Формула произведения логарифмов. Формулы логарифмов. Логарифмы примеры решения
Логарифмом числа N по основаниюа называется показатель степених , в которую нужно возвестиа , чтобы получить числоN
При условии, что
,
,
Из определения логарифма
следует, что
,
т.е.
- это равенство является основным
логарифмическим тождеством.
Логарифмы по основанию 10
называются десятичными логарифмами.
Вместо
пишут
.
Логарифмы по основанию e
называются натуральными и обозначаются
.
Основные свойства логарифмов.
Логарифм единицы при любом основании равен нулю
Логарифм произведения равен сумме логарифмов сомножителей.
3) Логарифм частного равен разности логарифмов
Множитель
называется модулем перехода от логарифмов
при основанииa
к логарифмам при основанииb
.
С помощью свойств 2-5 часто удается свести логарифм сложного выражения к результату простых арифметических действий над логарифмами.
Например,
Такие преобразования логарифма называются логарифмированием. Преобразования обратные логарифмированию называются потенцированием.
Глава 2. Элементы высшей математики.
1. Пределы
Пределом функции
является конечное число А, если при
стремлении xx
0
для каждого наперед заданного
,
найдется такое число
,
что как только
,
то
.
Функция, имеющая предел, отличается от
него на бесконечно малую величину:
,
где- б.м.в., т.е.
.
Пример. Рассмотрим функцию
.
При стремлении
,
функцияy
стремится к нулю:
1.1. Основные теоремы о пределах.
Предел постоянной величины равен этой постоянной величине
.
Предел суммы (разности) конечного числа функций равен сумме (разности) пределов этих функций.
Предел произведения конечного числа функций равен произведению пределов этих функций.
Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен нулю.
Замечательные пределы
,
,
где
1.2. Примеры вычисления пределов
Однако, не все пределы вычисляются так просто. Чаще вычисление предела сводится к раскрытию неопределенности типа: или .
.
2. Производная функции
Пусть мы имеем функцию
,
непрерывную на отрезке
.
Аргумент
получил некоторое приращение
.
Тогда и функция получит приращение
.
Значению аргумента
соответствует значение функции
.
Значению аргумента
соответствует значение функции
.
Следовательно, .
Найдем предел этого отношения при
.
Если этот предел существует, то он
называется производной данной функции.
Определение 3Производной данной функции
по
аргументу
называется предел отношения приращения
функции к приращению аргумента, когда
приращение аргумента произвольным
образом стремится к нулю.
Производная функции
может быть обозначена следующим образом:
; ; ; .
Определение 4Операция нахождения производной от функции называетсядифференцированием.
2.1. Механический смысл производной.
Рассмотрим прямолинейное движение некоторого твердого тела или материальной точки.
Пусть в некоторый момент времени
движущаяся
точка
находилась на расстоянии
от начального положения
.
Через некоторый
промежуток времени
она переместилась на расстояние
.
Отношение
=- средняя скорость материальной точки
.
Найдем предел этого отношения, учитывая
что
.
Следовательно, определение мгновенной скорости движения материальной точки сводится к нахождению производной от пути по времени.
2.2. Геометрическое значение производной
Пусть у нас
есть графически заданная некоторая
функция
.
Рис. 1. Геометрический смысл производной
Если
,
то точка
,
будет перемещаться по кривой, приближаясь
к точке
.
Следовательно
,
т.е. значение производной при данном
значении аргумента
численно равняется тангенсу угла
образованного касательной в данной
точке с положительным направлением оси
.
2.3. Таблица основных формул дифференцирования.
Степенная функция
Показательная функция
Логарифмическая функция
Тригонометрическая функция
Обратная тригонометрическая функция
2.4. Правила дифференцирования.
Производная от
Производная суммы (разности) функций
Производная произведения двух функций
Производная частного двух функций
2.5. Производная от сложной функции.
Пусть дана функция
такая, что ее можно представить в виде
и
,
где переменнаяявляется промежуточным аргументом,
тогда
Производная сложной функции равна произведению производной данной функции по промежуточному аргументу на производную промежуточного аргумента по x.
Пример1.
Пример2.
3. Дифференциал функции.
Пусть есть
,
дифференцируемая на некотором отрезке
и пустьу
этой функции есть производная
,
тогда можно записать
(1),
где - бесконечно малая величина,
так как при
Умножая все члены равенства (1) на
имеем:
Где
-
б.м.в. высшего порядка.
Величина
называется дифференциалом функции
и обозначается
.
3.1. Геометрическое значение дифференциала.
Пусть дана функция
.
Рис.2. Геометрический смысл дифференциала.
.
Очевидно, что дифференциал функции
равен приращению ординаты касательной
в данной точке.
3.2. Производные и дифференциалы различных порядков.
Если есть
,
тогда
называется первой производной.
Производная от первой производной
называется производной второго порядка
и записывается
.
Производной n-го порядка
от функции
называется производная (n-1)-го
порядка и записывается:
.
Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка.
.
.
3.3 Решение биологических задач с применением дифференцирования.
Задача1.
Исследования показали, что рост колонии
микроорганизмов подчиняется закону
,
гдеN
– численность микроорганизмов (в тыс.),t
–время (дни).
б) Будет ли в этот период численность колонии увеличиваться или уменьшаться?
Ответ. Численность колонии будет увеличиваться.
Задача 2. Вода в озере периодически тестируется для контроля содержания болезнетворных бактерий. Черезt дней после тестирования концентрация бактерий определяется соотношением
.
Когда в озере наступит минимальная концентрация бактерий и можно будет в нем купаться?
РешениеФункция достигает max или min, когда ее производная равна нулю.
,
Определим max или min будет через 6 дней. Для этого возьмем вторую производную.
Ответ: Через 6 дней будет минимальная концентрация бактерий.
В соотношении
может быть поставлена задача отыскания любого из трех чисел по двум другим, заданным. Если даны а и то N находят действием возведения в степень. Если даны N и то а находят извлечением корня степени х (или возведением в степень ). Теперь рассмотрим случай, когда по заданным а и N требуется найти х.
Пусть число N положительно: число а положительно и не равно единице: .
Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить число N; логарифм обозначается через
Таким образом, в равенстве (26.1) показатель степени находят как логарифм N по основанию а. Записи
имеют одинаковый смысл. Равенство (26.1) иногда называют основным тождеством теории логарифмов; в действительности оно выражает определение понятия логарифма. По данному определению основание логарифма а всегда положительно и отлично от единицы; логарифмируемое число N положительно. Отрицательные числа и нуль логарифмов не имеют. Можно доказать, что всякое число при данном основании имеет вполне определенный логарифм. Поэтому равенство влечет за собой . Заметим, что здесь существенно условие в противном случае вывод был бы не обоснован, так как равенство верно при любых значениях х и у.
Пример 1. Найти
Решение. Для получения числа следует возвести основание 2 в степень Поэтому.
Можно проводить записи при решении таких примеров в следующей форме:
Пример 2. Найти .
Решение. Имеем
В примерах 1 и 2 мы легко находили искомый логарифм, представляя логарифмируемое число как степень основания с рациональным показателем. В общем случае, например для и т. д., этого сделать не удастся, так как логарифм имеет иррациональное значение. Обратим внимание на один связанный с этим утверждением вопрос. В п. 12 мы дали понятие о возможности определения любой действительной степени данного положительного числа. Это было необходимо для введения логарифмов, которые, вообще говоря, могут быть иррациональными числами.
Рассмотрим некоторые свойства логарифмов.
Свойство 1. Если число и основание равны, то логарифм равен единице, и, обратно, если логарифм равен единице, то число и основание равны.
Доказательство. Пусть По определению логарифма имеем а откуда
Обратно, пусть Тогда по определению
Свойство 2. Логарифм единицы по любому основанию равен нулю.
Доказательство. По определению логарифма (нулевая степень любого положительного основания равна единице, см. (10.1)). Отсюда
что и требовалось доказать.
Верно и обратное утверждение: если , то N = 1. Действительно, имеем .
Прежде чем сформулировать следующее свойство логарифмов, условимся говорить, что два числа а и b лежат по одну сторону от третьего числа с, если они оба либо больше с, либо меньше с. Если одно из этих чисел больше с, а другое меньше с, то будем говорить, что они лежат по разные стороны от с.
Свойство 3. Если число и основание лежат по одну сторону от единицы, то логарифм положителен; если число и основание лежат по разные стороны от единицы, то логарифм отрицателен.
Доказательство свойства 3 основано на том, что степень а больше единицы, если основание больше единицы и показатель положителен или основание меньше единицы и показатель отрицателен. Степень меньше единицы, если основание больше единицы и показатель отрицателен или основание меньше единицы и показатель положителен.
Требуется рассмотреть четыре случая:
Ограничимся разбором первого из них, остальные читатель рассмотрит самостоятельно.
Пусть тогда в равенстве показатель степени не может быть ни отрицательным, ни равным нулю, следовательно, он положителен, т. е. что и требовалось доказать.
Пример 3. Выяснить, какие из указанных ниже логарифмов положительны, какие отрицательны:
Решение, а) так как число 15 и основание 12 расположены по одну сторону от единицы;
б) , так как 1000 и 2 расположены по одну сторону от единицы; при этом несущественно, что основание больше логарифмируемого числа;
в) , так как 3,1 и 0,8 лежат по разные стороны от единицы;
г) ; почему?
д) ; почему?
Следующие свойства 4-6 часто называют правилами логарифмирования: они позволяют, зная логарифмы некоторых чисел, найти логарифмы их произведения, частного, степени каждого из них.
Свойство 4 (правило логарифмирования произведения). Логарифм произведения нескольких положительных чисел по данному основанию равен сумме логарифмов этих чисел по тому же основанию.
Доказательство. Пусть даны положительные числа .
Для логарифма их произведения напишем определяющее логарифм равенство (26.1):
Отсюда найдем
Сравнив показатели степени первого и последнего выражений, получим требуемое равенство:
Заметим, что условие существенно; логарифм произведения двух отрицательных чисел имеет смысл, но в этом случае получим
В общем случае, если произведение нескольких сомножителей положительно, то его логарифм равен сумме логарифмов модулей этих сомножителей.
Свойство 5 (правило логарифмирования частного). Логарифм частного положительных чисел равен разности логарифмов делимого и делителя, взятых по тому же основанию. Доказательство. Последовательно находим
что и требовалось доказать.
Свойство 6 (правило логарифмирования степени). Логарифм степени какого-либо положительного числа равен логарифму этого числа, умноженному на показатель степени.
Доказательство. Запишем снова основное тождество (26.1) для числа :
что и требовалось доказать.
Следствие. Логарифм корня из положительного числа равен логарифму подкоренного числа, деленному на показатель корня:
Доказать справедливость этого следствия можно, представив как и воспользовавшись свойством 6.
Пример 4. Прологарифмировать по основанию а:
а) (предполагается, что все величины b, с, d, е положительны);
б) (преполагается, что ).
Решение, а) Удобно перейти в данном выражении к дробным степеням:
На основании равенств (26.5)-(26.7) теперь можно записать:
Мы замечаем, что над логарифмами чисел производятся действия более простые, чем над самими числами: при умножении чисел их логарифмы складываются, при делении - вычитаются и т.д.
Именно поэтому логарифмы получили применение в вычислительной практике (см. п. 29).
Действие, обратное логарифмированию, называется потенцированием, а именно: потенцированием называется действие, с помощью которого по данному логарифму числа находится само это число. По существу потенцирование не является каким-либо особым действием: оно сводится к возведению основания в степень (равную логарифму числа). Термин «потенцирование» можно считать синонимом термина «возведенение в степень».
При потенцировании надо пользоваться правилами, обратными по отношению к правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов - логарифмом частного и т. д. В частности, если перед знаком логарифма находится какой-либо множитель, то его при потенцировании нужно переносить в показатель степени под знак логарифма.
Пример 5. Найти N, если известно, что
Решение. В связи с только что высказанным правилом потенцирования множители 2/3 и 1/3, стоящие перед знаками логарифмов в правой части данного равенства, перенесем в показатели степени под знаками этих логарифмов; получим
Теперь разность логарифмов заменим логарифмом частного:
для получения последней дроби в этой цепочке равенств мы предыдущую дробь освободили от иррациональности в знаменателе (п. 25).
Свойство 7. Если основание больше единицы, то большее число имеет больший логарифм (а меньшее - меньший), если основание меньше единицы, то большее число имеет меньший логарифм {а меньшее - больший).
Это свойство формулируют также и как правило логарифмирования неравенств, обе части которых положительны:
При логарифмировании неравенств по основанию, большему единицы, знак неравенства сохраняется, а при логарифмировании по основанию, меньшему единицы, знак неравенства меняется на противоположный (см. также п. 80).
Доказательство основано на свойствах 5 и 3. Рассмотрим случай, когда Если , то и, логарифмируя, получим
(а и N/М лежат по одну сторону от единицы). Отсюда
Случай а следует , читатель разберет самостоятельно.
Начнем со свойства логарифма единицы . Его формулировка такова: логарифм единицы равен нулю, то есть, log a 1=0 для любого a>0 , a≠1 . Доказательство не вызывает сложностей: так как a 0 =1 для любого a , удовлетворяющего указанным выше условиям a>0 и a≠1 , то доказываемое равенство log a 1=0 сразу следует из определения логарифма.
Приведем примеры применения рассмотренного свойства: log 3 1=0 , lg1=0 и .
Переходим к следующему свойству: логарифм числа, равного основанию, равен единице , то есть, log a a=1 при a>0 , a≠1 . Действительно, так как a 1 =a для любого a , то по определению логарифма log a a=1 .
Примерами использования этого свойства логарифмов являются равенства log 5 5=1 , log 5,6 5,6 и lne=1 .
К примеру, log 2 2 7 =7 , lg10 -4 =-4 и .
Логарифм произведения двух положительных чисел x и y равен произведению логарифмов этих чисел: log a (x·y)=log a x+log a y , a>0 , a≠1 . Докажем свойство логарифма произведения. В силу свойств степени a log a x+log a y =a log a x ·a log a y , а так как по основному логарифмическому тождеству a log a x =x и a log a y =y , то a log a x ·a log a y =x·y . Таким образом, a log a x+log a y =x·y , откуда по определению логарифма вытекает доказываемое равенство.
Покажем примеры использования свойства логарифма произведения: log 5 (2·3)=log 5 2+log 5 3 и .
Свойство логарифма произведения можно обобщить на произведение конечного числа n положительных чисел x 1 , x 2 , …, x n как log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Данное равенство без проблем доказывается .
Например, натуральных логарифм произведения можно заменить суммой трех натуральных логарифмов чисел 4 , e , и .
Логарифм частного двух положительных чисел x и y равен разности логарифмов этих чисел. Свойству логарифма частного соответствует формула вида , где a>0 , a≠1 , x и y – некоторые положительные числа. Справедливость этой формулы доказывается как и формула логарифма произведения: так как , то по определению логарифма .
Приведем пример использования этого свойства логарифма: .
Переходим к свойству логарифма степени . Логарифм степени равен произведению показателя степени на логарифм модуля основания этой степени. Запишем это свойство логарифма степени в виде формулы: log a b p =p·log a |b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .
Сначала докажем это свойство для положительных b . Основное логарифмическое тождество позволяет нам представить число b как a log a b , тогда b p =(a log a b) p , а полученное выражение в силу свойство степени равно a p·log a b . Так мы приходим к равенству b p =a p·log a b , из которого по определению логарифма заключаем, что log a b p =p·log a b .
Осталось доказать это свойство для отрицательных b . Здесь замечаем, что выражение log a b p при отрицательных b имеет смысл лишь при четных показателях степени p (так как значение степени b p должно быть больше нуля, в противном случае логарифм не будет иметь смысла), а в этом случае b p =|b| p . Тогда b p =|b| p =(a log a |b|) p =a p·log a |b| , откуда log a b p =p·log a |b| .
Например, и ln(-3) 4 =4·ln|-3|=4·ln3 .
Из предыдущего свойства вытекает свойство логарифма из корня : логарифм корня n -ой степени равен произведению дроби 1/n на логарифм подкоренного выражения, то есть, , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .
Доказательство базируется на равенстве (смотрите ), которое справедливо для любых положительных b , и свойстве логарифма степени: .
Вот пример использования этого свойства: .
Теперь докажем формулу перехода к новому основанию логарифма вида . Для этого достаточно доказать справедливость равенства log c b=log a b·log c a . Основное логарифмическое тождество позволяет нам число b представить как a log a b , тогда log c b=log c a log a b . Осталось воспользоваться свойством логарифма степени: log c a log a b =log a b·log c a . Так доказано равенство log c b=log a b·log c a , а значит, доказана и формула перехода к новому основанию логарифма .
Покажем пару примеров применения этого свойства логарифмов: и .
Формула перехода к новому основанию позволяет переходить к работе с логарифмами, имеющими «удобное» основание. Например, с ее помощью можно перейти к натуральным или десятичным логарифмам, чтобы можно было вычислить значение логарифма по таблице логарифмов . Формула перехода к новому основанию логарифма также позволяет в некоторых случаях находить значение данного логарифма, когда известны значения некоторых логарифмов с другими основаниями.
Часто используется частный случай формулы перехода к новому основанию логарифма при c=b вида . Отсюда видно, что log a b и log b a – . К примеру, .
Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида . Имеем . Для доказательства формулы достаточно воспользоваться формулой перехода к новому основанию логарифма a : .
Осталось доказать свойства сравнения логарифмов.
Докажем, что для любых положительных чисел b 1
и b 2
, b 1 log a b 2
, а при a>1
– неравенство log a b 1 Наконец, осталось доказать последнее из перечисленных свойств логарифмов. Ограничимся доказательством его первой части, то есть, докажем, что если a 1 >1
, a 2 >1
и a 1 1
справедливо log a 1 b>log a 2 b
. Остальные утверждения этого свойства логарифмов доказываются по аналогичному принципу. Воспользуемся методом от противного. Предположим, что при a 1 >1
, a 2 >1
и a 1 1
справедливо log a 1 b≤log a 2 b
. По свойствам логарифмов эти неравенства можно переписать как и соответственно, а из них следует, что log b a 1 ≤log b a 2
и log b a 1 ≥log b a 2
соответственно. Тогда по свойствам степеней с одинаковыми основаниями должны выполняться равенства b log b a 1 ≥b log b a 2
и b log b a 1 ≥b log b a 2
, то есть, a 1 ≥a 2
. Так мы пришли к противоречию условию a 1
Список литературы.
- Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
- Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).
Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       
Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.
Основное логарифмическое тождество
a log a b = b (a > 0, a ≠ 1) (2)Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического "тождества" при решении уравнений и неравенств может привести к изменению ОДЗ.
Два очевидных следствия определения логарифма
log a a = 1 (a > 0, a ≠ 1) (3)log a 1 = 0 (a > 0, a ≠ 1) (4)
Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень - единицу.
Логарифм произведения и логарифм частного
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)Log
a
b
c
=
log
a
b −
log
a
c
(a > 0, a ≠ 1, b > 0, c > 0)
(6)
Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании "слева направо" происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного - расширение ОДЗ.
Действительно, выражение log a (f (x) g (x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.
Преобразуя данное выражение в сумму log a f (x) + log a g (x) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).
Степень можно выносить за знак логарифма
log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:
Log a (f (x) 2 = 2 log a f (x)
Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть - только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.
Формула перехода к новому основанию
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.
Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):
Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)
Несколько простых примеров с логарифмами
Пример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.
Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log 5 125 = 3. Мы использовали формулу перехода к новому основанию (8).
Таблица формул, связанных с логарифмами
a log a b = b (a > 0, a ≠ 1) |
log a a = 1 (a > 0, a ≠ 1) |
log a 1 = 0 (a > 0, a ≠ 1) |
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) |
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) |
log a b p = p log a b (a > 0, a ≠ 1, b > 0) |
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) |
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) |
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)
Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).
Примеры: |
\(\log_{5}{25}=2\) |
т.к. \(5^{2}=25\) |
||
\(\log_{3}{81}=4\) |
т.к. \(3^{4}=81\) |
|||
\(\log_{2}\)\(\frac{1}{32}\) \(=-5\) |
т.к. \(2^{-5}=\)\(\frac{1}{32}\)
|
Аргумент и основание логарифма
Любой логарифм имеет следующую «анатомию»:
Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».
Как вычислить логарифм?
Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?
Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)
а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:
\(\log_{4}{16}=2\)
\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)
в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!
\(\log_{\sqrt{5}}{1}=0\)
г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.
\(\log_{\sqrt{7}}{\sqrt{7}}=1\)
д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .
\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)
Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)
Решение :
\(\log_{4\sqrt{2}}{8}=x\) |
Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма: |
|
\((4\sqrt{2})^{x}=8\) |
Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки: |
|
\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\) |
Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\) |
|
\(2^{\frac{5}{2}x}=2^{3}\) |
Основания равны, переходим к равенству показателей |
|
\(\frac{5x}{2}\) \(=3\) |
|
Умножим обе части уравнения на \(\frac{2}{5}\) |
|
Получившийся корень и есть значение логарифма |
Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)
Зачем придумали логарифм?
Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).
А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.
Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).
Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)
Пример : Решите уравнение \(4^{5x-4}=10\)
Решение :
\(4^{5x-4}=10\) |
\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма. Воспользуемся определением логарифма: |
|
\(\log_{4}{10}=5x-4\) |
Зеркально перевернем уравнение, чтобы икс был слева |
|
\(5x-4=\log_{4}{10}\) |
Перед нами . Перенесем \(4\) вправо. И не пугайтесь логарифма, относитесь к нему как к обычному числу. |
|
\(5x=\log_{4}{10}+4\) |
Поделим уравнение на 5 |
|
\(x=\)\(\frac{\log_{4}{10}+4}{5}\) |
|
Вот наш корень. Да, выглядит непривычно, но ответ не выбирают. |
Ответ : \(\frac{\log_{4}{10}+4}{5}\)
Десятичный и натуральный логарифмы
Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:
Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).
То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)
Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).
То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.
Основное логарифмическое тождество
У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:
\(a^{\log_{a}{c}}=c\) |
Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.
Вспомним краткую запись определения логарифма:
если \(a^{b}=c\), то \(\log_{a}{c}=b\)
То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.
Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.
Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)
Решение :
Ответ : \(25\)
Как число записать в виде логарифма?
Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).
Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается
\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)
Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.
Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:
\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)
И с четверкой:
\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)
И с минус единицей:
\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)
И с одной третьей:
\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)
Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)
Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)
Решение :
Ответ : \(1\)