Найти перемещение при равноускоренном движении. Равноускоренное прямолинейное движение

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению , неравномерное движение - это движение с неодинаковой скоростью, по любой траектории . В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется" . Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.


Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина , численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.


Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках


На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.


На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах


Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;
2) Что характеризует ускорение;
3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;
3) Направление вектора ускорения;
4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).

График зависимости V(t) для этого случая показан на рис.1.2.1. Промежуток времени Δt в формуле (1.4) можно брать любой. Отношение ΔV/Δt от этого не зависит. Тогда ΔV=аΔt . Применяя эту формулу к промежутку от t о = 0 до некоторого момента t , можно написать выражение для скорости:

V(t)=V 0 + at. (1.5)

Здесь V 0 – значение скорости при t о = 0. Если направления скорости и ускорения противоположны, то говорят о равнозамедленном движении (рис. 1.2.2).

При равнозамедленном движении аналогично получаем

V(t) = V 0 – at.

Разберём вывод формулы перемещения тела при равноускоренном движении. Заметим, что в этом случае перемещение и пройденный путь – одно и тоже число.

Рассмотрим малый промежуток времени Δt . Из определения средней скорости V cp = ΔS/Δt можно найти пройденный путь ΔS = V cp Δt. На рисунке видно, что путь ΔS численно равен площади прямоугольника с шириной Δt и высотой V cp . Если промежуток времени Δt выбрать достаточно малым, средняя скорость на интервале Δt совпадет с мгновенной скоростью в средней точке. ΔS ≈ VΔt . Это соотношение тем точнее, чем меньше Δt . Разбивая полное время движения на такие малые интервалы и учитывая, что полный путь S складывается из путей, пройденных за эти интервалы, можно убедиться, что на графике скорости он численно равен площади трапеции:

S= ½·(V 0 + V)t ,

подставляя (1.5), получим для равноускоренного движения:

S = V 0 t + (at 2 /2) (1.6)

Для равнозамедленного движения перемещение L вычисляется так:

L= V 0 t–(at 2 /2).

Разберем задачу 1.3.

Пусть график скорости имеет вид, изображенный на рис. 1.2.4. Нарисуйте качественно синхронные графики пути и ускорения от времени.

Студент: – Мне не приходилось встречаться с понятием «синхронные графики», я также не очень представляю, что значит «нарисовать качественно».

– Синхронные графики имеют одинаковые масштабы по оси абсцисс, на которой отложено время. Расположены графики один под другим. Удобны синхронные графики для сопоставления сразу нескольких параметров в один момент времени. В этой задаче мы будем изображать движение качественно, т. е. без учета конкретных числовых значений. Для нас вполне достаточно установить: убывает функция или возрастает, какой вид она имеет, есть ли у нее разрывы или изломы и т. д. Думаю, для начала нам следует рассуждать вместе.


Разделим все время движения на три промежутка ОВ , BD , DE . Скажите, какой характер носит движение на каждом из них и по какой формуле будем вычислять пройденный путь?

Студент: – На участке ОВ тело двигалось равноускоренно с нулевой начальной скоростью, поэтому формула для пути имеет вид:

S 1 (t) = at 2 /2.

Ускорение можно найти, разделив изменение скорости, т.е. длину АВ , на промежуток времени ОВ .

Студент: – На участке ВD тело движется равномерно со скоростью V 0 , приобретенной к концу участка ОВ . Формула пути – S = Vt . Ускорения нет.

S 2 (t) = at 1 2 /2 + V 0 (t– t 1).

Учитывая это пояснение, напишите формулу для пути на участке DE .

Студент: – На последнем участке движение равнозамедленное. Буду рассуждать так. До момента времени t 2 тело уже прошло расстояние S 2 = at 1 2 /2 + V(t 2 – t 1).

К нему надо добавить выражение для равнозамедленного случая, учитывая, что время отсчитывается от значения t 2 получаем пройденный путь, за время t – t 2:

S 3 =V 0 (t–t 2)–/2.

Предвижу вопрос о том, как найти ускорение a 1 . Оно равно СD/DE . В итоге получаем путь, пройденный за время t>t 2

S (t)= at 1 2 /2+V 0 (t–t 1)– /2.

Студент: – На первом участке имеем параболу с ветвями, направленными вверх. На втором – прямую, на последнем – тоже параболу, но с ветвями вниз.

– Ваш рисунок имеет неточности. График пути не имеет изломов, т. е. параболы следует плавно сопрягать с прямой. Мы уже говорили, что скорость определяется тангенсом угла наклона касательной. По Вашему чертежу получается, что в момент t 1 скорость имеет сразу два значения. Если строить касательную слева, то скорость будет численно равна tg α, а если подходить к точке справа, то скорость равна tg β. Но в нашем случае скорость – непрерывная функция. Противоречие снимается, если график построить так.

Есть еще одно полезное соотношение между S , a, V и V 0 . Будем предполагать, что движение происходит в одну сторону. В этом случае перемещение тела от начальной точки совпадает с пройденным путём. Используя (1.5), выразите время t и исключите его из равенства (1.6). Так Вы получите эту формулу.

Студент: V(t) = V 0 + at , значит,

t = (V– V 0)/a,

S = V 0 t + at 2 /2 = V 0 (V– V 0)/a + a[(V– V 0)/a] 2 = .

Окончательно имеем:

S = . (1.6а)

История .

Однажды во время обучения в Геттингене Нильс Бор плохо подготовился к коллоквиуму, и его выступление оказалось слабым. Бор, однако, не пал духом и в заключение с улыбкой сказал:

– Я выслушал здесь столько плохих выступлений, что прошу рассматривать моё как месть.

Самое важное для нас - это уметь вычислять перемещение тела, потому что, зная перемещение, можно найти и координаты тела, а это и есть главная задача механики. Как же вычислить перемещение при равноускоренном движении?

Формулу для определения перемещения проще всего получить, если воспользоваться графическим методом.

В § 9 мы видели, что при прямолинейном равномерном движении перемещение тела численно равно площади фигуры (прямоугольника), расположенной под графиком скорости. Верно ли это для равноускоренного движения?

При равноускоренном движении тела, происходящем вдоль координатной оси X, скорость с течением времени не остается постоянной, а меняется со временем согласно формулам:

Поэтому графики скорости имеют вид, показанный на рисунке 40. Прямая 1 на этом рисунке соответствует движению с «положительным» ускорением (скорость растет), прямая 2 - движению с «отрицательным» ускорением (скорость убывает). Оба графика относятся к случаю, когда в момент времени тело имело скорость

Выделим на графике скорости равноускоренного движения маленький участок (рис. 41) и опустим из точек а и перпендикуляры на ось Длина отрезка на оси численно равна тому малому промежутку времени, за который скорость изменилась от ее значения в точке а до ее значения в точке Под участком графика получилась узкая полоска

Нели промежуток времени, численно равный отрезку достаточно мал, то в течение этого времени изменение скорости тоже мало. Движение в течение этого промежутка времени можно считать равномерным, и полоска будет тогда мало отличаться от прямоугольника. Площадь полоски поэтому численно равна перемещению тела за время, соответствующее отрезку

Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время численно равно площади трапеции Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований трапеции численно равна длина другого - V. Высота же ее численно равна Отсюда следует, что перемещение равно:

Подставим в эту формулу вместо выражение (1а), тогда

Разделив почленно числитель на знаменатель, получим:

Подставив в формулу (2) выражение (16), получим (см. рис. 42):

Формулу (2а) применяют в том случае, когда вектор ускорения направлен так же, как и ось координат, а формулу (26) тогда, когда направление вектора ускорения противоположно направлению этой оси.

Если начальная скорость равна нулю (рис. 43) и вектор ускорения направлен по оси координат, то из формулы (2а) следует, что

Если же направление вектора ускорения противоположно направлению оси координат, то из формулы (26) следует, что

(знак «-» здесь означает, что вектор перемещения, так же как и вектор ускорения, направлен противоположно выбранной оси координат).

Напомним, что в формулах (2а) и (26) величины и могут быть как положительными, так и отрицательными - это проекции векторов и

Теперь, когда мы получили формулы для вычисления перемещения, нам легко получить и формулу для вычисления координаты тела. Мы видели (см. § 8), что, для того чтобы найти координату тела в какой-то момент времени надо к начальной координате прибавить проекцию вектора перемещения тела на ось координат:

(За) если вектор ускорения направлен так же, как и ось координат, и

если направление вектора ускорения противоположно направлению оси координат.

Это и есть формулы, позволяющие находить положение тела в любой момент времени при прямолинейном равноускоренном движении. Для этого нужно знать начальную координату тела его начальную скорость и ускорение а.

Задача 1. Водитель автомобиля, движущегося со скоростью 72 км/ч, увидел красный сигнал светофора и нажал на тормоз. После этого автомобиль начал тормозить, двигаясь с ускорением

Какое расстояние пройдет автомобиль за время сек после начала торможения? Какое расстояние пройдет автомобиль до полной остановки?

Решение. За начало координат выберем ту точку дороги, в которой автомобиль начал тормозить. Координатную ось направим по направлению движения автомобиля (рис. 44), а начало отсчета времени отнесем к моменту, в который водитель нажал на тормоз. Скорость автомобиля направлена так же, как ось X, а ускорение автомобиля противоположно направлению этой оси. Поэтому проекция скорости на ось X положительна, а проекция ускорения отрицательна и координату автомобиля нужно находить по формуле (36):

Подставляя в эту формулу значения

Теперь найдем, какое расстояние пройдет автомобиль до полной остановки. Для этого нам нужно знать время движения . Его можно узнать, воспользовавшись формулой

Так как в тот момент, когда автомобиль останавливается, его скорость равна нулю, то

Расстояние, которое пройдет автомобиль до полной остановки, равно координате автомобиля в момент времени

Задача 2. Определите перемещение тела, график скорости которого показан на рисунке 45. Ускорение тела равно а.

Решение. Так как сначала модуль скорости тела уменьшается со временем, то вектор ускорения направлен противоположно направлению . Для вычисления перемещения мы можем воспользоваться формулой

Из графика видно, что и время движения поэтому:

Полученный ответ показывает, что график, изображенный на рисунке 45, соответствует движению тела сначала в одном направлении, а затем на такое же расстояние в противоположном направлении, в результате чего тело оказывается в исходной точке. Подобный график может, например, относиться к движению тела, брошенного вертикально вверх.

Задача 3. Тело движется вдоль прямой равноускоренно с ускорением а. Найдите разность расстояний, проходимых телом за два следующих один за другим одинаковых промежутка времени т.

Решение. Примем прямую, вдоль которой движется тело, за ось X. Если в точке А (рис. 46) скорость тела была равна то его перемещение за время равно:

В точке В тело имело скорость и его перемещение за следующий промежуток времени равно:

2. На рисунке 47 изображены графики скорости движения трех тел? Каков характер движения этих тел? Что можно сказать о скоростях движения тел в моменты времени, соответствующие точкам А и В? Определите ускорения и напишите уравнения движений (формулы для скорости и перемещения) этих тел.

3. Пользуясь приведенными на рисунке 48 графиками скоростей трех тел, выполните следующие задания: а) Определите ускорения этих тел; б) составьте для

каждого тела формулу зависимости скорости от времени: в) в чем сходны и чем различаются движения, соответствующие графикам 2 и 3?

4. На рисунке 49 показаны графики скорости движения трех тел. По этим графикам: а) определите, чему соответствуют отрезки ОА, ОВ и ОС на осях координат; 6) найдите ускорения, с которыми движутся тела: в) напишите уравнения движения для каждого тела.

5. Самолет при взлете проходит взлетную полосу за 15 сек и в момент отрыва от зедлли имеет скорость 100 м/сек. С каким ускорением двигался самолет и какова длина взлетной полосы?

6. Автомобиль остановился у светофора. После того как загорелся зеленый сигнал, он начинает двигаться с ускорением и движется гак до тех пор, пока скорость его не станет равной 16 м/сек, после чего он продолжает движение с постоянной скоростью. На каком расстоянии от светофора окажется автомобиль через 15 сек после появления зеленого сигнала?

7. Снаряд, скорость которого равна 1 000 м/сек, пробивает стену блиндажа за и после этого имеет скорость 200 м/сек. Считая движение снаряда в толще стены равноускоренным, найдите толщину стены.

8. Ракета движется с ускорением и к некоторому моменту времени достигает скорости в 900 м/сек. Какой путь она пройдет в следующие

9. На каком расстоянии от Земли оказался бы космический корабль через 30 мин после старта, если бы он все время двигался прямолинейно с ускорением

Прямолинейное равномерное движение - это такое движение, при котором за одинаковые промежутки времени, тело проходит одинаковое расстояние.

Равномерное движение - это такое движение тела, при котором его скорость остается постоянной (),то есть все время движется с одной скоростью, а ускорение или замедление не происходит ().

Прямолинейное движение - это движение тела по прямой линии, то есть траектория у нас получается - прямая.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор скорости совпадает с вектором перемещения. При всем этом средняя скорость в любой промежуток времени равна начальной и мгновенной скорости:

Скорость равномерного прямолинейного движения - это физическая векторная величина, равная отношению перемещения тела за любой промежуток времен к значению этого промежутка t:

Из данной формулы. мы легко можем выразить перемещение тела при равномерном движении:

Рассмотрим зависимость скорости и перемещения от времени

Так как тело у нас движется прямолинейно и равноускоренно (), то график с зависимостью скорости от времени будет выгладить, как параллельная прямая оси времени.

В зависимости проекции скорости тела от времени ничего сложного нет. Проекция перемещения тела численно равна площади прямоугольника АОВС, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

На графике мы видим зависимость перемещения от времени .

Из графика видно, что проекция скорости равна:

Рассмотрев эту формулу. мы можем сказать, чем больше угол, тем быстрей движется наше тело и оно проходит больший путь за меньшее время

Страница 8 из 12

§ 7. Перемещение при равноускоренном
прямолинейном движении

1. Используя график зависимости скорости от времени, можно получить формулу перемещения тела при равномерном прямолинейном движении.

На рисунке 30 приведен график зависимости проекции скорости равномерного движения на ось X от времени. Если восставить перпендикуляр к оси времени в некоторой точке C , то получим прямоугольник OABC . Площадь этого прямоугольника равна произведению сторон OA и OC . Но длина стороны OA равна v x , а длина стороны OC - t , отсюда S = v x t . Произведение проекции скорости на ось X и времени равно проекции перемещения, т. е. s x = v x t .

Таким образом, проекция перемещения при равномерном прямолинейном движении численно равна площади прямоугольника, ограниченного осями координат, графиком скорости и перпендикуляром, восставленным к оси времени.

2. Получим аналогичным образом формулу проекции перемещения при прямолинейном равноускоренном движении. Для этого воспользуемся графиком зависимости проекции скорости на ось X от времени (рис. 31). Выделим на графике малый участок ab и опустим перпендикуляры из точек a и b на ось времени. Если промежуток времени Dt , соответствующий участку cd на оси времени, мал, то можно считать, что скорость в течение этого промежутка времени не изменяется и тело движется равномерно. В этом случае фигура cabd мало отличается от прямоугольника и ее площадь численно равна проекции перемещения тела за время, соответствующее отрезку cd .

На такие полоски можно разбить всю фигуру OABC , и ее площадь будет равна сумме площадей всех полосок. Следовательно, проекция перемещения тела за время t численно равна площади трапеции OABC . Из курса геометрии вы знаете, что площадь трапеции равна произведению полусуммы ее оснований и высоты:S = (OA + BC )OC .

Как видно из рисунка 31, OA = v 0x , BC = v x , OC = t . Отсюда следует, что проекция перемещения выражается формулой: s x = (v x + v 0x )t .

При равноускоренном прямолинейном движении скорость тела в любой момент времени равна v x = v 0x + a x t , следовательно,s x = (2v 0x + a x t )t .

Отсюда:

Чтобы получить уравнение движения тела, подставим в формулу проекции перемещения ее выражение через разность координат s x = x x 0 .

Получим: x x 0 = v 0x t + , или

x = x 0 + v 0x t + .

По уравнению движения можно определить координату тела в любой момент времени, если известны начальная координата, начальная скорость и ускорение тела.

3. На практике часто встречаются задачи, в которых нужно найти перемещение тела при равноускоренном прямолинейном движении, но время движения при этом неизвестно. В этих случаях используют другую формулу проекции перемещения. Получим ее.

Из формулы проекции скорости равноускоренного прямолинейного движения v x = v 0x + a x t выразим время:

t = .

Подставив это выражение в формулу проекции перемещения, получим:

s x = v 0x + .

Отсюда:

s x = , или
–= 2a x s x .

Если начальная скорость тела равно нулю, то:

2a x s x .

4. Пример решения задачи

Лыжник съезжает со склона горы из состояния покоя с ускорением 0,5 м/с 2 за 20 с и дальше движется по горизонтальному участку, проехав до остановки 40 м. С каким ускорением двигался лыжник по горизонтальной поверхности? Какова длина склона горы?

Дано :

Решение

v 01 = 0

a 1 = 0,5 м/с 2

t 1 = 20 с

s 2 = 40 м

v 2 = 0

Движение лыжника состоит из двух этапов: на первом этапе, спускаясь со склона горы, лыжник движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается. Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапус индексом 2.

a 2?

s 1?

Систему отсчета свяжем с Землей, ось X направим по направлению скорости лыжника на каждом этапе его движения (рис. 32).

Запишем уравнение для скорости лыжника в конце спуска с горы:

v 1 = v 01 + a 1 t 1 .

В проекциях на ось X получим: v 1x = a 1x t . Поскольку проекции скоростии ускорения на ось X положительны, модуль скорости лыжника равен: v 1 = a 1 t 1 .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения лыжника на втором этапе движения:

–= 2a 2x s 2x .

Учитывая, что начальная скорость лыжника на этом этапе движения равна его конечной скорости на первом этапе

v 02 = v 1 , v 2x = 0 получим

– = –2a 2 s 2 ; (a 1 t 1) 2 = 2a 2 s 2 .

Отсюда a 2 = ;

a 2 == 0,125 м/с 2 .

Модуль перемещения лыжника на первом этапе движения равен длине склона горы. Запишем уравнение для перемещения:

s 1x = v 01x t + .

Отсюда длина склона горы равна s 1 = ;

s 1 == 100 м.

Ответ: a 2 = 0,125 м/с 2 ; s 1 = 100 м.

Вопросы для самопроверки

1. Как по графику зависимости проекции скорости равномерного прямолинейного движения на ось X

2. Как по графику зависимости проекции скорости равноускоренного прямолинейного движения на ось X от времени определить проекцию перемещения тела?

3. По какой формуле рассчитывается проекция перемещения тела при равноускоренном прямолинейном движении?

4. По какой формуле рассчитывается проекция перемещения тела, движущегося равноускоренно и прямолинейно, если начальная скорость тела равна нулю?

Задание 7

1. Чему равен модуль перемещения автомобиля за 2 мин, если за это время его скорость изменилась от 0 до 72 км/ч? Какова координата автомобиля в момент времени t = 2 мин? Начальную координату считать равной нулю.

2. Поезд движется с начальной скоростью 36 км/ч и ускорением0,5 м/с 2 . Чему равны перемещение поезда за 20 с и его координата в момент времени t = 20 с, если начальная координата поезда 20 м?

3. Каково перемещение велосипедиста за 5 с после начала торможения, если его начальная скорость при торможении равна 10 м/с,а ускорение составляет 1,2 м/с 2 ? Чему равна координата велосипедиста в момент времени t = 5 с, если в начальный момент времени он находился в начале координат?

4. Автомобиль, движущийся со скоростью 54 км/ч, останавливается при торможении в течение 15 с. Чему равен модуль перемещения автомобиля при торможении?

5. Два автомобиля движутся навстречу друг другу из двух населенных пунктов, находящихся на расстоянии 2 км друг от друга. Начальная скорость одного автомобиля 10 м/с и ускорение 0,2 м/с 2 , начальная скорость другого - 15 м/с и ускорение 0,2 м/с 2 . Определите время и координату места встречи автомобилей.

Лабораторная работа № 1

Исследование равноускоренного
прямолинейного движения

Цель работы:

научиться измерять ускорение при равноускоренном прямолинейном движении; экспериментально установить отношение путей, проходимых телом при равноускоренном прямолинейном движении за последовательные равные промежутки времени.

Приборы и материалы:

желоб, штатив, металлический шарик, секундомер, измерительная лента, цилиндр металлический.

Порядок выполнения работы

1. Укрепите в лапке штатива один конец желоба так, чтобы он составлял небольшой угол с поверхностью стола.У другого конца желоба положите в него цилиндр металлический.

2. Измерьте пути, проходимые шариком за 3 последовательных промежутка времени, равных 1 с каждый. Это можно сделать по‑разному. Можно поставить мелом на желобе метки, фиксирующие положения шарика в моменты времени, равные 1 с, 2 с, 3 с, и измерить расстояния s_ между этими метками. Можно, отпуская каждый раз шарик с одной и той же высоты, измерить путь s , пройденный им сначала за 1 с, затем за 2 с и за 3 с, а затем рассчитать путь, пройденный шариком за вторую и третью секунды. Результаты измерений запишите в таблицу 1.

3. Найдите отношения пути, пройденного за вторую секунду, к пути, пройденному за первую секунду, и пути, пройденного за третью секунду, к пути, пройденному за первую секунду. Сделайте вывод.

4. Измерьте время движения шарика по желобу и пройденныйим путь. Вычислите ускорение его движения, используя формулуs = .

5. Используя экспериментально полученное значение ускорения, вычислите пути, которые должен пройти шарик за первую, вторую и третью секунды своего движения. Сделайте вывод.

Таблица 1

№ опыта

Экспериментальные данные

Теоретические результаты

Время t, с

Путь s, см

Время t, с

Путь

s, см

Ускорение a, см/с2

Время t , с

Путь s, см

1

1

1