Действия с матрицами. Решение матриц


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Определение. Матрицей называется множество чисел, которое составляет прямоугольную таблицу, состоящее изmстрок иnстолбцов

коротко матрицу обозначают так:

где элементы данной матрицы,i– номер строки,j– номер столбца.

Если в матрице число строк равно числу столбцов (m = n ), то матрица называетсяквадратной n -го порядка, а в противном случае –прямоугольной.

Если m = 1 и n > 1, то получаем однострочную матрицу

которая называется вектор-строкой , если, жеm >1 иn =1, то получаем одностолбцовую матрицу

которая называется вектор-столбцом .

Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называется диагональной.

Диагональная матрица, у которой элементы главной диагонали равны единице, называется единично, обозначаетсяE .

Матрица, полученная из данной заменой ее строки столбцом с тем же номером, называется транспонированной к данной. Обозначается.

Две матрицы иравны, если равны между собой элементы, стоящие на одинаковых местах, то есть если

при всех i иj (при этом число строк (столбцов) матрицA иB должно быть одинаковым).

1°. Суммой двух матрицA =(a ij ) иB =(b ij ) с одинаковым количествомm строк иn столбцов называется матрицаC =(c ij ), элементы которой определяются равенством

Сумму матриц обозначают C =A +B .

Пример.

2 0 . Произведением матрицыA =(a ij ) на числоλ называется матрица, у которой каждый элемент равен произведению соответствующего элемента матрицыA на числоλ :

λA =λ (a ij )=(λa ij ), (i =1,2…,m ; j =1,2…,n).

Пример.

3 0 . Произведением матрицыA =(a ij ), имеющейm строк иk столбцов, на матрицуB =(b ij ), имеющейk строк иn столбцов, называется матрицаC =(c ij ), имеющаяm строк иn столбцов, у которой элементc ij равен сумме произведений элементовi -ой строки матрицыA иj -го столбца матрицыB , то есть

При этом число столбцов матрицы A должно быть равно числу строк матрицыB . В противном случае произведение не определено. Произведение матриц обозначается A*B =C.

Пример.

Для произведения матриц не выполняется равенство между матрицами A * B иB * A , в общем случае одна из них может быть не определена.

Умножение квадратной матрицы любого порядка на соответствующую единичную матрицу не меняет матрицу.

Пример. Пусть,, тогда согласно правилу умножения матриц имеем

,

откуда заключаем, что

Определители и их свойства.

Пусть дана квадратная матрица третьего порядка:

Определение. Определителем третьего порядка, соответствующим матрице (1), называется число, обозначаемое символом

и определяемое равенством

Чтобы запомнить, какие произведения в правой части равенства (2) берутся со знаком "+", а какие со знаком "-", полезно использовать следующее правило треугольников.

Пример.

Сформулируем основные свойства для определителей третьего порядка, хотя они присущи определителям любого порядка.

1. Величина определителя не изменится, если его строки и столбцы поменять местами, т. е.

2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1.

3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.

4. Умножение всех элементов одного столбца или одной строки определителя на любое числоλ равносильно умножению определителя на это числоλ .

5. Если все элементы некоторого столбца или некоторой строки определителя равны нулю, то и сам определитель равен нулю.

6. Если элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.

7. Если каждый элементn -го столбца (n -ой строки) определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один вn -ом столбце (n -ой строке) содержит первые из упомянутых слагаемых, а другой - вторые; элементы, стоящие на остальных местах, у всех трех определителей одни и те же.

Например,

8 0 . Если к элементам некоторого столбца (строки) определителя прибавить соответствующие элементы другого столбца (строки), умноженные на любой общий множитель, то величина определителя не изменится.

Например,

Минором некоторого элемента определителя называется определитель, получаемый из данного определителя вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.

Например, минором элемента а 1 определителяΔ является определитель 2-го порядка

Алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на (-1) p , гдер - сумма номеров строки и столбца, на пересечении которых расположен этот элемент.

Если, например, элемент а 2 находятся на пересечении 1-го столбца и 2-ой строки, то для негор =1+2=3 и алгебраическим дополнением является

9 0 . Определитель равен сумме произведений элементов какого–либо столбца или строки на их алгебраические дополнения.

10 0 . Сумма произведений элементов какого–либо столбца или какой–либо строки определителя на алгебраические дополнения соответствующих элементов другого столбца или другой строки равны нулю.

Возникает вопрос, можно ли для квадратной матрицы А подобрать некоторую матрицу, такую что умножив на нее матрицу А в результате получить единичную матрицу Е , такую матрицу называют обратной к матрице А.

Определение. Матрицаназывается обратной квадратной матрицеA, если.

Определение. Квадратная матрица называется невырожденной, если ее определитель отличен от нуля. В противном случае квадратная матрица называется вырожденной.

Всякая невырожденная матрица имеет обратную.

Элементарными преобразованиями матриц являются:

    перестановка местами двух параллельных рядов матрицы;

    умножение всех элементов матрицы на число, отличное от нуля;

    прибавление ко всем элементами ряда матрицы соответствующих элементов параллельного ряда, умноженных на одно и то же число.

Матрица В , полученная из матрицыА с помощью элементарных преобразований, называетсяэквивалентной матрицей.

Для невырожденной квадратной матрицы

третьего порядка обратная матрица А -1 может быть вычислена по следующей формуле

здесь Δ - определитель матрицы А ,A ij – алгебраические дополнения элементовa ij матрицыА.

Элемент строки матрицы называется крайним , если он отличен от нуля, а все элементы строки, находящиеся левее него, равны нулю. Матрица называетсяступенчатой , если крайний элемент каждой строки находится правее крайнего элемента предыдущей строки. Например:

Не ступенчатая; - ступенчатая.

Сложение матриц:

Вычитание и сложение матриц сводится к соответствующим операциям над их элементами. Операция сложения матриц вводится только для матриц одинакового размера, т. е. для матриц , у которых число строк и столбцов соответственно равно. Суммой матриц А и В, называется матрица С, элементы которой равны сумме соответствующих элементов. С = А + В c ij = a ij + b ij Аналогично определяется разность матриц .

Умножение матрицы на число:

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число. Произведением матрицы А на число k называется матрица В, такая что

b ij = k × a ij . В = k × A b ij = k × a ij . Матрица - А = (-1) × А называется противоположной матрице А.

Свойства сложения матриц и умножения матрицы на число:

Операции сложения матриц и умножения матрицы на число обладают следующими свойствами: 1. А + В = В + А; 2. А + (В + С) = (А + В) + С; 3. А + 0 = А; 4. А - А = 0; 5. 1 × А = А; 6. α × (А + В) = αА + αВ; 7. (α + β) × А = αА + βА; 8. α × (βА) = (αβ) × А; , где А, В и С - матрицы, α и β - числа.

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы . Произведением матрицы А m×n на матрицу В n×p , называется матрица С m×p такая, что с ik = a i1 × b 1k + a i2 × b 2k + ... + a in × b nk , т. е. находиться сумма произведений элементов i - ой строки матрицы А на соответствующие элементы j - ого столбца матрицы В. Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что А × Е = Е × А = А, где А квадратная матрица , Е - единичная матрица того же размера.

Свойства умножения матриц:

Умножение матриц не коммутативно, т.е. АВ ≠ ВА даже если определены оба произведения. Однако, если для каких - либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица , которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка. А × Е = Е × А = А

Умножение матриц обладает следующими свойствами: 1. А × (В × С) = (А × В) × С; 2. А × (В + С) = АВ + АС; 3. (А + В) × С = АС + ВС; 4. α × (АВ) = (αА) × В; 5. А × 0 = 0; 0 × А = 0; 6. (АВ) Т = В Т А Т; 7. (АВС) Т = С Т В Т А Т; 8. (А + В) Т = А Т + В Т;

2. Определители 2-го и 3-го порядков. Свойства определителей.

Определителем матрицы второго порядка, или определителем второго порядка, называется число, которое вычисляется по формуле:

Определителем матрицы третьего порядка, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы . Каждое слагаемое состоит из произведения трех сомножителей.

Знаки, с которыми члены определителя матрицы входят в формулу нахождения определителя матрицы третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из левого рисунка, а последующие три слагаемые берутся со знаком минус и определяются из правого рисунка.

Определить количество слагаемых, для нахождения определителя матрицы , в алгебраической сумме, можно вычислив факториал: 2! = 1 × 2 = 2 3! = 1 × 2 × 3 = 6

Свойства определителей матриц

Свойства определителей матриц:

Свойство № 1:

Определитель матрицы не изменится, если его строки заменить столбцами, причем каждую строку столбцом с тем же номером, и наоборот (Транспонирование). |А| = |А| Т

Следствие:

Столбцы и строки определителя матрицы равноправны, следовательно, свойства присущие строкам выполняются и для столбцов.

Свойство № 2:

При перестановке 2-х строк или столбцов определитель матрицы изменит знак на противоположный, сохраняя абсолютную величину, т.е.:

Свойство № 3:

Определитель матрицы , имеющий два одинаковых ряда, равен нулю.

Свойство № 4:

Общий множитель элементов какого-либо ряда определителя матрицы можно вынести за знак определителя .

Следствия из свойств № 3 и № 4:

Если все элементы некоторого ряда (строки или столбца) пропорциональны соответствующим элементам параллельного ряда, то такой определитель матрицы равен нулю.

Свойство № 5:

определителя матрицы равны нулю, то сам определитель матрицы равен нулю.

Свойство № 6:

Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель матрицы можно представить в виде суммы 2-х определителей по формуле:

Свойство № 7:

Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель матрицы не изменит своей величины.

Пример применения свойств для вычисления определителя матрицы :

Сложение матриц $ A $ и $ B $ это арифметическая операция, в результате которой, должна получаться матрица $ C $, каждый элемент которой равен сумме соответствующих элементов складываемых матриц:

$$ c_{ij} = a_{ij} + b_{ij} $$

Более подробно формула сложения двух матриц выглядит так:

$$ A + B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = $$

$$ = \begin{pmatrix} a_{11} + b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \end{pmatrix} = C $$

Обратите внимание, что складывать и вычитать матрицы можно только одинаковой размерности. При сумме или разности будет получаться матрица $ C $ такой же размерности как и слагаемые (вычитаемые) матрицы $ A $ и $ B $. Если матрицы $ A $ и $ B $ отличаются друг от друга размерами, то сложение (вычитание) таких матриц будет ошибкой!

В формуле складываются матрицы 3 на 3, значит и получиться должна матрица 3 на 3.

Вычитание матриц полностью аналогично по алгоритму сложения, только знак минус. Каждый элемент искомой матрицы $ C $ получается благодаря вычитанию соответствующих элементов матриц $ A $ и $ B $:

$$ c_{ij} = a_{ij} - b_{ij} $$

Запишем подробную формулу вычитания двух матриц:

$$ A - B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} - \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = $$

$$ = \begin{pmatrix} a_{11} - b_{11} & a_{12}-b_{12} & a_{13}-b_{13} \\ a_{21}-b_{21} & a_{22}-b_{22} & a_{23}-b_{23} \\ a_{31}-b_{31} & a_{32}-b_{32} & a_{33}-b_{33} \end{pmatrix} = C $$

Стоит так же заметить, что нельзя складывать и вычитать матрицы с обычными числами, а так же с другими какими-то элементами

Будет полезно знать для дальнейших решений задач с матрицами знать свойства сложения (вычитания).

Свойства

  1. Если матрицы $ A,B,C $ одинаковые по размеру, тогда для них действует свойство ассоциативности: $$ A + (B + C) = (A + B) + C $$
  2. Для каждой матрицы существует нулевая матрица, обозначаемая $ O $, при сложении (вычитании) с которой исходная матрица не изменяется: $$ A \pm O = A $$
  3. Для каждой ненулевой матрицы $ A $ есть противоположная матрица $ (-A) $ сумма с которой обращается в нуль: $$ A + (-A) = 0 $$
  4. При сложении (вычитании) матриц допустимо свойство коммутативности, то есть матрицы $ A $ и $ B $ можно менять местами: $$ A + B = B + A $$ $$ A - B = B - A $$

Примеры решений

Пример 1

Даны матрицы $ A = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} $ и $ B = \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} $.

Выполнить сложение матриц, а затем вычитание.

Решение

Первым делом проверяем матрицы на размерность. У матрицы $ A $ размерность $ 2 \times 2 $, у второй матрицы $ B $ размерность тоже $ 2 \times 2 $. Это значит, что с данными матрицами можно провести совместную операцию по сложению и вычитанию.

Напомним, что для суммы нужно выполнить попарное сложение соответствующих элементов матриц $ A \text{ и } B $.

$$ A + B = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} + \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} = $$

$$ = \begin{pmatrix} 2 + 1 & 3 + (-3) \\ -1 + 2 & 4 + 5 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 1 & 9 \end{pmatrix} $$

Аналогично сумме находим разность матриц с помощью замены знака "плюс" на "минус":

$$ A - B = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} + \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} = $$

$$ = \begin{pmatrix} 2 - 1 & 3 - (-3) \\ -1 - 2 & 4 - 5 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ -3 & -1 \end{pmatrix} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ A + B = \begin{pmatrix} 3 & 0 \\ 1 & 9 \end{pmatrix}; A - B = \begin{pmatrix} 1 & 6 \\ -3 & -1 \end{pmatrix} $$

В статье: "Сложение и вычитание матриц" были даны определения, правила, замечания, свойства операций и практические примеры решения.

Итак, в предыдущем уроке мы разобрали правила сложения и вычитания матриц. Это настолько простые операции, что большинство студентов понимают их буквально с ходу.

Однако вы рано радуетесь. Халява закончилась — переходим к умножению. Сразу предупрежу: умножить две матрицы — это вовсе не перемножить числа, стоящие в клеточках с одинаковыми координатами, как бы вы могли подумать. Тут всё намного веселее. И начать придётся с предварительных определений.

Согласованные матрицы

Одна из важнейших характеристик матрицы — это её размер. Мы уже сто раз говорили об этом: запись $A=\left[ m\times n \right]$ означает, что в матрице ровно $m$ строк и $n$ столбцов. Как не путать строки со столбцами, мы тоже уже обсуждали. Сейчас важно другое.

Определение. Матрицы вида $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, в которых количество столбцов в первой матрице совпадает с количеством строк во второй, называются согласованными.

Ещё раз: количество столбцов в первой матрице равно количеству строк во второй! Отсюда получаем сразу два вывода:

  1. Нам важен порядок матриц. Например, матрицы $A=\left[ 3\times 2 \right]$ и $B=\left[ 2\times 5 \right]$ являются согласованными (2 столбца в первой матрице и 2 строки во второй), а вот наоборот — матрицы $B=\left[ 2\times 5 \right]$ и $A=\left[ 3\times 2 \right]$ — уже не согласованы (5 столбцов в первой матрице — это как бы не 3 строки во второй).
  2. Согласованность легко проверить, если выписать все размеры друг за другом. На примере из предыдущего пункта: «3 2 2 5» — посередине одинаковые числа, поэтому матрицы согласованы. А вот «2 5 3 2» — не согласованы, поскольку посередине разные числа.

Кроме того, капитан очевидность как бы намекает, что квадратные матрицы одинакового размера $\left[ n\times n \right]$ согласованы всегда.

В математике, когда важен порядок перечисления объектов (например, в рассмотренном выше определении важен порядок матриц), часто говорят об упорядоченных парах. Мы встречались с ними ещё в школе: думаю, и ежу понятно, что координаты $\left(1;0 \right)$ и $\left(0;1 \right)$ задают разные точки на плоскости.

Так вот: координаты — это тоже упорядоченные пары, которые составляются из чисел. Но ничто не мешает составить такую пару из матриц. Тогда можно будет сказать: «Упорядоченная пара матриц $\left(A;B \right)$ является согласованной, если количество столбцов в первой матрице совпадает с количеством строк во второй».

Ну и что с того?

Определение умножения

Рассмотрим две согласованные матрицы: $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$. И определим для них операцию умножения.

Определение. Произведение двух согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой считаются по формуле:

\[\begin{align} & {{c}_{i;j}}={{a}_{i;1}}\cdot {{b}_{1;j}}+{{a}_{i;2}}\cdot {{b}_{2;j}}+\ldots +{{a}_{i;n}}\cdot {{b}_{n;j}}= \\ & =\sum\limits_{t=1}^{n}{{{a}_{i;t}}\cdot {{b}_{t;j}}} \end{align}\]

Обозначается такое произведение стандартно: $C=A\cdot B$.

У тех, кто впервые видит это определение, сразу возникает два вопроса:

  1. Что это за лютая дичь?
  2. А почему так сложно?

Что ж, обо всём по порядку. Начнём с первого вопроса. Что означают все эти индексы? И как не ошибиться при работе с реальными матрицами?

Прежде всего заметим, что длинная строчка для расчёта ${{c}_{i;j}}$ (специально поставил точку с запятой между индексами, чтобы не запутаться, но вообще их ставить не надо — я сам задолбался набирать формулу в определении) на самом деле сводится к простому правилу:

  1. Берём $i$-ю строку в первой матрице;
  2. Берём $j$-й столбец во второй матрице;
  3. Получаем две последовательности чисел. Перемножаем элементы этих последовательностей с одинаковыми номерами, а затем складываем полученные произведения.

Данный процесс легко понять по картинке:


Схема перемножения двух матриц

Ещё раз: фиксируем строку $i$ в первой матрице, столбец $j$ во второй матрице, перемножаем элементы с одинаковыми номерами, а затем полученные произведения складываем — получаем ${{c}_{ij}}$. И так для всех $1\le i\le m$ и $1\le j\le k$. Т.е. всего будет $m\times k$ таких «извращений».

На самом деле мы уже встречались с перемножением матриц в школьной программе, только в сильно урезанном виде. Пусть даны вектора:

\[\begin{align} & \vec{a}=\left({{x}_{a}};{{y}_{a}};{{z}_{a}} \right); \\ & \overrightarrow{b}=\left({{x}_{b}};{{y}_{b}};{{z}_{b}} \right). \\ \end{align}\]

Тогда их скалярным произведением будет именно сумма попарных произведений:

\[\overrightarrow{a}\times \overrightarrow{b}={{x}_{a}}\cdot {{x}_{b}}+{{y}_{a}}\cdot {{y}_{b}}+{{z}_{a}}\cdot {{z}_{b}}\]

По сути, в те далёкие годы, когда деревья были зеленее, а небо ярче, мы просто умножали вектор-строку $\overrightarrow{a}$ на вектор-столбец $\overrightarrow{b}$.

Сегодня ничего не поменялось. Просто теперь этих векторов-строк и столбцов стало больше.

Но хватит теории! Давайте посмотрим на реальные примеры. И начнём с самого простого случая — квадратных матриц.

Умножение квадратных матриц

Задача 1. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\]

Решение. Итак, у нас две матрицы: $A=\left[ 2\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Понятно, что они согласованы (квадратные матрицы одинакового размера всегда согласованы). Поэтому выполняем умножение:

\[\begin{align} & \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot \left(-2 \right)+2\cdot 3 & 1\cdot 4+2\cdot 1 \\ -3\cdot \left(-2 \right)+4\cdot 3 & -3\cdot 4+4\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 4 & 6 \\ 18 & -8 \\\end{array} \right]. \end{align}\]

Вот и всё!

Ответ: $\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]$.

Задача 2. Выполните умножение:

\[\left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}}9 & 6 \\ -3 & -2 \\\end{array} \right]\]

Решение. Опять согласованные матрицы, поэтому выполняем действия:\[\]

\[\begin{align} & \left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} 9 & 6 \\ -3 & -2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot 9+3\cdot \left(-3 \right) & 1\cdot 6+3\cdot \left(-2 \right) \\ 2\cdot 9+6\cdot \left(-3 \right) & 2\cdot 6+6\cdot \left(-2 \right) \\\end{array} \right]= \\ & =\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]. \end{align}\]

Как видим, получилась матрица, заполненная нулями

Ответ: $\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]$.

Из приведённых примеров очевидно, что умножение матриц — не такая уж и сложная операция. По крайней мере для квадратных матриц размера 2 на 2.

В процессе вычислений мы составили промежуточную матрицу, где прямо расписали, какие числа входят в ту или иную ячейку. Именно так и следует делать при решении настоящих задач.

Основные свойства матричного произведения

В двух словах. Умножение матриц:

  1. Некоммутативно: $A\cdot B\ne B\cdot A$ в общем случае. Бывают, конечно, особые матрицы, для которых равенство $A\cdot B=B\cdot A$ (например, если $B=E$ — единичной матрице), но в абсолютном большинстве случаев это не работает;
  2. Ассоциативно: $\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)$. Тут без вариантов: стоящие рядом матрицы можно перемножать, не переживая за то, что стоит левее и правее этих двух матриц.
  3. Дистрибутивно: $A\cdot \left(B+C \right)=A\cdot B+A\cdot C$ и $\left(A+B \right)\cdot C=A\cdot C+B\cdot C$ (в силу некоммутативности произведения приходится отдельно прописывать дистрибутивность справа и слева.

А теперь — всё то же самое, но более подробно.

Умножение матриц во многом напоминает классическое умножение чисел. Но есть отличия, важнейшее из которых состоит в том, что умножение матриц, вообще говоря, некоммутативно .

Рассмотрим ещё раз матрицы из задачи 1. Прямое их произведение мы уже знаем:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]\]

Но если поменять матрицы местами, то получим совсем другой результат:

\[\left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]=\left[ \begin{matrix} -14 & 4 \\ 0 & 10 \\\end{matrix} \right]\]

Получается, что $A\cdot B\ne B\cdot A$. Кроме того, операция умножения определена только для согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, но никто не гарантировал, что они останутся согласованными, если их поменять местами. Например, матрицы $\left[ 2\times 3 \right]$ и $\left[ 3\times 5 \right]$ вполне себе согласованы в указанном порядке, но те же матрицы $\left[ 3\times 5 \right]$ и $\left[ 2\times 3 \right]$, записанные в обратном порядке, уже не согласованы. Печаль.:(

Среди квадратных матриц заданного размера $n$ всегда найдутся такие, которые дают одинаковый результат как при перемножении в прямом, так и в обратном порядке. Как описать все подобные матрицы (и сколько их вообще) — тема для отдельного урока. Сегодня не будем об этом.:)

Тем не менее, умножение матриц ассоциативно:

\[\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)\]

Следовательно, когда вам надо перемножить сразу несколько матриц подряд, совсем необязательно делать это напролом: вполне возможно, что некоторые рядом стоящие матрицы при перемножении дают интересный результат. Например, нулевую матрицу, как в Задаче 2, рассмотренной выше.

В реальных задачах чаще всего приходится перемножать квадратные матрицы размера $\left[ n\times n \right]$. Множество всех таких матриц обозначается ${{M}^{n}}$ (т.е. записи $A=\left[ n\times n \right]$ и \ означают одно и то же), и в нём обязательно найдётся матрица $E$, которую называют единичной.

Определение. Единичная матрица размера $n$ — это такая матрица $E$, что для любой квадратной матрицы $A=\left[ n\times n \right]$ выполняется равенство:

Такая матрица всегда выглядит одинаково: на главной диагонали её стоят единицы, а во всех остальных клетках — нули.

\[\begin{align} & A\cdot \left(B+C \right)=A\cdot B+A\cdot C; \\ & \left(A+B \right)\cdot C=A\cdot C+B\cdot C. \\ \end{align}\]

Другими словами, если нужно умножить одну матрицу на сумму двух других, то можно умножить её на каждую из этих «двух других», а затем результаты сложить. На практике обычно приходится выполнять обратную операцию: замечаем одинаковую матрицу, выносим её за скобку, выполняем сложение и тем самым упрощаем себе жизнь.:)

Заметьте: для описания дистрибутивности нам пришлось прописать две формулы: где сумма стоит во втором множителе и где сумма стоит в первом. Это происходит как раз из-за того, что умножение матриц некоммутативно (и вообще, в некоммутативной алгебре куча всяких приколов, которые при работе с обычными числами даже не приходят в голову). И если, допустим, вам на экзамене нужно будет расписать это свойство, то обязательно пишите обе формулы, иначе препод может немного разозлиться.

Ладно, всё это были сказки о квадратных матрицах. А что насчёт прямоугольных?

Случай прямоугольных матриц

А ничего — всё то же самое, что и с квадратными.

Задача 3. Выполните умножение:

\[\left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]\]

Решение. Имеем две матрицы: $A=\left[ 3\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Выпишем числа, обозначающие размеры, в ряд:

Как видим, центральные два числа совпадают. Значит, матрицы согласованы, и их можно перемножить. Причём на выходе мы получим матрицу $C=\left[ 3\times 2 \right]$:

\[\begin{align} & \left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 5\cdot \left(-2 \right)+4\cdot 3 & 5\cdot 5+4\cdot 4 \\ 2\cdot \left(-2 \right)+5\cdot 3 & 2\cdot 5+5\cdot 4 \\ 3\cdot \left(-2 \right)+1\cdot 3 & 3\cdot 5+1\cdot 4 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 41 \\ 11 & 30 \\ -3 & 19 \\\end{array} \right]. \end{align}\]

Всё чётко: в итоговой матрице 3 строки и 2 столбца. Вполне себе $=\left[ 3\times 2 \right]$.

Ответ: $\left[ \begin{array}{*{35}{r}} \begin{array}{*{35}{r}} 2 \\ 11 \\ -3 \\\end{array} & \begin{matrix} 41 \\ 30 \\ 19 \\\end{matrix} \\\end{array} \right]$.

Сейчас рассмотрим одно из лучших тренировочных заданий для тех, кто только начинает работать с матрицами. В нём нужно не просто перемножить какие-то две таблички, а сначала определить: допустимо ли такое умножение?

Задача 4. Найдите все возможные попарные произведения матриц:

\\]; $B=\left[ \begin{matrix} \begin{matrix} 0 \\ 2 \\ 0 \\ 4 \\\end{matrix} & \begin{matrix} 1 \\ 0 \\ 3 \\ 0 \\\end{matrix} \\\end{matrix} \right]$; $C=\left[ \begin{matrix}0 & 1 \\ 1 & 0 \\\end{matrix} \right]$.

Решение. Для начала запишем размеры матриц:

\;\ B=\left[ 4\times 2 \right];\ C=\left[ 2\times 2 \right]\]

Получаем, что матрицу $A$ можно согласовать лишь с матрицей $B$, поскольку количество столбцов у $A$ равно 4, а такое количество строк только у $B$. Следовательно, можем найти произведение:

\\cdot \left[ \begin{array}{*{35}{r}} 0 & 1 \\ 2 & 0 \\ 0 & 3 \\ 4 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}-10 & 7 \\ 10 & 7 \\\end{array} \right]\]

Промежуточные шаги предлагаю выполнить читателю самостоятельно. Замечу лишь, что размер результирующей матрицы лучше определять заранее, ещё до каких-либо вычислений:

\\cdot \left[ 4\times 2 \right]=\left[ 2\times 2 \right]\]

Другими словами, мы просто убираем «транзитные» коэффициенты, которые обеспечивали согласованность матриц.

Какие ещё возможны варианты? Безусловно, можно найти $B\cdot A$, поскольку $B=\left[ 4\times 2 \right]$, $A=\left[ 2\times 4 \right]$, поэтому упорядоченная пара $\left(B;A \right)$ является согласованной, а размерность произведения будет:

\\cdot \left[ 2\times 4 \right]=\left[ 4\times 4 \right]\]

Короче говоря, на выходе будет матрица $\left[ 4\times 4 \right]$, коэффициенты которой легко считаются:

\\cdot \left[ \begin{array}{*{35}{r}} 1 & -1 & 2 & -2 \\ 1 & 1 & 2 & 2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]\]

Очевидно, можно согласовать ещё $C\cdot A$ и $B\cdot C$ — и всё. Поэтому просто запишем полученные произведения:

Это было легко.:)

Ответ: $AB=\left[ \begin{array}{*{35}{r}} -10 & 7 \\ 10 & 7 \\\end{array} \right]$; $BA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]$; $CA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 1 & -1 & 2 & -2 \\\end{array} \right]$; $BC=\left[ \begin{array}{*{35}{r}}1 & 0 \\ 0 & 2 \\ 3 & 0 \\ 0 & 4 \\\end{array} \right]$.

Вообще, очень рекомендую выполнить это задание самостоятельно. И ещё одно аналогичное задание, которое есть в домашней работе. Эти простые на первый взгляд размышления помогут вам отработать все ключевые этапы умножения матриц.

Но на этом история не заканчивается. Переходим к частным случаям умножения.:)

Вектор-строки и вектор-столбцы

Одной из самых распространённых матричных операций является умножение на матрицу, в которой одна строка или один столбец.

Определение. Вектор-столбец — это матрица размера $\left[ m\times 1 \right]$, т.е. состоящая из нескольких строк и только одного столбца.

Вектор-строка — это матрица размера $\left[ 1\times n \right]$, т.е. состоящая из одной строки и нескольких столбцов.

На самом деле мы уже встречались с этими объектами. Например, обычный трёхмерный вектор из стереометрии $\overrightarrow{a}=\left(x;y;z \right)$ — это не что иное как вектор-строка. С точки зрения теории разницы между строками и столбцами почти нет. Внимательными надо быть разве что при согласовании с окружающими матрицами-множителями.

Задача 5. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]\]

Решение. Перед нами произведение согласованных матриц: $\left[ 3\times 3 \right]\cdot \left[ 3\times 1 \right]=\left[ 3\times 1 \right]$. Найдём это произведение:

\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 2\cdot 1+\left(-1 \right)\cdot 2+3\cdot \left(-1 \right) \\ 4\cdot 1+2\cdot 2+0\cdot 2 \\ -1\cdot 1+1\cdot 2+1\cdot \left(-1 \right) \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} -3 \\ 8 \\ 0 \\\end{array} \right]\]

Ответ: $\left[ \begin{array}{*{35}{r}}-3 \\ 8 \\ 0 \\\end{array} \right]$.

Задача 6. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]\]

Решение. Опять всё согласовано: $\left[ 1\times 3 \right]\cdot \left[ 3\times 3 \right]=\left[ 1\times 3 \right]$. Считаем произведение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}5 & -19 & 5 \\\end{array} \right]\]

Ответ: $\left[ \begin{matrix} 5 & -19 & 5 \\\end{matrix} \right]$.

Как видите, при умножении вектор-строки и вектор-столбца на квадратную матрицу на выходе мы всегда получаем строку или столбец того же размера. Этот факт имеет множество приложений — от решения линейных уравнений до всевозможных преобразований координат (которые в итоге тоже сводятся к системам уравнений, но давайте не будем о грустном).

Думаю, здесь всё было очевидно. Переходим к заключительной части сегодняшнего урока.

Возведение матрицы в степень

Среди всех операций умножения отдельного внимания заслуживает возведение в степень — это когда мы несколько раз умножаем один и тот же объект на самого себя. Матрицы — не исключение, их тоже можно возводить в различные степени.

Такие произведения всегда согласованы:

\\cdot \left[ n\times n \right]=\left[ n\times n \right]\]

И обозначаются точно так же, как и обычные степени:

\[\begin{align} & A\cdot A={{A}^{2}}; \\ & A\cdot A\cdot A={{A}^{3}}; \\ & \underbrace{A\cdot A\cdot \ldots \cdot A}_{n}={{A}^{n}}. \\ \end{align}\]

На первый взгляд, всё просто. Посмотрим, как это выглядит на практике:

Задача 7. Возведите матрицу в указанную степень:

${{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}$

Решение. Ну ОК, давайте возводить. Сначала возведём в квадрат:

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1\cdot 1+1\cdot 0 & 1\cdot 1+1\cdot 1 \\ 0\cdot 1+1\cdot 0 & 0\cdot 1+1\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right] \end{align}\]

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 3 \\ 0 & 1 \\\end{array} \right] \end{align}\]

Вот и всё.:)

Ответ: $\left[ \begin{matrix}1 & 3 \\ 0 & 1 \\\end{matrix} \right]$.

Задача 8. Возведите матрицу в указанную степень:

\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}\]

Решение. Вот только не надо сейчас плакать по поводу того, что «степень слишком большая», «мир не справедлив» и «преподы совсем берега потеряли». На самом деле всё легко:

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left(\left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right] \right)\cdot \left(\left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right] \right)= \\ & =\left[ \begin{matrix} 1 & 6 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right] \end{align}\]

Заметьте: во второй строчке мы использовали ассоциативность умножения. Собственно, мы использовали её и в предыдущем задании, но там это было неявно.

Ответ: $\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right]$.

Как видите, ничего сложного в возведении матрицы в степень нет. Последний пример можно обобщить:

\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{n}}=\left[ \begin{array}{*{35}{r}} 1 & n \\ 0 & 1 \\\end{array} \right]\]

Этот факт легко доказать через математическую индукцию или прямым перемножением. Однако далеко не всегда при возведении в степень можно выловить подобные закономерности. Поэтому будьте внимательны: зачастую перемножить несколько матриц «напролом» оказывается проще и быстрее, нежели искать какие-то там закономерности.

В общем, не ищите высший смысл там, где его нет. В заключение рассмотрим возведение в степень матрицы большего размера — аж $\left[ 3\times 3 \right]$.

Задача 9. Возведите матрицу в указанную степень:

\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}\]

Решение. Не будем искать закономерности. Работаем «напролом»:

\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}\cdot \left[ \begin{matrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\]

Для начала возведём эту матрицу в квадрат:

\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right] \end{align}\]

Теперь возведём в куб:

\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}=\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{array} \right] \end{align}\]

Вот и всё. Задача решена.

Ответ: $\left[ \begin{matrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{matrix} \right]$.

Как видите, объём вычислений стал больше, но смысл от этого нисколько не поменялся.:)

На этом урок можно заканчивать. В следующий раз мы рассмотрим обратную операцию: по имеющемуся произведению будем искать исходные множители.

Как вы уже, наверное, догадались, речь пойдёт об обратной матрице и методах её нахождения.