Достаточные признаки возрастания и убывания функции. Возрастание и убывание функции на интервале, экстремумы
Функция
называетсявозрастающей
на интервале
,
если для любых точек
выполняется неравенство
(большему значению аргумента соответствует
большее значение функции).
Аналогично, функция
называетсяубывающей
на интервале
,
если для любых точек
из этого интервала при выполнении
условия
выполняется неравенство
(большему значению аргумента соответствует
меньшее значение функции).
Возрастающие на
интервале
и убывающие на интервале
функции называютсямонотонными
на интервале
.
Знание производной дифференцируемой функции позволяет находить интервалы ее монотонности.
Теорема (достаточное
условие возрастания функции).
функции
положительна на интервале
,
то функция
монотонно возрастает на этом интервале.
Теорема (достаточное
условие убывания функции).
Если производная дифференцируемой на
интервале
функции
отрицательна на интервале
,
то функция
монотонно убывает на этом интервале.
Геометрический
смысл
этих теорем состоит в том, что на
интервалах убывания функции касательные
к графику функции образуют с осью
тупые углы, а на интервалах возрастания
– острые (см.рис.
1).
Теорема (необходимое
условие монотонности функции).
Если
функция
дифференцируема и
(
)
на интервале
,
то она не убывает (не возрастает) на этом
интервале.
Алгоритм нахождения
интервалов монотонности функции
:
Пример.
Найти интервалы монотонности функции
.
Точка
называетсяточкой
максимума функции
такое, что для всех,
удовлетворяющих условию
,
выполнено неравенство
.
Максимум функции – это значение функции в точке максимума.
На рис
2 показан
пример графика функции, имеющей максимумы
в точках
.
Точка
называетсяточкой
минимума функции
,
если существует некоторое число
такое, что для всех,
удовлетворяющих условию
,
выполнено неравенство
.
Нарис.
2 функция
имеет минимум в точке
.
Для максимумов и минимумов есть общее название – экстремумы . Соответственно точки максимума и точки минимума называются точками экстремума .
Функция, определенная на отрезке, может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.
В точках экстремума у производной есть особые свойства.
Теорема (необходимое
условие экстремума).
Пусть в точке
функция
имеет экстремум. Тогда либо
не существует, либо
.
Те точки из области
определения функции, в которых
не существует или в которых
,
называютсякритическими
точками функции
.
Таким образом, точки экстремума лежат среди критических точек. В общем случае критическая точка не обязана быть точкой экстремума. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум.
Пример.
Рассмотрим
.
Имеем
,
но точка
не является точкой экстремума (см.рис
3).
Теорема (первое
достаточное условие экстремума).
Пусть в точке
функция
непрерывна, а производная
при переходе через точкуменяет знак. Тогда– точка экстремума: максимума, если
знак меняется с «+» на «–», и минимума,
если с «–» на «+».
Если при переходе через точку производная не меняет знак, то в точкеэкстремума нет.
Теорема (второе
достаточное условие экстремума).
Пусть в точке
производная дважды дифференцируемой
функции
равна
нулю (
),
а ее вторая производная в этой точке
отлична от нуля (
)
и непрерывна в некоторой окрестности
точки.
Тогда– точка экстремума
;
при
это точка минимума, а при
это точка максимума.
Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума:
Найти производную.
Найти критические точки функции.
Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.
Найти экстремальные значения функции.
Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума:
Пример.
Найти экстремумы функции
.
На основании достаточных признаков находятся промежутки возрастания и убывания функции.
Вот формулировки признаков:
- если производная функции y = f(x) положительна для любого x из интервала X , то функция возрастает на X ;
- если производная функции y = f(x) отрицательна для любого x из интервала X , то функция убывает на X .
Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:
- найти область определения функции;
- найти производную функции;
- к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна.
Рассмотрим пример для разъяснения алгоритма.
Пример.
Найти промежутки возрастания и убывания функции .
Решение.
Первым шагом является нахождение обрасти определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .
Переходим к производной функции:
Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x = 0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.
Таким образом, и .
В точке x = 2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x = 0 функция не определена, поэтому эту точку не включаем в искомые интервалы.
Приводим график функции для сопоставления с ним полученных результатов.
Ответ: функция возрастает при , убывает на интервале (0; 2] .
- Точки экстремума функции одной переменной. Достаточные условия экстремума
Пусть функция f(x), определенная и непрерывная в промежутке , не является в нем монотонной. Найдутся такие части [ , ] промежутка , в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т.е. между и.
Говорят, что функция f(x) имеет в точке максимум (или минимум), если эту точку можно окружить такой окрестностью (x 0 - ,x 0 +), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство.
f(x) < f(x 0)(или f(x)>f(x 0))
Иными словами, точка x 0 доставляет функции f(x) максимум (минимум), если значение f(x 0) оказывается наибольшим (наименьшим) из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки. Отметим, что самое определение максимума (минимума) предполагает, что функция задана по обе стороны от точки x 0 .
Если существует такая окрестность, в пределах которой (при x=x 0) выполняется строгое неравенство
f(x)
то говорят, что функция имеет в точке x 0 собственный максимум (минимум), в противном случае – несобственный.
Если функция имеет максимумы в точках x 0 и x 1 , то, применяя к промежутку вторую теорему Вейерштрасса, видим, что наименьшего своего значения в этом промежутке функция достигает в некоторой точке x 2 между x 0 и x 1 и имеет там минимум. Аналогично, между двумя минимумами непременно найдется максимум. В том простейшем (и на практике – важнейшим) случае, когда функция имеет вообще лишь конечное число максимумов и минимумов, они просто чередуются.
Заметим, что для обозначения максимума или минимума существует и объединяющий их термин – экстремум.
Понятия максимум (max f(x)) и минимум (min f(x)) являются локальными свойствами функции и имеют место в определенной точке х 0 . Понятия наибольшего (sup f(x)) и наименьшего (inf f(x)) значений относятся к конечному отрезку и являются глобальными свойствами функции на отрезке.
Из рисунка 1 видно, что в точках х 1 и х 3 локальные максимумы, а в точках х 2 и х 4 – локальные минимумы. Однако, наименьшего значения функция достигает в точке х=а, а наибольшего – в точке х=b.
Поставим задачу о разыскании всех значений аргумента, доставляющих функции экстремум. При решении ее основную роль будет играть производная.
Предположим сначала, что для фунции f(x) в промежутке(a,b) существует конечная производная. Если в точке х 0 функция имеет экстремум, то, применяя к промежутку (х 0 - ,х 0 +), о которой была речь выше, теорему Ферма, заключаем, что f(x)=0 этом состоит необходимое условие экстремума. Экстремум следует искать только в тех точках, где производная равна нулю.
Не следует, думать, однако, что каждая точка, в которой производная равна нулю, доставляет функции экстремум: указанное только что необходимое условие неявляется достаточным
1. Найти область определения функции
2.Найти производную функции
3. Приравнять производную к нулю и найти критические точки функции
4. Отметить критические точки на области определения
5. Вычислить знак производной в каждом из полученных интервалов
6. Выяснить поведение функции в каждом интервале.
Пример: Найдите промежутки возрастания и убывания функции f (x ) = и число нулей данной функции на промежутке .
Решение:
1. D(f ) = R
2. f "(x ) =
D(f ") = D(f ) = R
3. Найдём критические точки функции, решив уравнение f "(x ) = 0.
x (x – 10) = 0
критические точки функции x = 0 и x = 10.
4. Определим знак производной.
f "(x ) + – +
f (x ) 0 10 x
в промежутках (-∞; 0) и (10; +∞) производная функции положительна и в точках x = 0 и x = 10 функция f (x ) непрерывна, следовательно, данная функция возрастает на промежутках: (-∞; 0]; .
Определим знак значений функции на концах отрезка.
f (0) = 3, f (0) > 0
f (10) = , f (10) < 0.
Так как на отрезке функция убывает и знак значений функции изменяется, то на этом отрезке один нуль функции.
Ответ: функция f(x) возрастает на промежутках: (-∞; 0]; ;
на промежутке функция имеет один нуль функции.
2. Точки экстремума функции: точки максимума и точки минимума. Необходимое и достаточное условия существования экстремума функции. Правило исследования функции на экстремум .
Определение 1: Точки, в которых производная равна нулю, называются критическими или стационарными.
Определение 2 . Точка называется точкой минимума (максимума) функции , если значение функции в этой точке меньше (больше) ближайших значений функии.
Следует иметь в виду, что максимум и минимум в данном случае являются локальными.
На рис. 1. изображены локальные максимумы и минимумы.
Максимум и минимум функции объединены общим названием: экстремум функции.Теорема 1. (необходимый признак существования экстремума функции). Если дифференцируемая в точке функция имеет в этой точке максимум или минимум, то ее производная при обращается в нуль, .
Теорема 2. (достаточный признак существования экстремума функции). Если непрерывная функция имеет производную во всех точках некоторого интервала, содержащего критическую точку (за исключением может быть самой этой точки), и если производная при переходе аргумента слева направо через критическую точку меняет знак с плюса на минус, то функция в этой точке имеет максимум, а при переходе знака с минуса на плюс – минимум.
Экстремумы функции
Определение 2
Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.
Определение 3
Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.
Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.
Определение 4
$x_0$ называется критической точкой функции $f(x)$, если:
1) $x_0$ - внутренняя точка области определения;
2) $f"\left(x_0\right)=0$ или не существует.
Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.
Теорема 2
Достаточное условие экстремума
Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:
1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)
2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.
3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)
Данная теорема проиллюстрирована на рисунке 1.
Рисунок 1. Достаточное условие существования экстремумов
Примеры экстремумов (Рис. 2).
Рисунок 2. Примеры точек экстремумов
Правило исследования функции на экстремум
2) Найти производную $f"(x)$;
7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.
Возрастание и убывание функции
Введем, для начала, определения возрастающей и убывающей функций.
Определение 5
Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1
Определение 6
Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.
Исследование функции на возрастание и убывание
Исследовать функции на возрастание и убывание можно с помощью производной.
Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:
1) Найти область определения функции $f(x)$;
2) Найти производную $f"(x)$;
3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;
4) Найти точки, в которых $f"(x)$ не существует;
5) Отметить на координатной прямой все найденные точки и область определения данной функции;
6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;
7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.
Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов
Пример 1
Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$
Так как первые 6 пунктов совпадают, проведем для начала их.
1) Область определения - все действительные числа;
2) $f"\left(x\right)=6x^2-30x+36$;
3) $f"\left(x\right)=0$;
\ \ \
4) $f"(x)$ существует во всех точках области определения;
5) Координатная прямая:
Рисунок 3.
6) Определить знак производной $f"(x)$ на каждом промежутке:
\ \, если для любой пары точек х и х" , а ≤ х выполняется неравенство f (x ) ≤ f (x" ), и строго возрастающей - если выполняется неравенство f (x ) f (x" ). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х 2 (рис. , а) строго возрастает на отрезке , а
(рис. , б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x ), а убывающие f (x )↓. Для того чтобы дифференцируемая функция f (x ) была возрастающей на отрезке [а , b ], необходимо и достаточно, чтобы её производная f "(x ) была неотрицательной на [а , b ].
Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x ) называется возрастающей в точке x 0 , если найдётся такой интервал (α, β), содержащий точку x 0 , что для любой точки х из (α, β), х> x 0 , выполняется неравенство f (x 0) ≤ f (x ), и для любой точки х из (α, β), х 0 , выполняется неравенство f (x ) ≤ f (x 0). Аналогично определяется строгое возрастание функции в точке x 0 . Если f "(x 0) > 0, то функция f (x ) строго возрастает в точке x 0 . Если f (x ) возрастает в каждой точке интервала (a , b ), то она возрастает на этом интервале.
С. Б. Стечкин.
Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .
Смотреть что такое "Возрастание и убывание функции" в других словарях:
Понятия математического анализа. Функция f(x) называется возрастающей на отрезке ВОЗРАСТНАЯ СТРУКТУРА НАСЕЛЕНИЯ соотношение численности разных возрастных групп населения. Зависит от уровней рождаемости и смертности, продолжительности жизни людей … Большой Энциклопедический словарь
Понятия математического анализа. Функция f(х) называется возрастающей на отрезке , если для любой пары точек x1 и x2, a≤x1 … Энциклопедический словарь
Понятия матем. анализа. Ф ция f(x) наз. возрастающей на отрезке [а, b], если для любой пары точек х1 и x2, а<или=х1 <х<или=b, выполняется неравенство f(x1)
Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия
Раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия
У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия
Аристотель и перипатетики - Аристотелевский вопрос Жизнь Аристотеля Аристотель родился в 384/383 гг. до н. э. в Стагире, на границе с Македонией. Его отец по имени Никомах был врачом на службе у македонского царя Аминта, отца Филиппа. Вместе с семьей молодой Аристотель… … Западная философия от истоков до наших дней
- (КХД), квантовополевая теория сильного вз ствия кварков и глюонов, построенная по образу квант. электродинамики (КЭД) на основе «цветовой» калибровочной симметрии. В отличие от КЭД, фермионы в КХД имеют дополнит. степень свободы квант. число,… … Физическая энциклопедия
I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия
Жизнь растения, как и всякого другого живого организма, представляет сложную совокупность взаимосвязанных процессов; наиболее существенный из них, как известно, обмен веществ с окружающей средой. Среда является тем источником, откуда… … Биологическая энциклопедия