Как найти точку пересечения двух прямых. Точка пересечения двух прямых – определение (методическая разработка)

Пусть даны две прямые и требуется найти их точку пересечения. Так как эта точка принадлежит каждой из двух данных прямых, то ее координаты должны удовлетворять как уравнению первой прямой, так и уравнению второй прямой.

Таким образом, для того чтобы найти координаты точки пересечения двух прямых, следует решить систему уравнений

Пример 1. Найти точку пересечения прямых и

Решение. Координаты искомой точки пересечения мы найдем, решив систему уравнений

Точка пересечения М имеет координаты

Покажем, как построить прямую по ее уравнению. Для построения прямой достаточно знать две ее точки. Чтобы построить каждую из этих точек, мы задаемся произвольным значением одной из ее координат, а затем из уравнения находим соответствующее значение другой координаты.

Если в общем уравнении прямой оба коэффициента при текущих координатах не равны нулю , то для построения этой прямой лучше всего находить точки ее пересечения с осями координат.

Пример 2. Построить прямую .

Решение. Находим точку пересечения данной прямой с осью абсцисс. Для этого решаем совместно их уравнения:

и получаем . Таким образом, найдена точка М (3; 0) пересечения данной прямой с осью абсцисс (рис. 40).

Решая затем совместно уравнение данной прямой и уравнение оси ординат

мы находим точку пересечения прямой с осью ординат. Наконец, строим прямую по ее двум точкам М и

Не прошло и минуты, как я создал новый вёрдовский файл и продолжил столь увлекательную тему. Нужно ловить моменты рабочего настроя, поэтому лирического вступления не будет. Будет прозаическая порка =)

Две прямые пространства могут:

1) скрещиваться;

2) пересекаться в точке ;

3) быть параллельными ;

4) совпадать.

Случай № 1 принципиально отличается от других случаев. Две прямые скрещиваются, если они не лежат в одной плоскости . Поднимите одну руку вверх, а другую руку вытяните вперёд – вот вам и пример скрещивающихся прямых. В пунктах же № 2-4 прямые обязательно лежат в одной плоскости .

Как выяснить взаимное расположение прямых в пространстве?

Рассмотрим две прямые пространства:

– прямую , заданную точкой и направляющим вектором ;
– прямую , заданную точкой и направляющим вектором .

Для лучшего понимания выполним схематический чертёж:

На чертеже в качестве примера изображены скрещивающиеся прямые.

Как разобраться с этими прямыми?

Так как известны точки , то легко найти вектор .

Если прямые скрещиваются , то векторы не компланарны (см. урок Линейная (не) зависимость векторов. Базис векторов ), а, значит, определитель, составленный из их координат, ненулевой. Или, что фактически то же самое, будет отлично от нуля: .

В случаях № 2-4 наша конструкция «падает» в одну плоскость, при этом векторы компланарны , а смешанное произведение линейно зависимых векторов равняется нулю: .

Раскручиваем алгоритм дальше. Предположим, что , следовательно, прямые либо пересекаются, либо параллельны, либо совпадают.

Если направляющие векторы коллинеарны , то прямые либо параллельны, либо совпадают. Финальным гвоздём предлагаю следующий приём: берём какую-либо точку одной прямой и подставляем её координаты в уравнение второй прямой; если координаты «подошли», то прямые совпадают, если «не подошли», то прямые параллельны.

Ход алгоритма незатейлив, но практические примеры всё равно не помешают:

Пример 11

Выяснить взаимное расположение двух прямых

Решение : как и во многих задачах геометрии, решение удобно оформить по пунктам:

1) Вытаскиваем из уравнений точки и направляющие векторы:

2) Найдём вектор:

Таким образом, векторы компланарны, а значит, прямые лежат в одной плоскости и могут пересекаться, быть параллельными или совпадать.

4) Проверим направляющие векторы на коллинеарность.

Составим систему из соответствующих координат данных векторов:

Из каждого уравнения следует, что , следовательно, система совместна, соответствующие координаты векторов пропорциональны, и векторы коллинеарны.

Вывод: прямые параллельны либо совпадают.

5) Выясним, есть ли у прямых общие точки. Возьмём точку , принадлежащую первой прямой, и подставим её координаты в уравнения прямой :

Таким образом, общих точек у прямых нет, и им ничего не остаётся, как быть параллельными.

Ответ :

Интересный пример для самостоятельного решения:

Пример 12

Выяснить взаимное расположение прямых

Это пример для самостоятельного решения. Обратите внимание, что у второй прямой в качестве параметра выступает буква . Логично. В общем случае – это же две различные прямые, поэтому у каждой прямой свой параметр.

И снова призываю не пропускать примеры, пороть буду предлагаемые мной задачи далеко не случайны;-)

Задачи с прямой в пространстве

В заключительной части урока я постараюсь рассмотреть максимальное количество различных задач с пространственными прямыми. При этом будет соблюдён начатый порядок повествования: сначала мы рассмотрим задачи со скрещивающимися прямыми, затем с пересекающимися прямыми, и в конце поговорим о параллельных прямых в пространстве. Однако должен сказать, что некоторые задачи данного урока можно сформулировать сразу для нескольких случаев расположения прямых, и в этой связи разбиение раздела на параграфы несколько условно. Есть более простые примеры, есть более сложные примеры, и, надеюсь, каждый найдёт то, что нужно.

Скрещивающиеся прямые

Напоминаю, что прямые скрещиваются, если не существует плоскости, в которой бы они обе лежали. Когда я продумывал практику, в голову пришла задача-монстр, и сейчас рад представить вашему вниманию дракона с четырьмя головами:

Пример 13

Даны прямые . Требуется:

а) доказать, что прямые скрещиваются;

б) найти уравнения прямой , проходящей через точку перпендикулярно данным прямым;

в) составить уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых;

г) найти расстояние между прямыми.

Решение : Дорогу осилит идущий:

а) Докажем, что прямые скрещиваются. Найдём точки и направляющие векторы данных прямых:

Найдём вектор:

Вычислим смешанное произведение векторов :

Таким образом, векторы не компланарны , а значит, прямые скрещиваются, что и требовалось доказать.

Наверное, все уже давно подметили, что для скрещивающихся прямых алгоритм проверки получается короче всего.

б) Найдём уравнения прямой , которая проходит через точку и перпендикулярна прямым . Выполним схематический чертёж:

Для разнообразия я разместил прямую ЗА прямыми , посмотрите, как она немного стёрта в точках скрещивания. Скрещивания? Да, в общем случае прямая «дэ» будет скрещиваться с исходными прямыми. Хотя данный момент нас пока не интересует, надо просто построить перпендикулярную прямую и всё.

Что известно о прямой «дэ»? Известна принадлежащая ей точка . Не хватает направляющего вектора.

По условию прямая должна быть перпендикулярна прямым , а значит, её направляющий вектор будет ортогонален направляющим векторам . Уже знакомый из Примера № 9 мотив, найдём векторное произведение:

Составим уравнения прямой «дэ» по точке и направляющему вектору :

Готово. В принципе, можно сменить знаки в знаменателях и записать ответ в виде , но необходимости в этом нет никакой.

Для проверки необходимо подставить координаты точки в полученные уравнения прямой, затем с помощью скалярного произведения векторов убедиться, что вектор действительно ортогонален направляющим векторам «пэ один» и «пэ два».

Как найти уравнения прямой, содержащей общий перпендикуляр?

в) Эта задачка посложнее будет. Чайникам рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить, дело в том, что по сложности пример надо бы поставить последним в статье, но по логике изложения он должен располагаться здесь.

Итак, требуется найти уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых.

– это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец: – общий перпендикуляр скрещивающихся прямых . Он единственный. Другого такого нет. Нам же требуется составить уравнения прямой , которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу…. Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО . Если точка принадлежит данной прямой, то её координатам соответствует , обозначим его через . Тогда координаты точки запишутся в виде:

Жизнь налаживается, одна неизвестная – всё-таки не три неизвестных.

2) Такое же надругательство нужно осуществить над второй точкой. Перепишем уравнения второй прямой в параметрическом виде:

Если точка принадлежит данной прямой, то при вполне конкретном значении её координаты должны удовлетворять параметрическим уравнениям:

Или:

3) Вектор , как и ранее найденный вектор , будет направляющим вектором прямой . Как составить вектор по двум точкам, рассматривалось в незапамятные времена на уроке Векторы для чайников . Сейчас отличие состоит в том, что координаты векторов записаны с неизвестными значениям параметров. Ну и что? Никто же не запрещает из координат конца вектора вычесть соответствующие координаты начала вектора.

Есть две точки: .

Находим вектор:

4) Поскольку направляющие векторы коллинеарны, то один вектор линейно выражается через другой с некоторым коэффициентом пропорциональности «лямбда»:

Или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера . Но здесь есть возможность отделаться малой кровью, из третьего уравнения выразим «лямбду» и подставим её в первое и второе уравнение:

Таким образом: , а «лямбда» нам не потребуется. То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения в наши точки:

Направляющий вектор особо не нужен, так как уже найден его коллега .

После длинного пути всегда интересно выполнить проверку.

:

Получены верные равенства.

Подставим координаты точки в уравнения :

Получены верные равенства.

6) Заключительный аккорд: составим уравнения прямой по точке (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

Как найти расстояние между скрещивающимися прямыми?

г) Срубаем четвёртую голову дракона.

Способ первый . Даже не способ, а небольшой частный случай. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра: .

Крайние точки общего перпендикуляра найдены в предыдущем пункте, и задача элементарна:

Способ второй . На практике чаще всего концы общего перпендикуляра неизвестны, поэтому используют другой подход. Через две скрещивающиеся прямые можно провести параллельные плоскости, и расстояние между данными плоскостями равно расстоянию между данными прямыми. В частности, между этими плоскостями и торчит общий перпендикуляр.

В курсе аналитической геометрии из вышесказанных соображений выведена формула нахождения расстояния между скрещивающимися прямыми:
(вместо наших точек «эм один, два» можно взять произвольные точки прямых).

Смешанное произведение векторов уже найдено в пункте «а»: .

Векторное произведение векторов найдено в пункте «бэ»: , вычислим его длину:

Таким образом:

Гордо выложим трофеи в один ряд:

Ответ :
а) , значит, прямые скрещиваются, что и требовалось доказать;
б) ;
в) ;
г)

Что ещё можно рассказать про скрещивающиеся прямые? Между ними определён угол. Но универсальную формулу угла рассмотрим в следующем параграфе:

Пересекающиеся прямые пространства обязательно лежат в одной плоскости:

Первая мысль – всеми силами навалиться на точку пересечения . И сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Пример 14

Найти точку пересечения прямых

Решение : Перепишем уравнения прямых в параметрической форме:

Данная задача подробно рассматривалась в Примере № 7 данного урока (см. Уравнения прямой в пространстве ). А сами прямые, к слову, я взял из Примера № 12. Врать не буду, новые лень придумывать.

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых принадлежит прямой , поэтому её координаты удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными. Если прямые пересекаются (что доказано в Примере № 12), то система обязательно совместна и имеет единственное решение. Её можно решить методом Гаусса , но уж таким детсадовским фетишизмом грешить не будем, поступим проще: из первого уравнения выразим «тэ нулевое» и подставим его во второе и третье уравнение:

Последние два уравнения получились, по сути, одинаковыми, и из них следует, что . Тогда:

Подставим найденное значение параметра в уравнения:

Ответ :

Для проверки подставим найденное значение параметра в уравнения:
Получены те же самые координаты, что и требовалось проверить. Дотошные читатели могу подставить координаты точки и в исходные канонические уравнения прямых.

Кстати, можно было поступить наоборот: точку найти через «эс нулевое», а проверить – через «тэ нулевое».

Известная математический примета гласит: там, где обсуждают пересечение прямых, всегда пахнет перпендикулярами.

Как построить прямую пространства, перпендикулярную данной?

(прямые пересекаются)

Пример 15

а) Составить уравнения прямой, проходящей через точку перпендикулярно прямой (прямые пересекаются).

б) Найти расстояние от точки до прямой .

Примечание : оговорка «прямые пересекаются» – существенна . Через точку
можно провести бесконечно много перпендикулярных прямых, которые будут скрещиваться с прямой «эль». Единственное решение имеет место в случае, когда через данную точку проводится прямая, перпендикулярная двум заданным прямым (см. Пример № 13, пункт «б»).

а) Решение : Неизвестную прямую обозначим через . Выполним схематический чертёж:

Что известно о прямой ? По условию дана точка . Для того, чтобы составить уравнения прямой, необходимо найти направляющий вектор. В качестве такого вектора вполне подойдёт вектор , им и займемся. Точнее, возьмём за шкирку неизвестный конец вектора.

1) Вытащим из уравнений прямой «эль» её направляющий вектор , а сами уравнения перепишем в параметрической форме:

Многие догадались, сейчас уже в третий раз за урок фокусник достанет белого лебедя из шляпы. Рассмотрим точку с неизвестными координатами. Поскольку точка , то её координаты удовлетворяют параметрическим уравнениям прямой «эль» и им соответствует конкретное значение параметра:

Или одной строкой:

2) По условию прямые должны быть перпендикулярны, следовательно, их направляющие векторы – ортогональны. А если векторы ортогональны, то их скалярное произведение равно нулю:

Что получилось? Простейшее линейное уравнение с одной неизвестной:

3) Значение параметра известно, найдём точку:

И направляющий вектор:
.

4) Уравнения прямой составим по точке и направляющему вектору :

Знаменатели пропорции получились дробные, и это как раз тот случай, когда от дробей уместно избавиться. Я просто умножу их на –2:

Ответ :

Примечание : более строгая концовка решения оформляется так: составим уравнения прямой по точке и направляющему вектору . Действительно, если вектор является навправляющим вектором прямой, то коллинеарный ему вектор , естественно, тоже будет направляющим вектором данной прямой.

Проверка состоит из двух этапов:

1) проверяем направляющие векторы прямых на ортогональность;

2) подставляем координаты точки в уравнения каждой прямой, они должны «подходить» и там и там.

О типовых действиях говорилось очень много, поэтому я выполнил проверку на черновике.

Кстати, запамятовал ещё пунктик – построить точку «зю» симметричную точке «эн» относительно прямой «эль». Впрочем, есть хороший «плоский аналог», с которым можно ознакомиться в статье Простейшие задачи с прямой на плоскости . Здесь же всё отличие будет в дополнительной «зетовой» координате.

Как найти расстояние от точки до прямой в пространстве?

б) Решение : Найдём расстояние от точки до прямой .

Способ первый . Данное расстояние в точности равно длине перпендикуляра : . Решение очевидно: если известны точки , то:

Способ второй . В практических задачах основание перпендикуляра частенько тайна за семью печатями, поэтому рациональнее пользоваться готовой формулой.

Расстояние от точки до прямой выражается формулой:
, где – направляющий вектор прямой «эль», а – произвольная точка, принадлежащая данной прямой.

1) Из уравнений прямой достаём направляющий вектор и самую доступную точку .

2) Точка известна из условия, заточим вектор:

3) Найдём векторное произведение и вычислим его длину:

4) Рассчитаем длину направляющего вектора:

5) Таким образом, расстояние от точки до прямой:

Если прямые

лежат в одной плоскости, то

или в векторной форме

Обратно, если выполняется условие (3), то прямые лежат в одной плоскости.

Пояснение. Если прямые (1) и (2) лежат в одной плоскости, то в последней лежит прямая (рис. 177), т. е. векторы компланарны (и обратно). Это и выражает уравнение (3) (см. § 120).

Замечание. Если (при этом (3) обязательно удовлетворяется), то прямые параллельны. В противном случае прямые, удовлетворяющие условию (3), пересекаются.

Пример. Определить, пересекаются ли прямые

и если да, то в какой точке.

Решение. Прямые (1) и (2) лежат в одной плоскости, так как определитель (3), равный обращается в нуль. Эти прямые не параллельны (направляющие коэффициенты не пропорциональны). Чтобы найти точку пересечения, надо решить систему четырех уравнений (1), (2) с тремя неизвестными. Как правило, подобная система не имеет решений, но в данном случае (вследствие выполнения условия (3)) решение есть. Решив систему каких-либо трех уравнений, получим Четвертое уравнение удовлетворяется. Точка пересечения (1; 2; 3).

При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

В разделе взаимное расположение прямых на плоскости показано, что две прямые на плоскости могут либо совпадать (при этом они имеют бесконечно много общих точек), либо быть параллельными (при этом две прямые не имеют общих точек), либо пересекаться, имея одну общую точку. Вариантов взаимного расположения двух прямых в пространстве больше – они могут совпадать (иметь бесконечно много общих точек), могут быть параллельными (то есть, лежать в одной плоскости и не пересекаться), могут быть скрещивающимися (не лежащими в одной плоскости), а также могут иметь одну общую точку, то есть, пересекаться. Итак, две прямые и на плоскости и в пространстве называются пересекающимися, если они имеют одну общую точку.

Из определения пересекающихся прямых следует определение точки пересечения прямых : точка, в которой пересекаются две прямые, называется точкой пересечения этих прямых. Другими словами, единственная общая точка двух пересекающихся прямых есть точка пересечения этих прямых.

Приведем для наглядности графическую иллюстрацию точки пересечения двух прямых на плоскости и в пространстве.

К началу страницы

Нахождение координат точки пересечения двух прямых на плоскости.

Прежде чем находить координаты точки пересечения двух прямых на плоскости по их известным уравнениям, рассмотрим вспомогательную задачу.

Oxy a и b . Будем считать, что прямой a соответствует общее уравнение прямой вида , а прямой b – вида . Пусть – некоторая точка плоскости, и требуется выяснить, является ли точка М 0 точкой пересечения заданных прямых.

Решим поставленную задачу.

Если M 0 a и b , то по определению она принадлежит и прямой a и прямой b , то есть, ее координаты должны удовлетворять одновременно и уравнению и уравнению . Следовательно, нам нужно подставить координаты точки М 0 в уравнения заданных прямых и посмотреть, получаются ли при этом два верных равенства. Если координаты точки М 0 удовлетворяют обоим уравнениям и , то – точка пересечения прямых a и b , в противном случае М 0 .

Является ли точка М 0 с координатами (2, -3) точкой пересечения прямых 5x-2y-16=0 и2x-5y-19=0 ?

Если М 0 действительно точка пересечения заданных прямых, то ее координаты удовлетворяют уравнениям прямых. Проверим это, подставив координаты точки М 0 в заданные уравнения:

Получили два верных равенства, следовательно, М 0 (2, -3) - точка пересечения прямых5x-2y-16=0 и 2x-5y-19=0 .

Для наглядности приведем чертеж, на котором изображены прямые и видны координаты точки их пересечения.

да, точка М 0 (2, -3) является точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0 .

Пересекаются ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M 0 (2, -3) ?

Подставим координаты точки М 0 в уравнения прямых, этим действием будем осуществлена проверка принадлежности точки М 0 обеим прямым одновременно:

Так как второе уравнение при подстановке в него координат точки М 0 не обратилось в верное равенство, то точка М 0 не принадлежит прямой 7x-2y+11=0 . Из этого факта можно сделать вывод о том, что точка М 0 не является точкой пересечения заданных прямых.

На чертеже также хорошо видно, что точка М 0 не является точкой пересечения прямых5x+3y-1=0 и 7x-2y+11=0 . Очевидно, заданные прямые пересекаются в точке с координатами (-1, 2) .

М 0 (2, -3) не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0 .

Теперь можно переходить к задаче нахождения координат точки пересечения двух прямых по заданным уравнениям прямых на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b уравнениями и соответственно. Обозначим точку пересечения заданных прямых как М 0 и решим следующую задачу: найти координаты точки пересечения двух прямых a и b по известным уравнениям этих прямых и .

Точка M 0 принадлежит каждой из пересекающихся прямых a и b по определению. Тогда координаты точки пересечения прямых a и b удовлетворяют одновременно и уравнению и уравнению . Следовательно, координаты точки пересечения двух прямых a и b являются решением системы уравнений (смотрите статью решение систем линейных алгебраических уравнений).

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

M 0 (4, 2) – точка пересечения прямых x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду, а уже после этого находить координаты точки пересечения.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения метод Крамера:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Определите координаты точки пересечения прямых и .

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

уравнения и определяют в прямоугольной системе координатOxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Найдите координаты точки пересечения прямых и , если это возможно.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения метод Гаусса, так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

Нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение условия коллинеарности векторов и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, - точка пересечения прямых 2x-1=0 и .

К началу страницы

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Пусть пересекающиеся прямые a и b заданы в прямоугольной системе координат Oxyz уравнениями двух пересекающихся плоскостей, то есть, прямая a определяется системой вида , а прямая b - . Пусть М 0 – точка пересечения прямых a и b . Тогда точка М 0 по определению принадлежит и прямой a и прямойb , следовательно, ее координаты удовлетворяют уравнениям обеих прямых. Таким образом, координаты точки пересечения прямых a и b представляют собой решение системы линейных уравнений вида . Здесь нам пригодится информация из разделарешение систем линейных уравнений, в которых число уравнений не совпадает с числом неизвестных переменных.

Рассмотрим решения примеров.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим ранг матрицы А и ранг матрицы T . Используем метод окаймляющих миноров, при этом не будем подробно описывать вычисление определителей (при необходимости обращайтесь к статье вычисление определителя матрицы):

Таким образом, ранг основной матрицы равен рангу расширенной матрицы и равен трем.

Следовательно, система уравнений имеет единственное решение.

Базисным минором примем определитель , поэтому из системы уравнений следует исключить последнее уравнение, так как оно не участвует в образовании базисного минора. Итак,

Решение полученной системы легко находится:

Таким образом, точка пересечения прямых и имеет координаты (1, -3, 0) .

(1, -3, 0) .

Следует отметить, что система уравнений имеет единственное решение тогда и только тогда, когда прямые a и b пересекаются. Если же прямые а и b параллельные или скрещивающиеся, то последняя система уравнений решений не имеет, так как в этом случае прямые не имеют общих точек. Если прямые a и b совпадают, то они имеют бесконечное множество общих точек, следовательно, указанная система уравнений имеет бесконечное множество решений. Однако в этих случаях мы не можем говорить о нахождении координат точки пересечения прямых, так как прямые не являются пересекающимися.

Таким образом, если мы заранее не знаем, пересекаются заданные прямые a и b или нет, то разумно составить систему уравнений вида и решить ее методом Гаусса. Если получим единственное решение, то оно будет соответствовать координатам точки пересечения прямых a и b . Если система окажется несовместной, то прямые a и b не пересекаются. Если же система будет иметь бесконечное множество решений, то прямые a и b совпадают.

Можно обойтись и без использования метода Гаусса. Как вариант, можно вычислить ранги основной и расширенной матриц этой системы, и на основании полученных данных и теоремы Кронекера-Капелли сделать вывод или о существовании единственного решения, или о существовании множества решений, или об отсутствии решений. Это дело вкуса.

Если прямые и пересекаются, то определите координаты точки пересечения.

Составим систему из заданных уравнений: . Решим ее методом Гаусса в матричной форме:

Стало видно, что система уравнений не имеет решений, следовательно, заданные прямые не пересекаются, и не может быть и речи о поиске координат точки пересечения этих прямых.

мы не можем найти координаты точки пересечения заданных прямых, так как эти прямые не пересекаются.

Когда пересекающиеся прямые заданы каноническими уравнениями прямой в пространствеили параметрическими уравнениями прямой в пространстве, то следует сначала получить их уравнения в виде двух пересекающихся плоскостей, а уже после этого находить координаты точки пересечения.

Две пересекающиеся прямые заданы в прямоугольной системе координат Oxyz уравнениями и . Найдите координаты точки пересечения этих прямых.

Зададим исходные прямые уравнениями двух пересекающихся плоскостей:

Для нахождения координат точки пересечения прямых осталось решить систему уравнений . Ранг основной матрицы этой системы равен рангу расширенной матрицы и равен трем (рекомендуем проверить этот факт). В качестве базисного минора примем , следовательно, из системы можно исключить последнее уравнение . Решив полученную систему любым методом (например методом Крамера) получаем решение . Таким образом, точка пересечения прямых и имеет координаты (-2, 3, -5) .