Как чертить в проекции. Выполнение прямоугольной изометрической проекции

Для тoгo чтобы получить аксонометрическую проекцию пред­мета (рис. 106), необходимо мысленно: поместить предмет в сис­тему координат; выбрать аксонометрическую плоскость проекций и расположить предмет перед ней; выбрать направление парал­лельных проецирующих лучей, которое не должно совпадать ни с одной из аксонометрических осей; направить проецирующие лучи через все точки предмета и координатные оси до пересечения с аксонометрической плоскостью проекций, получив тем самым изображение проецируемого предмета и координатных осей.

На аксонометрической плоскости проекций получают изобра­жение - аксонометрическую проекцию предмета, а также про­екции осей систем координат, которые называют аксонометриче­скими осями.

Аксонометрической проекцией называется изображение, по­лученное на аксонометрической плоскости в результате парал­лельного проецирования предмета вместе с системой координат, которое наглядно отображает его форму.

Система координат состоит из трех взаимно пересекающихся плоскостей, которые имеют фиксированную точку - начало координат (точку О) и три оси (X, У, Z), исходящие из нее и расположенные под прямым углом друг к другу. Сис­тема координат позволяет производить измерения по осям, определяя положение предметов в пространстве.

Рис. 106. Получение аксонометрической (прямоугольной изометрической) проекции

Можно получить множество аксонометрических проекций, по- разному располагая предмет перед плоскостью и выбирая при этом различное направление проецирующих лучей (рис. 107).

Наиболее употребляемой является так называемая прямо­угольная изометрическая проекция (в дальнейшем будем использовать ее сокращенное название - изометрическая проек­ция). Изометрической проекцией (см. рис. 107, а) называется та­кая проекция, у которой коэффициенты искажения по всем трем осям равны, а углы между аксонометрическими осями составляют 120°. Изометрическая проекция получается с помощью па­раллельного проецирования.


Рис. 107. Аксонометрические проекции, установленные ГОСТ 2.317-69:
а - прямоугольная изометрическая проекция; б - прямоугольная диметрическая проекция;
в - косоугольная фронтальная изометриче­ская проекция;
г - косоугольная фронтальная диметрическая проекция



Рис. 107. Продолжение: д - косоугольная горизонтальная изометриче­ская проекция

При этом проецирующие лучи пер­пендикулярны аксонометрической плоскости проекций, а коор­динатные оси одинаково наклонены к аксонометрической плоско­сти проекций (cм. рис. 106). Если сравнить линейные размеры предмета и соответствующие им размеры аксонометрического изображения, то можно увидеть, что на изображении эти размеры меньше, чем действительные. Величины, показывающие отноше­ние размеров проекций отрезков прямых к действительным их размерам, называют коэффициентами искажения. Коэффициен­ты искажения (К) по осям изометрической проекции одинаковы и равны 0,82, однако для удобства построения используют так называемые практические коэффициенты искажения, которые равны единице (рис. 108).


Рис. 108. Положение осей и коэффициенты искажения изометрической проекции

Существуют изометрические, диметрические и триметрические проекции. К изометрическим проекциям относятся такие проекции, которые имеют одинаковые коэффициенты искажения по всем трем осям. Диметрическими проекциями называются такие проекции, у которых два коэффициента искажения по осям одинаковые, а величина третьего отличается от них. К триметрическим проекциям относятся проекции, у которых все коэффици­енты искажения различны.

Прямоугольной изометрией называется аксонометрическая проекция, у которой коэффициенты искажения по всем трём осям равны, а углы между аксонометрическими осями 120. На рис. 1 представлено положение аксонометрических осей прямоугольной изометрии и способы их построения.

Рис. 1. Построение аксонометрических осей прямоугольной изометрии с помощью: а) отрезков; б) циркуля; в) угольников или транспортира.

При практических построениях коэффициент искажения (К) по аксонометрическим осям согласно ГОСТ 2.317- 2011 рекомендуют равный единице. При этом изображение получают более крупным по сравнению с теоретическим или точным изображением при коэффициентах искажения 0,82. Увеличение равно 1,22. На рис. 2 приведён пример изображения детали в прямоугольной изометрической проекции.

Рис. 2. Изометрия детали.

      Построение в изометрии плоских фигур

Задан правильный шестиугольник АВСDЕF, расположенный параллельно горизонтальной плоскости проекций Н (П 1).

а) Строим изометрические оси (рис.3).

б) Коэффициент искажения по осям в изометрии равен 1, поэтому от точки О 0 по осям откладываем натуральные величины отрезков: А 0 О 0 = АО; О 0 D 0 = ОD; К 0 О 0 = КО; О 0 Р 0 = ОР.

в) Линии, параллельные координатным осям, проводятся в изометрии также параллельно соответствующим изометрическим осям в натуральную величину.

В нашем примере стороны ВС и FЕ параллельны оси Х .

В изометрии они вычерчиваются также параллельно оси Х в натуральную величину В 0 С 0 = ВС; F 0 Е 0 = FЕ.

г) Соединяя полученные точки, получим изометрическое изображение шестиугольника в плоскости Н (П 1).

Рис. 3. Изометрическая проекция шестиугольника на чертеже

и в горизонтальной плоскости проекции

На рис. 4 представлены проекции наиболее распространенных плоских фигур в различных плоскостях проекций.

Наиболее распространённой фигурой является окружность. Изометрическая проекция окружности в общем случае представляет собой эллипс. Эллипс строят по точкам и обводят по лекалу, что в практике черчения весьма неудобно. Поэтому эллипсы заменяют овалами.

На рис. 5 построен в изометрии куб с окружностями, вписанными в каждую грань куба. При изометрических построениях важно правильно расположить оси овалов в зависимости от плоскости, в которой предполагается изобразить окружность. Как видно на рис. 5 большие оси овалов располагаются по большей диагонали ромбов, в которые спроецировались грани куба.

Рис. 4 Изометрическое изображение плоских фигур

а) на чертеже; б) на плоскости Н; в) на плоскости V; г) на плоскостиW.

Для прямоугольной аксонометрии любого вида правило определения главных осей эллипса овала, в который проецируется окружность, лежащая в какой-либо плоскости проекции, может быть сформулировано следующим образом: большая ось овала располагается перпендикулярно к той аксонометрической оси, которая отсутствует в данной плоскости, а малая совпадает с направлением этой оси. Форма и размеры овалов в каждой плоскости изометрических проекций одинаковы.

Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.

Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.

Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:

Изометрические, когда все три коэффициента искажения одинаковы (k x =k y =k z);

Диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (k x = k z ≠k y);

Триметрические, когда все три коэффициенты искажения не равны между собой (k x ≠k y ≠k z).

В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.

В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.

Изометрические оси изображены на рисунке 57.


Рисунок 57

Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О - получают направление оси Х. Таким же образом соединяют точку С с точкой О - получают направление оси Y.


Рисунок 58

Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.


Рисунок 59

Построение окружности в прямоугольной изометрической проекции

Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.

Размер большой оси эллипса 1,22d, малой 0,7d, где d - диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ - большая ось эллипса.


Рисунок 60

Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О 1 , О 2 , О 3 , О 4 , являющиеся центрами дуг овала (рисунок 61).

Для определения точек сопряжения проводят линии центров, соединяя О 1 , О 2 , О 3 , О 4 . из полученных центров О 1 , О 2 , О 3 , О 4 проводят дуги радиусами R и R 1 . размеры радиусов видны на чертеже.


Рисунок 61

Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).


Рисунок 62

Штриховка и изометрической проекции

Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.

Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.

По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты k x =k z =1, k y =0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.

Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:

На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа - семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.


Рисунок 63

Построение диметрической проекции шестиугольника

Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П 1 (рисунок 64).


Рисунок 64

На оси Х откладываем отрезок равный величине b , чтобы его середина находилась в точке О, а по оси Y - отрезок а , размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.


Рисунок 65

Построение окружности в диметрии

В прямоугольной диметрии все окружности изображаются эллипсами,

Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей - 0,35 d.

На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).

Через точку О - начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО 1 и ОО 2 , равные по величине 1,06d. Точки О 1 и О 2 являются центром больших дуг овала. Для определения еще двух центров (О 3 и О 4) откладываем на горизонтальной прямой от точек А и В отрезки АО 3 и ВО 4 , равные ¼ величины малой оси эллипса, то есть d.


Рисунок 66

Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 - радиусом до точек А и В (рисунок 67).


Рисунок 67

Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П 2 , рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О 1 , О 2, О 3, О 4 - центры дуг овала (рисунок 68).

Из центров О 3 и О 4 описывают дугу радиусом R 2 =О 3 М, а из центров О 1 и О 2 - дуги радиусом R 1 = О 2 N


Рисунок 68

Штриховка а прямоугольной диметрии

Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).


Рисунок 69

  1. Какие виды аксонометрических проекций вы знаете?
  2. Под каким углом расположены оси в изометрии?
  3. Какую фигуру представляет изометрическая проекция окружности?
  4. Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
  5. Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
  6. Под какими углами расположены оси в диметрии?
  7. Какой фигурой будет являться диметрическая проекция квадрата?
  8. Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
  9. Основные правила нанесения штриховки в аксонометрических проекциях.

Построение третьего вида по двум заданным

При построение вида слева, представляющего собой симметричную фигуру, за базу отсчета размеров проецируемых элементов детали берут плоскость симметрии, изображая её осевой линией.

Названия видов на чертежах, выполненных в проекционной связи, не указываются.

Построение аксонометрических проекций

Для наглядных изображений предметов, изделий и их составных частей единой системы конструкторской документации (ГОСТ 2.317-69) рекомендуется применять пять видов аксонометрических проекций: прямоугольные – изометрическую и диметрическую проекции, косоугольные – фронтальную изометрическую, горизонтальную изометрическую и фронтальную диметрическую проекции.

По ортогональным проекциям любого предмета всегда можно построить его аксонометрическое изображение. При аксонометрических построениях используются геометрические свойства плоских фигур, особенности пространственных форм геометрических тел и расположение их относительно плоскостей проекций.

Общий порядок построения аксонометрических проекций следующий:

1. Выбирают оси координат ортогональной проекции детали;

2. Строят оси аксонометрической проекции;

3. Строят аксонометрическое изображение основной формы детали;

4. Строят аксонометрическое изображение всех элементов, определяющих действительную форму данной детали;

5. Строят вырез части данной детали;

6. Проставляют размеры.

Прямоугольная геометрическая проекция

Положение оси в прямоугольной изометрической проекции приведено на рис. 17.12. Действительные коэффициенты искажения по осям равны 0,82. В практике пользуются приведенными коэффициентами, равными 1. При этом изображения получаются увеличенными в 1,22 раза.

Способы построения осей изометрии

Направление аксонометрических осей в изометрии можно получить несколькими способами (см. рис. 11.13).

Первый способ – с помощью угольника в 30°;

Второй способ – разделить циркулем окружность произвольного радиуса на 6 частей; прямая О1 – ось ох, прямая О2 – ось оy.

Третий способ – построить отношение частей 3/5; по горизонтальной линии отложить пять частей (получим точку М) и вниз три части (получим точку К). Полученную точку К соединить с центром О. ÐКОМ равен 30°.

Способы построения плоских фигур в изометрии

Для того, чтобы правильно построить изометрическое изображение пространственных фигур необходимо уметь строить изометрию плоских фигур. Для построения изометрических изображений надо выполнить следующие действия.

1. Дать соответствующее направление осям ох и оу в изометрии (30°).



2. Отложить на осях ох и оу натуральные (в изометрии) или сокращенные по осям (в диметрии – по оси оу) величины отрезков (координаты вершин точек.

Так как построение производится по приведенным коэффициентам искажения, то изображение получается с увеличением:

для изометрии – в 1,22 раза;

ход построения дан на рис 11.14.

На рис. 11.14а даны ортогональные проекции трех плоских фигур – шестиугольника, треугольника, пятиугольника. На рис. 11.14б построены изометрические проекции этих фигур в разных аксонометрических плоскостях – хоу, уоz.

Построение окружности в прямоугольной изометрии

В прямоугольной изометрии эллипсы, изображающие окружность диаметра d в плоскостях хоу, хоz, yoz, одинаковы (рис. 11.15). Причем большая ось каждого эллипса всегда перпендикулярна той координатной оси, которая отсутствует в плоскости изображаемой окружности. Большая ось эллипса АВ = 1,22d, малая ось CD = 0.71d.

При построении эллипсов через их центры проводят направления большой и малой осей, на которых соответственно откладывают отрезки АВ и СD и прямые, параллельные осям аксонометрии, на которых откладывают отрезки MN, равные диаметру изображаемой окружности. Полученные 8 точек соединяют по лекалу.

В техническом черчении при построении аксонометрических проекций окружностей эллипсы допускается заменять овалами. На рис. 11.15 показано построение овала без определения большой и малой осей эллипса.

Построение прямоугольной изометрической проекции детали, заданной ортогональными проекциями, производиться в следующем порядке.

1. На ортогональных проекциях выбирают оси координат, как показано на рис. 11.17.

2. Строят ось координат x, y, z в изометрической проекции (рис. 11.18)

3. Строят параллелепипед – основание детали. Для этого от начала координат по оси х откладывают отрезки ОА и ОВ, соответственно равные отрезкам о 1 а 1 и о 1 b 1 на горизонтальной проекции детали (рис. 11.17) и получают точки А и В.

Через точки А и В проводят прямые, параллельные оси y, и откладывают отрезки, равные половине ширины параллелепипеда. Получают точки D, C, J, V, которые являются изометрическими проекциями вершин нижнего прямоугольника. Точки С и V, D и J соединяют прямыми, параллельными оси х.

От начала координат О по оси z откладывают отрезок ОО 1 , равный высоте параллелепипеда О 2 О 2 ¢ , через точку О 1 проводят оси х 1 , у 1 и строят изометрическую проекцию верхнего прямоугольника. Вершины прямоугольника соединяют прямыми, параллельными оси z.

4. строят аксонометрическое изображение цилиндра диаметра D. По оси z от О 1 откладывают отрезок О 1 О 2 , равный отрезку О 2 О 2 2 , т.е. высоте цилиндра, получая точку О 2 и проводят оси х 2 , у 2 . Верхнее и нижнее основания цилиндра являются окружностями, расположенными в горизонтальных плоскостях х 1 О 1 у 1 и х 2 О 2 у 2 . Строят изометрическую проекцию аналогично построению овала в плоскости хОу (см. рис. 11.18). Проводят очерковые образующие цилиндра касательными к обоим эллипсам (параллельно оси z). Построение эллипсов для цилиндрического отверстия диаметром d выполняется аналогично.

5. Строят изометрическое изображение ребра жесткости. От точки О 1 по оси х 1 откладывают отрезок О 1 Е, равный ое. Через точку Е проводят прямую параллельную оси у и откладываю в обе стороны отрезок, равный половине ширины ребра (еk и ef). Получают точки К и F. Из точек К, E, F проводят прямые, параллельные оси х 1 до встречи с эллипсом (точки P, N, M). Проводят прямые, параллельные оси z (линии пересечения плоскостей ребра с поверхность цилиндра), и на них откладывают отрезки PТ, MQ и NS, равные отрезкам р 3 t 3 , m 3 q 3 , n 3 s 3 . Точки Q, S, T соединяют и обводят по лекалу, от точки K, T и F, Q соединяют прямыми.

6. Строят вырез части заданной детали.

Проводят две секущие плоскости: одну через оси z и x, а другую – через оси z и y. Первая секущая плоскость разрежет нижний прямоугольник параллелепипеда по оси х (отрезок ОА), верхний – по оси х 1 , ребро – по линии EN и ES, цилиндры диаметрами D и d – по образующим, верхнее основание цилиндра по оси х 2 . Аналогично вторая секущая плоскость разрежет верхний и нижний прямоугольник по осям у и у 1 , а цилиндры - по образующим и верхнее основание цилиндра – по оси у 2 . Плоскости, полученные от сечения, заштриховываются. Для того, чтобы определить направление линий штриховки, необходимо на аксонометрических осях, проведенных радом с изображением (рис. 11.19) отложить от начала координат равные отрезки О1, О2, О3, концы этих отрезков соединить. Линии штриховки сечений, расположенном в плоскости хОz, наносить параллельно отрезку I2, для сечения, лежащего в плоскости zОу – параллельно отрезку 23.

Удаляют все невидимые линии и линии построения и обводят контурные линии.

7. Проставляют размеры.

Для нанесения размеров выносные и размерные линии проводят параллельно аксонометрическим осям.

Прямоугольная диметрическая проекция

Построение координатных осей для диметрической прямоугольной проекции показано на рис. 11.20.

Для диметрической прямоугольно проекции коэффициенты искажения по осям х и z равны0,94, по оси у – 0,47. В практике пользуются приведенными коэффициентами искажения: по осям х и z приведенный коэффициент искажения равен 1, по оси у – 0,5. При этом изображение получается в 1,06 раза.

Способы построения плоских фигур в диметрии

Для того, чтобы правильно построить диметрическое изображение пространственной фигуры, надо выполнить следующие действия:

1. Дать соответствующее направление осям ох и оу, в диметрии (7°10¢; 41°25¢).

2. Отложить по осям х, z натуральные, а по оси у сокращенные согласно коэффициентам искажения величины отрезков (координаты вершин точек).

3. Полученные точки соединить.

Ход построения дан на рис. 11.21. На рис. 11.21а даны ортогональные проекции трех плоских фигур. На рис 11.21б построение диметричеких проекций этих фигур в разных аксонометрических плоскостях – хоу; уоz/

Построение окружности прямоугольной диметрии

Аксонометрическая проекция окружности представляет собой эллипс. Направление большой и малой оси каждого эллипса указано на рис. 11.22. Для плоскостей, параллельных горизонтальной (хоу) и профильной (уоz) плоскостям, величина большой оси равна 1,06d, малой – 0,35d.

Для плоскостей, параллельных фронтальной плоскости хоz, величина большой оси равна 1,06d, а малой – 0,95d.

В техническом черчении при построении окружности эллипсы допускается заменить овалами. На рис. 11.23 показано построение овала без определения большой и малой осей эллипса.

Принцип построения диметрической прямоугольной проекции детали (рис. 11.24) аналогичен принципу построения изометрической прямоугольной проекции, приведенной на рис 11.22 с учетом коэффициента искажения по оси у.

1