Дроби, операции с дробями. Сложные выражения с дробями. Порядок действий
В данном разделе рассматриваются действия с обыкновенными дробями. В случае, если необходимо провести математическую операцию со смешанными числами, то достаточно перевести смешанную дробь в необыкновенную, провести необходимые операции и, в случае необходимости, конечный результат снова представить в виде смешанного числа. Данная операция будет описана ниже.
Сокращение дроби
Математическая операция. Сокращение дроби
Чтобы сократить дробь \frac{m}{n} нужно найти наибольший общий делитель ее числителя и знаменателя: НОД(m,n), после чего поделить числитель и знаменатель дроби на это число. Если НОД(m,n)=1, то дробь сократить нельзя. Пример: \frac{20}{80}=\frac{20:20}{80:20}=\frac{1}{4}
Обычно сразу найти наибольший общий делитель представляется сложной задачей и на практике дробь сокращают в несколько этапов, пошагово выделяя у числителя и знаменателя очевидные общие множители. \frac{140}{315}=\frac{28\cdot5}{63\cdot5}=\frac{4\cdot7\cdot5}{9\cdot7\cdot5}=\frac{4}{9}
Приведение дробей к общему знаменателю
Математическая операция. Приведение дробей к общему знаменателю
Чтобы привести две дроби \frac{a}{b} и \frac{c}{d} к общему знаменателю нужно:
- найти наименьшее общее кратное знаменателей: M=НОК(b,d);
- умножить числитель и знаменатель первой дроби на M/b (после чего знаменатель дроби становится равным числу M);
- умножить числитель и знаменатель второй дроби на M/d (после чего знаменатель дроби становится равным числу M).
Тем самым мы преобразуем исходные дроби к дробям с одинаковыми знаменателями (которые будут равны числу M).
Например, дроби \frac{5}{6} и \frac{4}{9} имеют НОК(6,9) = 18. Тогда: \frac{5}{6}=\frac{5\cdot3}{6\cdot3}=\frac{15}{18};\quad\frac{4}{9}=\frac{4\cdot2}{9\cdot2}=\frac{8}{18} . Тем самым полученные дроби имеют общий знаменатель.
На практике нахождение наименьшего общего кратного (НОК) знаменателей является не всегда простой задачей. Поэтому в качестве общего знаменателя выбирается число, равное произведению знаменателей исходных дробей. Например, дроби \frac{5}{6} и \frac{4}{9} приводятся к общему знаменателю N=6\cdot9:
\frac{5}{6}=\frac{5\cdot9}{6\cdot9}=\frac{45}{54};\quad\frac{4}{9}=\frac{4\cdot6}{9\cdot6}=\frac{24}{54}
Сравнение дробей
Математическая операция. Сравнение дробей
Для сравнения двух обыкновенных дробей необходимо:
- сравнить числители получившихся дробей; дробь с большим числителем будет больше.
При сравнении дробей имеются несколько частных случаев:
- Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}
- Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13}
- Та дробь, у которой одновременно больший числитель и меньший знаменатель , больше. Например, \frac{11}{3}>\frac{10}{8}
Внимание! Правило 1 действует для любых дробей, если их общий знаменатель является положительным числом. Правила 2 и 3 действуют для положительных дробей (у которых и числитель и знаменатель больше нуля).
Сложение и вычитание дробей
Математическая операция. Сложение и вычитание дробей
Чтобы сложить две дроби, нужно:
- привести их к общему знаменателю;
- сложить их числители, а знаменатель оставить без изменений.
Пример: \frac{7}{9}+\frac{4}{7}=\frac{7\cdot7}{9\cdot7}+\frac{4\cdot9}{7\cdot9}=\frac{49}{63}+\frac{36}{63}=\frac{49+36}{63}=\frac{85}{63}
Чтобы из одной дроби вычесть другую, нужно:
- привести дроби к общему знаменателю;
- из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений.
Пример: \frac{4}{15}-\frac{3}{5}=\frac{4}{15}-\frac{3\cdot3}{5\cdot3}=\frac{4}{15}-\frac{9}{15}=\frac{4-9}{15}=\frac{-5}{15}=-\frac{5}{3\cdot5}=-\frac{1}{3}
Если исходные дроби изначально имеют общий знаменатель, то пункт 1 (приведение к общему знаменателю) пропускается.
Преобразование смешанного числа в неправильную дробь и обратно
Математическая операция. Преобразование смешанного числа в неправильную дробь и обратно
Чтобы преобразовать смешанную дробь в неправильную, достаточно просуммировать целую часть смешанной дроби с дробной частью. Результатом такой суммы станет неправильная дробь, числитель которой равен сумме произведения целой части на знаменатель дроби с числителем смешанной дроби, а знаменатель останется прежним. Например, 2\frac{6}{11}=2+\frac{6}{11}=\frac{2\cdot11}{11}+\frac{6}{11}=\frac{2\cdot11+6}{11}=\frac{28}{11}
Чтобы преобразовать неправильную дробь в смешанное число необходимо:
- поделить числитель дроби на ее знаменатель;
- остаток от деления записать в числитель, а знаменатель оставить прежним;
- результат от деления записать в качестве целой части.
Например, дробь \frac{23}{4} . При делении 23:4=5,75, то есть целая часть 5, остаток от деления равен 23-5*4=3. Тогда смешанное число запишется: 5\frac{3}{4} . \frac{23}{4}=\frac{5\cdot4+3}{4}=5\frac{3}{4}
Преобразование десятичной дроби в обыкновенную
Математическая операция. Преобразование десятичной дроби в обыкновенную
Для того, чтобы обратить десятичную дробь в обыкновенную, надо:
- в качестве знаменателя взять n-ую степень десяти (здесь n – количество десятичных знаков);
- в качестве числителя взять число, стоящее после десятичной точки (если целая часть исходного числа не равна нулю, то брать в том числе и все стоящие впереди нули);
- отличная от нуля целая часть записывается в числителе в самом начале; нулевая целая часть опускается.
Пример 1: 0.0089=\frac{89}{10000} (десятичных знаков 4, поэтому в знаменателе 10 4 =10000, поскольку целая часть равна 0, то в числителе записано число после десятичной точки без начальных нулей)
Пример 2: 31.0109=\frac{310109}{10000} (в числитель записываем число после десятичной точки со всеми нулями: "0109", а затем перед ним дописываем целую часть исходного числа "31")
Если целая часть десятичной дроби отлична от нуля, то её можно перевести в смешанную дробь. Для этого переводим число в обыкновенную дробь как если бы целая часть равнялась нулю (пункты 1 и 2), а целую часть просто переписываем перед дробью - это будет целая часть смешанного числа. Пример:
3.014=3\frac{14}{100}
Чтобы перевести обыкновенную дробь в десятичную, достаточно просто произвести деление числителя на знаменатель. Иногда получится бесконечная десятичная дробь. В этом случае необходимо произвести округление до нужного десятичного знака. Примеры:
\frac{401}{5}=80.2;\quad \frac{2}{3}\approx0.6667
Умножение и деление дробей
Математическая операция. Умножение и деление дробей
Чтобы перемножить две обыкновенные дроби, надо перемножить числители и знаменатели дробей.
\frac{5}{9}\cdot\frac{7}{2}=\frac{5\cdot7}{9\cdot2}=\frac{35}{18}
Чтобы разделить одну обыкновенную дробь на другую, надо умножить первую дробь на дробь, обратную второй (обратная дробь - дробь, в которой поменяны местами числитель и знаменатель).
\frac{5}{9}:\frac{7}{2}=\frac{5}{9}\cdot\frac{2}{7}=\frac{5\cdot2}{9\cdot7}=\frac{10}{63}
В случае, если одна из дробей является натуральным числом, то указанные выше правила умножения и деления остаются в силе. Просто нужно учитывать, что целое число это та же дробь, знаменатель которой равен единице. Например: 3:\frac{3}{7}=\frac{3}{1}:\frac{3}{7}=\frac{3}{1}\cdot\frac{7}{3}=\frac{3\cdot7}{1\cdot3}=\frac{7}{1}=7
Эта статья про обыкновенные дроби . Здесь мы познакомимся с понятием доли целого, которое приведет нас к определению обыкновенной дроби. Дальше остановимся на принятых обозначениях для обыкновенных дробей и приведем примеры дробей, скажем про числитель и знаменатель дроби. После этого дадим определения правильных и неправильных, положительных и отрицательных дробей, а также рассмотрим положение дробных чисел на координатном луче. В заключение перечислим основные действия с дробями.
Навигация по странице.
Доли целого
Сначала введем понятие доли .
Предположим, что у нас есть некоторый предмет, составленный из нескольких абсолютно одинаковых (то есть, равных) частей. Для наглядности можно представить, например, яблоко, разрезанное на несколько равных частей, или апельсин, состоящий из нескольких равных долек. Каждую из этих равных частей, составляющих целый предмет, называют долей целого или просто долей .
Заметим, что доли бывают разные. Поясним это. Пусть у нас есть два яблока. Разрежем первое яблоко на две равные части, а второе – на 6 равных частей. Понятно, что доля первого яблока будет отличаться от доли второго яблока.
В зависимости от количества долей, составляющих целый предмет, эти доли имеют свои названия. Разберем названия долей . Если предмет составляют две доли, любая из них называется одна вторая доля целого предмета; если предмет составляют три доли, то любая из них называется одна третья доля, и так далее.
Одна вторая доля имеет специальное название – половина . Одна третья доля называется третью , а одна четверная доля – четвертью .
Для краткости записи были введены следующие обозначения долей . Одну вторую долю обозначают как или 1/2 , одну третью долю – как или 1/3 ; одну четвертую долю – как или 1/4 , и так далее. Отметим, что запись с горизонтальной чертой употребляется чаще. Для закрепления материала приведем еще один пример: запись обозначает одну сто шестьдесят седьмую долю целого.
Понятие доли естественным образом распространяется с предметов на величины. Например, одной из мер измерения длины является метр. Для измерения длин меньших, чем метр, можно использовать доли метра. Так можно воспользоваться, например, половиной метра или десятой или тысячной долей метра. Аналогично применяются доли других величин.
Обыкновенные дроби, определение и примеры дробей
Для описания количества долей используются обыкновенные дроби . Приведем пример, который позволит нам подойти к определению обыкновенных дробей.
Пусть апельсин состоит из 12 долей. Каждая доля в этом случае представляет одну двенадцатую долю целого апельсина, то есть, . Две доли обозначим как , три доли – как , и так далее, 12 долей обозначим как . Каждую из приведенных записей называют обыкновенной дробью.
Теперь дадим общее определение обыкновенных дробей .
Озвученное определение обыкновенных дробей позволяет привести примеры обыкновенных дробей : 5/10 , , 21/1 , 9/4 , . А вот записи не подходят под озвученное определение обыкновенных дробей, то есть, не являются обыкновенными дробями.
Числитель и знаменатель
Для удобства в обыкновенной дроби различают числитель и знаменатель .
Определение.
Числитель обыкновенной дроби (m/n ) – это натуральное число m .
Определение.
Знаменатель обыкновенной дроби (m/n ) – это натуральное число n .
Итак, числитель расположен сверху над чертой дроби (слева от наклонной черты), а знаменатель – снизу под чертой дроби (справа от наклонной черты). Для примера приведем обыкновенную дробь 17/29 , числителем этой дроби является число 17 , а знаменателем – число 29 .
Осталось обговорить смысл, заключенный в числителе и знаменателе обыкновенной дроби. Знаменатель дроби показывает, из скольких долей состоит один предмет, числитель в свою очередь указывает количество таких долей. Например, знаменатель 5 дроби 12/5 означает, что один предмет состоит из пяти долей, а числитель 12 означает, что взято 12 таких долей.
Натуральное число как дробь со знаменателем 1
Знаменатель обыкновенной дроби может быть равен единице. В этом случае можно считать, что предмет неделим, иными словами, представляет собой нечто целое. Числитель такой дроби указывает, сколько целых предметов взято. Таким образом, обыкновенная дробь вида m/1 имеет смысл натурального числа m . Так мы обосновали справедливость равенства m/1=m .
Перепишем последнее равенство так: m=m/1 . Это равенство дает нам возможность любое натуральное число m представлять в виде обыкновенной дроби. Например, число 4 – это дробь 4/1 , а число 103 498 равно дроби 103 498/1 .
Итак, любое натуральное число m можно представить в виде обыкновенной дроби со знаменателем 1 как m/1 , а любую обыкновенную дробь вида m/1 можно заменить натуральным числом m .
Черта дроби как знак деления
Представление исходного предмета в виде n долей представляет собой не что иное как деление на n равных частей. После того как предмет разделен на n долей, мы его можем разделить поровну между n людьми – каждый получит по одной доле.
Если же у нас есть изначально m одинаковых предметов, каждый из которых разделен на n долей, то эти m предметов мы можем поровну разделить между n людьми, раздав каждому человеку по одной доле от каждого из m предметов. При этом у каждого человека будет m долей 1/n , а m долей 1/n дает обыкновенную дробь m/n . Таким образом, обыкновенную дробь m/n можно применять для обозначения деления m предметов между n людьми.
Так мы получили явную связь между обыкновенными дробями и делением (смотрите общее представление о делении натуральных чисел). Эта связь выражается в следующем: черту дроби можно понимать как знак деления, то есть, m/n=m:n .
С помощью обыкновенной дроби можно записать результат деления двух натуральных чисел, для которых не выполняется деление нацело. Например, результат деления 5 яблок на 8 человек можно записать как 5/8 , то есть, каждому достанется пять восьмых долей яблока: 5:8=5/8 .
Равные и неравные обыкновенные дроби, сравнение дробей
Достаточно естественным действием является сравнение обыкновенных дробей , ведь понятно, что 1/12 апельсина отличается от 5/12 , а 1/6 доля яблока такая же, как другая 1/6 доля этого яблока.
В результате сравнения двух обыкновенных дробей получается один из результатов: дроби либо равны, либо не равны. В первом случае мы имеем равные обыкновенные дроби , а во втором – неравные обыкновенные дроби . Дадим определение равных и неравных обыкновенных дробей.
Определение.
равны , если справедливо равенство a·d=b·c .
Определение.
Две обыкновенные дроби a/b и c/d не равны , если равенство a·d=b·c не выполняется.
Приведем несколько примеров равных дробей. Например, обыкновенная дробь 1/2 равна дроби 2/4 , так как 1·4=2·2 (при необходимости смотрите правила и примеры умножения натуральных чисел). Для наглядности можно представить два одинаковых яблока, первое разрезано пополам, а второе – на 4 доли. При этом очевидно, что две четвертых доли яблока составляют 1/2 долю. Другими примерами равных обыкновенных дробей являются дроби 4/7 и 36/63 , а также пара дробей 81/50 и 1 620/1 000 .
А обыкновенные дроби 4/13 и 5/14 не равны, так как 4·14=56 , а 13·5=65 , то есть, 4·14≠13·5 . Другим примером неравных обыкновенных дробей являются дроби 17/7 и 6/4 .
Если при сравнении двух обыкновенных дробей выяснилось, что они не равны, то возможно потребуется узнать, какая из этих обыкновенных дробей меньше другой, а какая – больше . Чтобы это выяснить, используется правило сравнения обыкновенных дробей, суть которого сводится к приведению сравниваемых дробей к общему знаменателю и последующему сравнению числителей. Детальная информация по этой теме собрана в статье сравнение дробей: правила, примеры, решения .
Дробные числа
Каждая дробь является записью дробного числа . То есть, дробь – это всего лишь «оболочка» дробного числа, его внешний вид, а вся смысловая нагрузка содержится именно в дробном числе. Однако для краткости и удобства понятие дроби и дробного числа объединяют и говорят просто дробь. Здесь уместно перефразировать известное изречение: мы говорим дробь – подразумеваем дробное число, мы говорим дробное число – подразумеваем дробь.
Дроби на координатном луче
Все дробные числа, отвечающие обыкновенным дробям, имеют свое уникальное место на , то есть, существует взаимно однозначное соответствие между дробями и точками координатного луча.
Чтобы на координатном луче попасть в точку, соответствующую дроби m/n нужно от начала координат в положительном направлении отложить m отрезков, длина которых составляет 1/n долю единичного отрезка. Такие отрезки можно получить, разделив единичный отрезок на n равных частей, что всегда можно сделать с помощью циркуля и линейки.
Для примера покажем точку М на координатном луче, соответствующую дроби 14/10 . Длина отрезка с концами в точке O и ближайшей к ней точке, отмеченной маленьким штрихом, составляет 1/10 долю единичного отрезка. Точка с координатой 14/10 удалена от начала координат на расстояние 14 таких отрезков.
Равным дробям отвечает одно и то же дробное число, то есть, равные дроби являются координатами одной и той же точки на координатном луче. Например, координатам 1/2 , 2/4 , 16/32 , 55/110 на координатном луче соответствует одна точка, так как все записанные дроби равны (она расположена на расстоянии половины единичного отрезка, отложенного от начала отсчета в положительном направлении).
На горизонтальном и направленном вправо координатном луче точка, координатой которой является большая дробь, располагается правее точки, координатой которой является меньшая дробь. Аналогично, точка с меньшей координатой лежит левее точки с большей координатой.
Правильные и неправильные дроби, определения, примеры
Среди обыкновенных дробей различают правильные и неправильные дроби . Это разделение в своей основе имеет сравнение числителя и знаменателя.
Дадим определение правильных и неправильных обыкновенных дробей.
Определение.
Правильная дробь
– это обыкновенная дробь, числитель которой меньше знаменателя, то есть, если m Определение.
Неправильная дробь
– это обыкновенная дробь, в которой числитель больше или равен знаменателю, то есть, если m≥n
, то обыкновенная дробь является неправильной.
Приведем несколько примеров правильных дробей: 1/4
, , 32 765/909 003
. Действительно, в каждой из записанных обыкновенных дробей числитель меньше знаменателя (при необходимости смотрите статью сравнение натуральных чисел), поэтому они правильные по определению. А вот примеры неправильных дробей: 9/9
, 23/4
, . Действительно, числитель первой из записанных обыкновенных дробей равен знаменателю, а в остальных дробях числитель больше знаменателя. Также имеют место определения правильных и неправильных дробей, базирующиеся на сравнении дробей с единицей. Определение.
правильной
, если она меньше единицы.
Определение.
Обыкновенная дробь называется неправильной
, если она либо равна единице, либо больше 1
.
Так обыкновенная дробь 7/11
– правильная, так как 7/11<1
, а обыкновенные дроби 14/3
и 27/27
– неправильные, так как 14/3>1
, а 27/27=1
. Давайте поразмыслим, чем же обыкновенные дроби с числителем, превосходящим или равным знаменателю, заслужили такое название – «неправильные». Для примера возьмем неправильную дробь 9/9
. Эта дробь означает, что взято девять долей предмета, который состоит из девяти долей. То есть, из имеющихся девяти долей мы можем составить целый предмет. То есть, неправильная дробь 9/9
по сути дает целый предмет, то есть, 9/9=1
. Вообще, неправильные дроби с числителем равным знаменателю обозначают один целый предмет, и такую дробь может заменить натуральное число 1
. Теперь рассмотрим неправильные дроби 7/3
и 12/4
. Достаточно очевидно, что из этих семи третьих долей мы можем составить два целых предмета (один целый предмет составляют 3
доли, тогда для составления двух целых предметов нам потребуется 3+3=6
долей) и еще останется одна третья доля. То есть, неправильная дробь 7/3
по сути означает 2
предмета да еще 1/3
долю такого предмета. А из двенадцати четвертых долей мы можем составить три целых предмета (три предмета по четыре доли в каждом). То есть, дробь 12/4
по сути означает 3
целых предмета. Рассмотренные примеры приводят нас к следующему выводу: неправильные дроби, могут быть заменены либо натуральными числами, когда числитель делится нацело на знаменатель (например, 9/9=1
и 12/4=3
), либо суммой натурального числа и правильной дроби, когда числитель не делится нацело на знаменатель (например, 7/3=2+1/3
). Возможно, именно этим и заслужили неправильные дроби такое название – «неправильные». Отдельный интерес вызывает представление неправильной дроби в виде суммы натурального числа и правильной дроби (7/3=2+1/3
). Этот процесс называется выделением целой части из неправильной дроби , и заслуживает отдельного и более внимательного рассмотрения. Также стоит заметить, что существует очень тесная связь между неправильными дробями и смешанными числами . Каждая обыкновенная дробь отвечает положительному дробному числу (смотрите статью положительные и отрицательные числа). То есть, обыкновенные дроби являются положительными дробями
. К примеру, обыкновенные дроби 1/5
, 56/18
, 35/144
– положительные дроби. Когда нужно особо выделить положительность дроби, то перед ней ставится знак плюс, например, +3/4
, +72/34
. Если перед обыкновенной дробью поставить знак минус, то эта запись будет соответствовать отрицательному дробному числу. В этом случае можно говорить об отрицательных дробях
. Приведем несколько примеров отрицательных дробей: −6/10
, −65/13
, −1/18
. Положительная и отрицательная дроби m/n
и −m/n
являются противоположными числами . К примеру, дроби 5/7
и −5/7
– противоположные дроби. Положительные дроби, как и положительные числа в целом, обозначают прибавление, доход, изменение какой-либо величины в сторону увеличения и т.п. Отрицательные дроби отвечают расходу, долгу, изменению какой-либо величины в сторону уменьшения. Например, отрицательную дробь −3/4
можно трактовать как долг, величина которого равна 3/4
. На горизонтальной и направленной вправо отрицательные дроби располагаются левее начала отсчета. Точки координатной прямой, координатами которых являются положительная дробь m/n
и отрицательная дробь −m/n
расположены на одинаковом расстоянии от начала координат, но по разные стороны от точки O
. Здесь же стоит сказать о дробях вида 0/n
. Эти дроби равны числу нуль, то есть, 0/n=0
. Положительные дроби, отрицательные дроби, а также дроби 0/n
объединяются в рациональные числа . Одно действие с обыкновенными дробями – сравнение дробей - мы уже рассмотрели выше. Определены еще четыре арифметических действия с дробями
– сложение, вычитание, умножение и деление дробей. Остановимся на каждом из них. Общая суть действий с дробями аналогична сути соответствующих действий с натуральными числами. Проведем аналогию. Умножение дробей
можно рассматривать как действие, при котором находится дробь от дроби. Для пояснения приведем пример. Пусть у нас есть 1/6
часть яблока и нам нужно взять 2/3
части от нее. Нужная нам часть является результатом умножения дробей 1/6
и 2/3
. Результатом умножения двух обыкновенных дробей является обыкновенная дробь (которая в частном случае равна натуральному числу). Дальше рекомендуем к изучению информацию статьи умножение дробей – правила, примеры и решения . Список литературы.
Числителем, а то, на которое делят - знаменателем. Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель - в нижней, то есть вместо 2/3 можно встретить: ⅔. Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби
на числитель другой. Запишите результат в числитель новой дроби
. После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби
. Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15). Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3). Источники: Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби
, надо помнить о некоторых их особенностях. Они зависят от вида дроби
, наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата. Вам понадобится Инструкция Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби
в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби
. Чтобы выделить целую часть из первоначально неправильной дроби
, надо поделить числитель на знаменатель. Целый результат записать от дроби
. А остаток от деления станет новым числителем, знаменатель дроби
при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена : Перепишите их через разделитель «:» и продолжите обычное деление. Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа. Обратите внимание Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны. Полезный совет При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде. С дробями ученики знакомятся еще в 5 классе. Раньше людей, которые умели производить действия с дробями, считали очень умными. Первой дробью была 1/2, то есть половина, дальше появились 1/3 и т.д. Несколько веков примеры считались слишком сложными. Сейчас же разработаны подробные правила по преобразованию дробей, сложению, умножению и другим действиям. Достаточно немного разобраться в материале, и решение будет даваться легко. Обыкновенная дробь, которую называют простой дробью, записывается как деление двух чисел: m и n. M - это делимое, то есть числитель дроби, а делитель n называют знаменателем. Выделяют правильные дроби (m < n) а также неправильные (m > n). Правильная дробь меньше единицы (к примеру 5/6 — это значит, что от единицы взято 5 частей; 2/8 — от единицы взято 2 части). Неправильная дробь равна или больше 1 (8/7 — единицей будет 7/7 и плюсом взята еще одна часть). Так, единица, это когда числитель и знаменатель совпали (3/3, 12/12, 100/100 и другие). С простыми дробями можно производить следующие действия: Примеры действий с дробями рассмотрим ниже. Сократить — значит поделить верхнюю и нижнюю часть дроби на какое-либо одинаковое число. На рисунке представлены просты примеры сокращения. В первом варианте можно сразу догадаться, что числитель и знаменатель делятся на 2. На заметку! Если число четное, то оно по-любому делится на 2. Четные числа — это 2, 4, 6…328
(заканчивается на четное) и т. д. Во втором случае при делении 6 на 18 сразу видно, что числа делятся на 2. Разделив, получаем 3/9. Эта дробь делится еще на 3. Тогда в ответе получается 1/3. Если перемножить оба делителя: 2 на 3, то выйдет 6. Получается, что дробь была разделена на шестерку. Такое постепенное деление называется последовательным сокращением дроби на общие делители.
Кто-то сразу поделит на 6, кому-то понадобится деление частями. Главное, чтобы в конце осталась дробь, которую уже никак не сократить. Отметим, что если число состоит из цифр, при сложении которых получится число, делящееся на 3, то и первоначальное также можно сократить на 3. Пример: число 341. Складываем цифры: 3 + 4 + 1 = 8 (8 на 3 не делится, значит, число 341 нельзя сократить на 3 без остатка). Другой пример: 264. Складываем: 2 + 6 + 4 = 12 (делится на 3). Получаем: 264: 3 = 88. Это упростит сокращение больших чисел. Помимо метода последовательного сокращения дроби на общие делители есть и другие способы. НОД — это самый большой делитель для числа. Найдя НОД для знаменателя и числителя, можно сразу сократить дробь на нужное число. Поиск осуществляется путем постепенного деления каждого числа. Далее смотрят, какие делители совпадают, если их несколько (как на картинке ниже), то нужно перемножить. Все неправильные дроби можно превратить в смешанные, выделив в них целую часть. Целое число пишется слева. Часто приходится из неправильной дроби делать смешанное число. Процесс преобразования на примере ниже: 22/4 = 22 делим на 4, получаем 5 целых (5 * 4 = 20). 22 — 20 = 2. Получаем 5 целых и 2/4 (знаменатель не меняется). Поскольку дробь можно сократить, то делим верхнюю и нижнюю часть на 2. Смешанное число легко превратить в неправильную дробь (это необходимо при делении и умножении дробей). Для этого: целое число умножим на нижнюю часть дроби и прибавим к этому числитель. Готово. Знаменатель не меняется. Смешанные числа можно складывать. Если знаменатели одинаковые, то сделать это просто: складываем целые части и числители, знаменатель остается на месте. При сложении чисел с разными знаменателями процесс сложнее. Сначала приводим числа к одному самому маленькому знаменателю (НОЗ). В примере ниже для чисел 9 и 6 знаменателем будет 18. После этого нужны дополнительные множители. Чтобы их найти, следует 18 разделить на 9, так находится дополнительное число — 2. Его умножаем на числитель 4 получилась дробь 8/18). То же самое делают и со второй дробью. Преобразованные дроби уже складываем (целые числа и числители отдельно, знаменатель не меняем). В примере ответ пришлось преобразовать в правильную дробь (изначально числитель оказался больше знаменателя). Обратите внимание, что при разности дробей алгоритм действий такой же. При умножении дробей важно поместить обе под одну черту. Если число смешанное, то превращаем его в простую дробь. Далее умножаем верхнюю и нижнюю части и записываем ответ. Если видно, что дроби можно сократить, то сокращаем сразу. В указанном примере сокращать ничего не пришлось, просто записали ответ и выделили целую часть. В этом примере пришлось сократить числа под одной чертой. Хотя сокращать можно и готовый ответ. При делении алгоритм почти такой же. Сначала превращаем смешанную дробь в неправильную, затем записываем числа под одной чертой, заменив деление умножением. Не забываем верхнюю и нижнюю часть второй дроби поменять местами (это правило деления дробей). При необходимости сокращаем числа (в примере ниже сократили на пятерку и двойку). Неправильную дробь преобразуем, выделив целую часть. На видео показано еще несколько задач. Для наглядности использованы графические изображения решений, которые помогут наглядно представить дроби. Перемножающиеся дроби записываются под одной линией. После этого их сокращают путем деления на одни и те же числа (например, 15 в знаменателе и 5 в числителе можно разделить на пятерку). Чтобы сравнить дроби, нужно запомнить два простых правила. Правило 1. Если знаменатели разные Правило 2. Когда знаменатели одинаковые Например, сравним дроби 7/12 и 2/3. Чтобы представлять дроби лучше, можно для наглядности использовать рисунки, где предмет делится на части (к примеру, торт). Если требуется сравнить 4/7 и 2/3, то в первом случае торт делят на 7 частей и выбирают 4 из них. Во втором — делят на 3 части и берут 2. Невооруженным взглядом будет понятно, что 2/3 будет больше 4/7. В качестве тренировки можно выполнить следующие задания. Совет: если сложно найти наименьший общий знаменатель у дробей (особенно, если значения их небольшие), то можно перемножить знаменатель первой и второй дроби. Пример: 2/8 и 5/9. Найти их знаменатель просто: 8 умножаем на 9, получится 72. В решении уравнений требуется вспомнить действия с дробями: умножение, деление, вычитание и сложение. Если неизвестен один из множителей, то произведение (итог) делится на известный множитель, то есть дроби перемножаются (вторая переворачивается). Если неизвестно делимое, то знаменатель умножается на делитель, а для поиска делителя нужно делимое разделить на частное. Представим простые примеры решения уравнений: Здесь требуется лишь произвести разность дробей, не приводя к общему знаменателю.
Ответ получился в виде неправильной дроби. Ее можно преобразовать в 1 целую и 3/5. Во втором способе числитель и знаменатель умножили на 4, чтобы сократить нижнюю часть, а не переворачивать знаменатель.Положительные и отрицательные дроби
Действия с дробями
- Переведение дробей в неправильный вид:
- 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
- Суммирование отдельно целых и дробных частей слагаемых:
- 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.Действия с обыкновенными дробями 6 класс
Сокращенные дроби 6 класс
Смешанные дроби 6 класс
Вычисления с дробями 6 класс
Основные задачи на дроби 6 класс
Примеры умножения дроби 6 класс с пояснениями
Сравнение дробей 6 класс
Примеры с дробями 6 класс для тренировки
Решение уравнений с дробями 6 класс