается.

    Задача 1

    Наклонная плоскость наклонена под углом 30o к горизонту (рис. 4). На ней находится тело Р, масса которого m=2 кГ. Трением можно пренебречь. Нить, перекинутая через блок, составляет угол 45o с наклонной плоскостью. При каком весе груза Q тело Р будет в равновесии?

    Рисунок 4

    Тело находится под действием трех сил: силы тяжести Р, натяжения нити с грузом Q и силы упругости F со стороны плоскости, давящей на него в направлении, перпендикулярном к плоскости. Разложим силу Р на составляющие: $\overrightarrow{Р}={\overrightarrow{Р}}_1+{\overrightarrow{Р}}_2$. Условие ${\overrightarrow{P}}_2=$ Для равновесия, учитывая удвоение усилия подвижным блоком, необходимо, чтобы $\overrightarrow{Q}=-{2\overrightarrow{P}}_1$. Отсюда условие равновесия: $m_Q=2m{sin \widehat{{\overrightarrow{P}}_1{\overrightarrow{P}}_2}\ }$. Подставляя значения получим: $m_Q=2\cdot 2{sin \left(90{}^\circ -30{}^\circ -45{}^\circ \right)\ }=1,035\ кГ$.

    При ветре привязной аэростат висит не над той точкой Земли, к которой прикреплен трос (рис. 5). Натяжение троса составляет 200 кГ, угол с вертикалью а=30${}^\circ$. Какова сила давления ветра?

    \[{\overrightarrow{F}}_в=-{\overrightarrow{Т}}_1;\ \ \ \ \left|{\overrightarrow{F}}_в\right|=\left|{\overrightarrow{Т}}_1\right|=Тg{sin {\mathbf \alpha }\ }\] \[\left|{\overrightarrow{F}}_в\right|=\ 200\cdot 9.81\cdot {sin 30{}^\circ \ }=981\ Н\]

    Статикой называется раздел механики, изучающий условия равновесия тел.

    Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

    Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

    На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

    Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

    Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

    Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

    Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

    Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

    В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон - метрах (Н∙м ) .

    В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

    здесь скриншот игры про равновесие

    Катящееся по горизонтальной поверхности колесо - пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

    Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

    При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

    Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, - пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

    Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси - состояние равновесия неустойчиво (рис. 1.14.5).

    Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

    Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.