Межзвездный газ. Межзвёздная среда
Большую роль в динамике звездных процессов, в звездной эволюции играет межзвездная среда, тесно связанная со звездами: в межзвездной среде они рождаются, а «умирая», отдают ей свое вещество. Таким образом, между звездами и межзвездной средой происходит кругооборот вещества: межзвездная среда > звезды > межзвездная среда. В ходе такого кругооборота межзвездная среда обогащается создаваемыми в недрах звезд химическими элементами. Около 85% всех химических элементов тяжелее гелия возникло на заре нашей Галактики, примерно 15 млрд лет назад. ВТО время происходил интенсивный процесс звездообразования, а время жизни, эволюции массивных звезд было относительно коротким. Лишь 10-13% химических элементов (тяжелого гелия) имеют возраст менее 5 млрд лет.
Хотя даже в мощные оптические телескопы мы видим в нашем галактическом пространстве лишь звезды и разделяющую их темную «бездну», на самом деле межзвездное галактическое пространство не является абсолютной пустотой, оно заполнено материей, веществом и полем.
Вопрос только в том, что каковы формы этой материи, в каком состоянии здесь находятся вещество и поле.
Межзвездная среда состоит на 90% из межзвездного газа, который довольно равномерно перемешан с межзвездной пылью (около 1% массы межзвездной среды), а также космических лучей, пронизывается межзвездными магнитными полями, потоками нейтрино, гравитационного и электромагнитного излучения. Все компоненты межзвездной среды влияют друг на друга (космические лучи и электромагнитное поле ионизируют и нагревают межзвездный газ, магнитное поле определяет движение газа и др.) Проявляет себя межзвездная среда в ослаблении, рассеянии, поляризации света, поглощении света в отдельных линиях спектра, радиоизлучении, инфракрасном, рентгеновском и гамма-излучениях, через оптическое свечение некоторых туманностей и др.
Основная составляющая межзвездной среды - межзвездный газ, который, как и вещество звезд, состоит главным образом из атомов водорода (около 90% всех атомов) и гелия (около 8%); 2% представлены остальными химическими элементами (преимущественно кислород, углерод, азот, сера, железо и др.). Общая масса молекулярного газа в нашей Галактике равна примерно 4 млрд масс Солнца, что составляет примерно 2% всей массы вещества Галактики. Из этого вещества ежегодно образуется примерно 10 новых звезд!
Межзвездный газ существует как в атомарном, так и в молекулярном состоянии (наиболее плотные и холодные части молекулярного газа). При этом он обычно перемешан с межзвездной пылью (которая представляет собой твердые мельчайшие тугоплавкие частицы, содержащие водород, кислород, азот, силикаты, железо), образуя газопылевые образования, облака. Революционное значение для космохимии имело открытие в газопылевых облаках различных органических соединений - углеводородов, спиртов, эфиров, даже аминокислот и других соединений, в которых молекулы содержат до 18 атомов углерода. К настоящему времени в межзвездном газе открыто свыше 40 органических молекул. Чаще всего они встречаются в местах наибольшей концентрации газопылевого вещества. Естественно возникает предположение, что органические молекулы из межзвездных газопылевых облаков могли способствовать возникновению простейших форм жизни на Земле. Газопылевые облака находятся под воздействием различных сил (гравитационных, электромагнитных, ударных волн, турбулентности и др.), которые либо замедляют, либо ускоряют неизбежный процесс их гравитационного сжатия и постепенного превращения в протозвезды.
Распределение ионизованного водорода в галактической межзвездной среде, которая видна из северного полушария Земли.
На межзвездный газ, при кажущейся пустоте незаполненного пространства Вселенной, приходится почти 99% от совокупной массы всех космических объектов.
Вселенские просторы, в которых светила занимают ничтожно малую часть, далеко не так пустынны, как считалось долгое время. Хотя и в небольших количествах, но везде присутствует межзвездный газ, наполняя собой все уголки мирозданья. В его концентрация снижена, в иррегулярных, наоборот, повышена. Он смешан с межзвездной пылью и активно участвует в процессах образования новых звезд, которые в конце своего возвращают Вселенной этот строительный материал. Таким образом происходит своеобразный обмен веществом между светилами и межзвездным газом. Цикличность этих процессов постепенно приводит к уменьшению его количества в космосе, при увеличении объемов содержания тяжелых элементов в его структуре. Но для существенных изменений в этой области требуются миллиарды лет. По приблизительным оценкам, ежегодное количество газа, задействованное в Галактике при формировании звезд, равняется 5 солнечным массам.
Состав, структура и протекающие процессы
Объект Хербига-Аро 110 выбрасывает газ в межзвездное пространство
Плотные и холодные формы межзвездного газа, содержащие водород, гелий и минимальные объемы тяжелых элементов (железо, алюминий, никель, титан, кальций), находятся в молекулярном состоянии, соединяясь в обширные облачные поля. Если же в составе вещества доминируют ионизированные или нейтральные атомы водорода, оно участвует в образовании светящихся , окружающих горячие звезды. Температурные характеристики межзвездного молекулярного газа лежат в диапазоне от -269 до -167°С, а его излучение охватывает довольно широкий спектр, включающий и жесткие гамма-лучи, и длинные радиоволны. Средняя плотность имеет ничтожный показатель – на 1 см куб. приходится менее одного атома вещества. Но есть и исключения, в тысячи раз превосходящие эти параметры. Обычно в составе межзвездного газа элементы распределены следующим образом: водород – 89%, гелий – 9%, углерод, кислород, азот – ок. 0,2-0,3%.
Газопылевое облако IRAS 20324+4057 из межзвездного газа и пыли длиной в 1 световой год, похожее на головастика, в котором скрывается растущая звезда.
В обширных областях разряженного и горячего газа температура среды достигает 1,5 млн. градусов Цельсия, сопровождаясь рентгеновским излучением. Такие газовые объекты участвуют в формировании звезд-гигантов, провоцируют взрывы сверхновых, радикально влияют на межзвездную среду, заставляя ее расширяться. Планетарные или эмиссионные туманности из межзвездного газа светятся благодаря находящемуся в их центре или рядом с ним ядру стареющей звезды или горячим молодым светилам.
В результате исследований ученые обнаружили факт хаотичности скоростей в движении подобных образований. Облака межзвездного газа могут не только упорядоченно вращаться вокруг галактических центров, но и обладать нестабильным ускорением. В течение нескольких десятков миллионов лет они догоняют друг друга и сталкиваются, образуя комплексы из пыли и газа. Такие объекты имеют достаточную плотность, чтобы защитить свои глубины от проникающего космического излучения. Этим объясняются более низкие температуры внутри газопылевых комплексов по сравнению с межзвездными облаками. Гравитационная неустойчивость объектов постоянно влияет на процесс молекулярных преобразований в их составе и со временем приводит к формированию протозвезд.
Расположение в нашей Галактике
Максимальная концентрация межзвездного газа в нашей Галактике наблюдается в районах, удаленных от ее центральной части на 5 кпк. Его процентное содержание в общем объеме ее массы равняется 2. Толщина слоя максимальна на периферии, уменьшаясь к центру. Около половины массы межзвездного газа приходится на огромные молекулярные облака, находящиеся на расстоянии 4-8 кпк от галактической оси. Самые плотные образования составляют туманности, которые наиболее заметны и доступны для исследований. Размеры облаков из межзвездного газа могут достигать значений около 2 тыс. световых лет.
Наблюдение и его методы
Вояджер-1 — первый искусственный объект достигший межзвездной среды
Межзвездный газ, обладая высокой разреженностью и широким температурным диапазоном, изучается с помощью нескольких способов. Особый интерес в этом плане представляют светлые газовые и газопылевые туманности, так как их визуальные характеристики значительно упрощают процесс оптических наблюдений. В число методов, позволяющих получить разнообразную информацию о состоянии и структуре межзвездного газа, входят исследования:
- непрерывного радиоизлучения;
- межзвездных оптических и УФ линий;
- пространственного распределения молекул;
- рентгеновского, ИК и гамма излучений;
- параметров межзвездного ветра;
- пульсаров.
Комплексный подход к изучению межзвездного газа позволил определить многие его свойства и параметры. К объектам, дающим оптимальную возможность наблюдать МГ на нашем небосводе, относится Ориона, где находится эмиссионная М42.
- Галактический газовый диск изогнут на периферии.
- Основной объем межзвездного газа сосредоточен в спиральных рукавах, один из коридоров которых расположен рядом с Солнечной системой.
- В разреженном МГ, подвергаемом действию космических излучений, обнаружена зависимость показателей температуры, давления и объема электронов от плотности концентрации водорода.
- К самым мощным факторам, влияющим на структурные процессы в межзвездной газовой среде, относятся спиральные ударные волны.
- Энергия вспышки сверхновой способна пробить пространство галактического диска, вызвав тем самым отток МГ в свободное пространство Вселенной.
- В теории молекулярные газовые облака за период в чуть более 100 лет должны превращаться в звезды. Но на практике существует множество факторов, замедляющих этот процесс.
Газодинамика - раздел физики, который изучает законы движения газа. С вопросами газодинамики мы часто сталкиваемся и в обыденной жизни - это и звуковые волны, и обтекание быстро движущихся тел, и ударные волны, которые в век сверхзвуковых скоростей хорошо всем известны. Но условия межзвездной среды существенно меняют законы движения газа.
Начнем со звуковых волн. Как читатель, вероятно, знает, звуковые волны представляют собой распространяющуюся в среде последовательность сжатий и разрежений газа. Если слегка сжать газ в некотором объеме, а затем предоставить ему возможность вернуться в первоначальное состояние, то по инерции он затем немного расширится, сожмет соседние с этим объемом слои газа, а потом опять сам сожмется. Возникнут колебания, которые будут передаваться и соседним слоям, а от них - еще дальше. Это и есть распространение звуковых волн. Их скорость зависит только от температуры газа. Скорость звуковых волн в воздухе при температуре 300 К хорошо известна - 330 м/с, а с ростом температуры она увеличивается пропорционально (Т ) 1/2 .
Но такие звуковые волны являются адиабатическими, т. е. предполагается, что сжатие и разрежение газа в звуковых волнах происходит без потери тепла. В межзвездном пространстве это не так. При увеличении плотности заметно увеличиваются и потери на излучение. Поэтому межзвездные звуковые волны отнюдь не адиабатические. В первом приближении их можно еще считать изотермическими, т. е. предположить, что при сжатии и расширении газа температура в волне вообще не меняется. Тогда скорость звуковых волн будет несколько меньше (в воздухе - на 20%) и ее можно вычислить по формуле: с s = (RT /мю) 1/2 , где R - универсальная газовая постоянная, a мю - молекулярный вес. Любопытно, что еще Ньютон, который первым вычислил скорость звуковой волны, предполагал ее изотермической, и поэтому долгое время было непонятным, почему в воздухе скорость звука оказалась больше вычисленной. Однако для межзвездных звуковых волн эта формула, полученная Ньютоном, вполне применима.
Следующее важное явление, которое в межзвездных условиях также меняет свои свойства, - это ударные волны. Для того чтобы его пояснить, рассмотрим случай, изображенный на рис. 16. Пусть в закрытую с одного конца длинную трубу втекает газ с концентрацией п 1 и скоростью v . Налетая на стенку, он должен остановиться. Образуется область неподвижного газа, которая должна все время увеличиваться по мере втекания все новых порций газа. Между покоящимся и движущимся газом образуется граница (пунктир на рис. 16), которая перемещается по трубе навстречу потоку газа.
Обозначим концентрацию газа за этой границей как п 2 . Оказывается, если скорость v очень велика (много больше скорости звука), то эта граница резкая (ударная волна), а скачок концентрации, т. е. величина п 2 /п 1 , оказывается ограниченным (например, в одноатомном газе п 2 /п 1 <4, в двухатомном п 2 /п 1 <6). Объясняется это просто. Кинетическая энергия налетающего газа не только сжимает, но и нагревает остановившийся газ. В неподвижной области, таким образом, возникает большое газовое давление, которое и препятствует дальнейшему сжатию.
Но в межзвездном пространстве этого может не быть. Как только газ сожмется, резко возрастет его излучение и температура уже не будет подниматься. Газовое давление остается небольшим, и оно не препятствует дальнейшему сжатию газа. В результате, в межзвездных ударных волнах, которые лучше называть «скачками уплотнения», могут возникнуть очень большие скачки концентрации. Величину скачка п 2 /п 1 можно определить, если сравнить газовое давление в сжатой области (т. е. величину, пропорциональную n 2 RT ) с динамическим давлением налетающего потока газа, пропорциональным п 1 v 2 . Таким образом, получаем, что скачок концентрации в межзвездной ударной волне характеризуется величиной n 2 /п 1 ~мю v 2 / RT ~ v 2 / c s 2 , где Т - обычная температура межзвездного газа (около 10 4 К в зонах НII и много меньше, 10-20 К, в молекулярных облаках). Читатель может легко убедиться, что даже при небольших скоростях движения газа (например, при скорости 7-8 км/с, - обычной скорости межзвездных облаков) можно получить (при их столкновении друг с другом) скачки уплотнения в десятки и даже сотни раз меняющейся концентрации.
Конечно, случай, изображенный на рис. 16, есть идеализация - в межзвездном пространстве труб нет, но общие особенности движения там именно таковы.
Один из важных случаев динамики межзвездной среды изображен на рис. 17 - падение межзвездного газа под действием собственной силы тяжести к центру облака. Это падение создает в центре облака область сжатия, окруженную распространяющимся от центра сферическим скачком уплотнения. Очевидно, что и здесь может быть очень сильное сжатие вещества, но уже в реальном объекте, т. е. данное явление очень возможно при формировании звезд.
Третья особенность межзвездной газодинамики - существенная роль магнитных полей. Рассмотрим эту особенность на примере, знакомом читателю из курса школьной физики. Если через магнитное поле перемещать проводник, то в нем индуцируется электрический ток, который, в свою очередь, создает магнитное поле. В результате взаимодействия этих полей возникает сила, тормозящая перемещение проводника (правило Ленца). Когда электрическое сопротивление проводника велико, индуцированные токи и магнитные поля оказываются слабыми и проводники легко перемещаются в магнитном поле. Но если электрическое сопротивление проводника очень мало, то возникают довольно сильные индуцированные токи, и сила сопротивления перемещению проводника существенно возрастает - проводник «застревает». Известно, например, что сверхпроводник вообще невозможно втолкнуть в область, занятую магнитным полем. (Напоминаем, что если проводник движется вдоль магнитного поля, то в нем вообще не возникает ток и сопротивления такому движению нет.)
А теперь вернемся к межзвездному газу. Здесь, как мы знаем, много свободных электронов, и поэтому электропроводность межзвездного газа достаточно велика (даже лучше, чем электропроводность меди). Поэтому перемещение такого газа через межзвездное магнитное поле вполне можно уподобить перемещению хорошего металлического проводника в этом же поле. Здесь нужно еще учесть, что огромные размеры межзвездных облаков делают эффект их торможения в магнитном поле очень заметным.
Таким образом, межзвездное магнитное поле должно тормозить движение межзвездных облаков поперек направления поля и не препятствовать их движению вдоль поля. Можно ожидать, что потоки межзвездного газа направлены преимущественно вдоль магнитных силовых линий. Этот вывод подтверждается наблюдениями: действительно, газ чаще всего движется параллельно плоскости Галактики, причем и магнитное поле имеет примерно то же направление.
Однако, если межзвездное магнитное поле слабое, так что оно уже не может остановить движение газа поперек силовых линий, то тогда уже газ начинает увлекать с собой и магнитное поле. Иными словами, движущиеся потоки газа будут как бы тянуть за собой магнитные силовые линии, вытягивая и закручивая их. В этом случае говорят, что магнитные силовые линии «вморожены» в межзвездный газ (или межзвездный газ «приклеен» к магнитным силовым линиям).
Из определения понятия силовых линий магнитного поля известно, что напряженность магнитного поля Я (или магнитная индукция В) пропорциональна числу силовых линий, проходящих через единичную площадку. Когда движение газа вытягивает и «запутывает» магнитные силовые линии, то оно тем самым увеличивает Н (и В). Можно сказать, что здесь кинетическая энергия газа переходит в магнитную энергию. Рост магнитного поля при движении газа приостанавливается тогда, когда эти энергии оказываются одного порядка: pv 2 /2~ B 2 /8п (здесь р - плотность газа; слева стоит плотность кинетической энергии, справа - плотность магнитной энергии). Особенно заметно усиление магнитного поля в упомянутых выше скачках плотности. Увеличение плотности сопровождается, в силу принципа «вмороженности» поля, пропорциональным увеличением величины В.
Четвертой особенностью межзвездной газодинамики является существование ионизационных фронтов - движущихся границ между зонами НII и областями HI. Они появляются вследствие того, что газовое давление в зонах НИ обычно Много больше, чем газовое давление в областях HI. В самом деле, рассматривая межзвездную термодинамику, мы убедились, что в двухкомпонентной системе, состоящей из облаков и межоблачной среды, величина давления (а точнее, произведение пТ ) не больше 3 10 3 К/см 3 . С другой стороны, в зоне НИ, где Т =10 4 К, эта величина при «стандартном» значении концентрации протонов и электронов (п~с м -3) больше, а при больших концентрациях различие еще более заметно.
Таким образом, зоны НII должны расширяться в окружающее пространство. Но при расширении плотность газа внутри зоны падает, уменьшается число рекомбинаций, и в результате в этой зоне остается часть «неиспользованных» ионизирующих квантов. Они проходят через границу первоначальной массы зоны НII и ионизируют новые атомы водорода. Таким образом, весь процесс состоит не только из расширения вещества самой зоны НII, но и из еще более быстрого продвижения границы между областями ионизованного и неионизированного водорода - зона НII растет как по своим размерам, так и по величине своей массы.
Такое перемещение границы зоны НII называется движением ионизационного фронта, скорость перемещения которого можно сравнить со скоростью звука в области HI. Если скорость ионизационного фронта больше скорости звука в том же газе, то говорят о фронте R -типа. Здесь при переходе через этот фронт газ ионизируется и уплотняется.
Наоборот, если скорость фронта меньше соответствующей скорости звука, то на ионизационном фронте (называемом фронтом D -типа) происходит уменьшение концентрации. Чтобы обеспечить это уменьшение, фронт D -типа часто «посылает» перед собой ударную волну, которая предварительно «поджимает» газ в области HI.
Как только в области HI образуется новая горячая звезда, она сначала создает маленькую зону НII, которая быстро расширяется как ионизационный фронт R — типа. Затем скорость расширенной зоны НII уменьшается, вперед посылается ударная волна, за которой на близком расстоянии следует ионизационный фронт D -типа.
Знание свойств межзвездной газодинамики совершенно необходимо для понимания процессов конденсации звезд из межзвездной среды - ведь эта конденсация есть не что иное, как движение межзвездного газа. И как мы увидим ниже, особенности межзвездной газодинамики проявляются в различных аспектах проблемы формирования звезд.
Межзвёздная среда
разреженное вещество, межзвёздный газ и мельчайшие пылевые частицы, заполняющие пространство между звёздами в нашей и других Галактика х. В состав М. с. входят, кроме того, Космические лучи , межзвёздные магнитные поля (См. Межзвёздное магнитное поле), а также кванты электромагнитного излучения различной длины волны. Вблизи Солнца (и других звёзд) М. с. переходит в межпланетную среду (См. Межпланетная среда). Пространство между галактиками заполняет Межгалактическая среда . Впервые к выводу о существовании М. с., поглощающей свет звёзд, пришёл В. Я. Струве (1847), однако её существование было доказано только в 30-х годах 20 века (американским астрономом Р. Трамплером и советским астрономом Б. А. Воронцовым-Вельяминовым). Межзвёздный газ состоит из нейтральных и ионизованных атомов и молекул. Основную массу газа составляют атомы водорода и гелия (соответственно около 90 % и 10 % по числу атомов) с небольшой примесью кислорода, углерода, неона, азота (около 0,01 % каждого). Из молекул наиболее обильно представлена H 2 , сосредоточенная в облаках. Кроме того, имеются в малом количестве CH, OH, H 2 O, NH 3 , CH 2 O и другие органические и неорганические молекулы. Межзвёздный газ почти равномерно перемешан с межзвёздной пылью, состоящей из частиц размером 10 -4 -3·10 -6 см
. Мелкие частицы состоят из Fe, SiO 2 , более крупные имеют частично графитовые ядра, возможно с примесью железа, и оболочки из замерзших газов CH 4 , NH 3 , H 2 O и других.
Газ и пыль почти полностью отсутствуют в эллиптических галактиках, в спиральных же галактиках типов Sa
, Sb
, Sc
составляют соответственно около 1 %, 3 %, 10 % массы галактики, а в неправильных галактиках - в среднем 16 %. Межзвёздные газ и пыль сильно концентрируются к плоскости галактик, образуя диск, толщина которого составляет в среднем несколько сотен пс
, возрастая к периферии иногда до нескольких кпс
. Концентрация газа в дисках в среднем около 1 или нескольких атомов в 1 см 3
(плотность около 10 -24 г/см 3
); вне диска и на его краях плотность газа значительно меньше. В спиральных галактиках большая часть газа и пыли сосредоточена в спиральных рукавах (ветвях): плотность газа между рукавами галактики в 3-10 раз меньше, чем в рукавах. В рукавах около 80-90 % газа сосредоточено в межзвёздных облаках, которые часто объединяются, образуя газопылевые комплексы, располагающиеся главным образом на внутренней (вогнутой) стороне спиральных рукавов. Параметры межзвёздных облаков крайне разнообразны. В нашей Галактике диаметры межзвёздных облаков обычно составляют 5-40 пс
, концентрация атомов в них от 2 до 100 в 1 см 3
, температура 20-100 К. Облака занимают около 10 % объёма диска Галактики. Газ и пыль М. с. вместе со звёздами движутся в диске галактик вокруг её центра по орбитам, близким к круговым, со средними скоростями, составляющими 100-200 км/сек.
Отдельные облака межзвёздного газа имеют собственные (пекулярные) скорости, величина которых в среднем равна 10 км/сек
, достигая иногда 50-100 км/сек.
В галактической короне наблюдается газ, падающий на плоскость галактики со скоростями в десятки и сотни (до 200) км/сек
; происхождение этого газа не выяснено. Концентрация атомов между облаками 0,02-0,2 в 1 см 3
, температура 7-10 тысяч К. Водород, гелий и другие элементы, потенциалы ионизации которых больше, чем у водорода, в облаках ионизованы очень слабо, а между облаками ионизация водорода - несколько десятков процентов. Остальные элементы однократно ионизованы светом звёзд. Такие облака и среда между ними называются областями HI (нейтрального водорода) и занимают основную часть диска галактик. Вокруг горячих звёзд класса О водород сильно (до 99 %) ионизован ультрафиолетовым излучением. Такие области называются областями HII (ионизованного водорода) или зонами Стрёмгрена. температура областей HII достигает 6000-8000 К, размеры их в зависимости от температуры звезды и плотности газа колеблются от долей пс
до нескольких десятков, а в исключительных случаях - до сотен пс
. Обычно вокруг горячих звёзд наблюдаются не просто ионизованные межзвёздные облака, а значительно более плотные диффузные туманности, в которых концентрация достигает десятков и сотен атомов в 1 см 3
. Возможно, это остатки того плотного комплекса, из которого образовались горячие звёзды. Такие области HII постепенно расширяются под действием горячего газа. Если на пути такой области встречается уплотнение, принадлежащее области HI, то граница области HII огибает это уплотнение, обнажая его со всех сторон. Так образуются тёмные (на фоне светящихся областей HII) холодные плотные области HI, имеющие вид вытянутых жгутов (так называемые слоновьи хоботы) или сферических сгустков (глобулы). В спектре областей HII наблюдаются яркие линии водорода и запрещенные линии кислорода, азота, серы и некоторых других элементов, а также слабый непрерывный спектр. В радиодиапазоне эти области светятся в непререрывном спектре и в линиях водорода и гелия, возникающих при квантовых переходах между очень высокими энергетическими уровнями. В областях HI газ в оптических лучах не светится. Его изучают по линиям поглощения света звёзд, расположенных позади этих областей. Особенно много информации дают резонансные линии поглощения атомов и ионов, расположенные в ультрафиолетовой области и наблюдаемые с космических зондов. Сведения о нейтральном водороде в Галактике и других галактиках, о его распределении и движении получают, наблюдая радиолинии нейтрального водорода с длиной волны 21 см
. В этой линии, однако, излучается лишь малая доля тепловой энергии газа областей HI. Основная доля энергии излучается областями HI в далёких инфракрасных спектральных линиях атомов O, ионов C, Si, Fe и других. Средняя плотность пыли в диске Галактики 10 -26 г/см
(0,01 плотности газа). Эта пыль поглощает свет звёзд, причём синие лучи сильнее, чем красные. Поэтому из-за пыли свет далёких звёзд виден не только ослабленным, но и более красным. Наличие пыли не позволяет наблюдать звёзды, лежащие в плоскости Галактики на расстояниях, превышающих 3 кпс
от Земли. Плотные облака газа и пыли, поглощающей свет, кажутся тёмными на светлом фоне Млечного Пути. Ещё резче выделяются тёмные газопылевые облака, если они проектируются на светлую туманность. Вблизи достаточно ярких звёзд (в основном класса B) пыль освещена настолько, что может быть сфотографирована с Земли; такие светлые облака называются отражательными туманностями. Слой газа и пыли в других галактиках, наблюдаемых с ребра, виден в виде тёмной полосы (см., например, илл.
). Межзвёздные пылинки имеют несферическую форму и ориентированы в среднем определённым образом относительно магнитного поля Галактики, что вызывает поляризацию света звёзд. Массы больших газопылевых комплексов достигают десятков и сотен тысяч масс Солнца. В их центральных частях температура очень низкая (иногда всего 5-6 К) при концентрации атомов до сотен в 1 см 3
и более. Плотность пыли в них больше 1 / 100 плотности газа. Последнее обстоятельство связано с тем, что при низких температурах и больших плотностях происходит образование молекул, в том числе многоатомных, и налипание их на пылинки. В таких местах могут образовываться звёзды. В связи с этим имеет важное значение то обстоятельство, что в центральных частях комплексов наблюдаются компактные объекты (размером порядка 10 15 см
и меньше), из которых, возможно, образуются звёзды (см. Протозвёзды) и планеты. Они очень интенсивно излучают в радиолиниях молекул OH, H 2 O и других, характер излучения которых иногда аналогичен излучению Лазер ов. Частиц, составляющих космические лучи и обладающих огромными энергиями - от 10 6 до 10 20 эв
, в М. с. гораздо меньше, чем других её компонентов, но их общая энергия в 1 см 3
составляет около 1 эв
, то есть превышает энергию тепловых движений межзвёздного газа. Космические лучи больших энергий слабо взаимодействуют с газом и пылью, изредка вызывая в них ядерные реакции. Менее энергичные частицы (10 6 -10 7 эв
) способны нагревать и ионизовывать межзвёздный газ; они являются одним из основных источников нагрева областей HI. Напряжённость межзвёздного магнитного поля мала (в 10 5 раз слабее магнитного поля Земли), но его энергия примерно равна энергии космических лучей. Поэтому давление космических лучей и магнитного поля играют существенную роль в динамике М. с. Электромагнитные кванты в М. с. имеют частоты от радиодиапазона до жёсткого гамма-излучения. Наибольшее воздействие на межзвёздные газ и пыль оказывают оптические, ультрафиолетовые и мягкие рентгеновские лучи (с энергией квантов меньше 1 кэв
). Последние отчасти приходят из межгалактического пространства, а отчасти возникают в рентгеновских источниках внутри Галактики и вызывают (вместе с космическими лучами) нагрев и частичную ионизацию областей HI. Оптические и ультрафиолетовые кванты в М. с. являются результатом излучения звёзд Галактики. В галактиках происходит постоянный обмен веществом между М. с. и звёздами. М. с. служит материалом для образования звёзд, а звёзды, в свою очередь, выбрасывают часть вещества в М. с., сообщая одновременно газу кинетическую энергию. Это происходит и на спокойных стадиях развития звёзд, и в конце их эволюции, когда звёзды сбрасывают оболочку, образуя планетарную туманность, или взрываются как сверхновая звезда (См. Сверхновые звёзды). Происходит постоянный круговорот вещества, при котором количество газа в М. с. постепенно истощается. В частности, последним обстоятельством объясняется, что в эллиптических галактиках газа нет, в то время как в неправильных его много: здесь он истощился менее всего. Поскольку в процессе эволюции звёзд и особенно при взрывах сверхновых звёзд ядерные реакции меняют химический состав газа, меняется со временем и состав М. с., а следовательно, и состав образующихся из неё звёзд. Кроме того, происходит обмен газом между ядрами галактик и М. с. Лит.:
Пикельнер С. Б., Физика межзвёздной среды, М., 1959; Каплан С. А., Пикельнер С. Б., Межзвёздная среда, М., 1963; Гринберг М., Межзвёздная пыль, перевод с английского, М., 1970; Космическая газодинамика, [перевод с английского], М., 1972; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1970; Мартынов Д, Я., Курс общей астрофизики, М., 1971; Аллер Л., Астрофизика, перевод с английского, т. 2, М., 1957. С. Б. Пикельнер, Н. Г. Бочкарёв.
Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .
Смотреть что такое "Межзвёздная среда" в других словарях:
Материя, заполняющая пространство между звёздами внутри галактик. Материя в пространстве между галактиками наз. межгалактич. средой (см. Скопления галактик. Межгалактический газ). Газ в оболочках вокруг звёзд (околозвёздные оболочки) часто… … Физическая энциклопедия
Включает разреженное вещество (газ, пыль), электромагнитное излучение, космические лучи, нейтрино и другие виды материи, заполняющей пространство между звёздами в нашей Галактике и других галактиках. Плотность межзвёздной среды 10–24 10–26 г/см3 … Энциклопедический словарь
Карта местного межзвёздного облака Межзвёздная среда (МЗС) вещество и поля, заполняющие межзвёздное пространство внутри галактик … Википедия
Включает разреженное в во (газ, пыль), эл. магн. излучение, космич. лучи, нейтрино и др. виды материи, заполняющей пространство между звёздами в нашей Галактике и др. галактиках. Плотн. М.с. 10 24 10 26Г/СМ3 … Естествознание. Энциклопедический словарь
Межзвёздная пыль твёрдые микроскопические частицы, наряду с межзвёздным газом заполняющие пространство между звёзд. В настоящее время считается что пылинки имеют тугоплавкое ядро, окруженное органическим веществом или ледяной оболочкой.… … Википедия
Твёрдые частицы размером от тысячных до неск. десятых долей микрона. Распределение M. п. в Галактике коррелирует с распределением межзвёздного газа; отношение содержаний (по массе) пыли и газа составляет в ср. 0,01. Пылевые частицы воздействуют… … Физическая энциклопедия
Межзвёздный полёт путешествие между звёздами пилотируемых аппаратов или автоматических станций. Четыре автоматические станции Пионер 10, Пионер 11, Вояджер 1, Вояджер 2 достигли третьей космической скорости и покинули солнечную… … Википедия
Путешествия между звёздами пилотируемых аппаратов или автоматических станций. Полеты на звездолётах занимают существенное место в научной фантастике. Четыре автоматические станции Пионер 10, Пионер 11, Вояджер 1, Вояджер 2 достигли третьей… … Википедия
Межзвёздные полёты путешествия между звёздами пилотируемых аппаратов или автоматических станций. Полеты на звездолётах занимают существенное место в научной фантастике. Четыре автоматические станции Пионер 10, Пионер 11, Вояджер 1, Вояджер 2… … Википедия
- (поле коллектора показано видимым) Межзвёздный прямоточный двигатель Бассарда … Википедия
Составляющий ок. 99% её массы и ок. 2% массы Галактики. М. г. весьма равномерно перемешан с межзвёздной пылью,к-рая часто своим поглощением или рассеянием света делает газово-пылевые структуры наблюдаемыми (см. ). Диапазон изменения осн. параметров, описывающих М. г., очень широк. Темп-ра М. г. колеблется от 4-6 К до 10 6 К (в межзвёздных ионная темп-ра М. г. иногда превышает 10 9 К), концентрация изменяется от 10 -3 -10 -4 до 10 8 -10 12 частиц в 1 см 3 . Для излучения М. г. характерен широкий диапазон - от длинных радиоволн до жёсткого гамма-излучения.
Существуют области, где М. г. находится преимущественно в молекулярном состоянии (молекулярные облака) - это наиболее плотные и холодные части М. г.; есть области, где М. г. состоит гл. обр. из нейтральных атомов водорода (области HI),- это менее плотные и в среднем более тёплые области; существуют области ионизованного водорода (зоны НII), к-рыми явл. светлые эмиссионные туманности вокруг горячих звёзд, и области разреженного горячего газа (корональный газ). М. г., как и вещество звёзд, состоит гл. обр. из водорода и гелия с небольшой добавкой других хим. элементов (см. ). В среднем в М. г. атомы водорода составляют ок. 90% числа всех атомов (70% по массе). На атомы гелия приходится ок. 10% числа атомов (ок. 28% по массе). Остальные 2% массы составляют все последующие хим. элементы (т.н. тяжёлые элементы). Из них наиболее обильны О, С, N, Ne, S, Ar, Fe. Все они вместе составляют прибл. 1/1000 от числа атомов М. г. Однако роль их в npoцeccax, протекающих в М. г., очень велика. По сравнению с составом Солнца в М. г. наблюдается дефицит ряда тяжёлых элементов, особенно Аl, Са, Ti, Fe, Ni, к-рых в десятки и сотни раз меньше, чем на Солнце. В разных участках М. г. Галактики величина дефицита неодинакова. Возникновение дефицита связано с тем, что значит. часть указанных элементов входит в состав пылинок и почти отсутствует в газообразной фазе.Вне галактич. диска М. г. очень мало. В осн. части гало Галактики газ, по-видимому, горячий (~ 10 o К) и очень разреженный ( на высоте 5 кпк над плоскостью симметрии диска). Наиболее заметны самые плотные газовые образования гало - . По-видимому, небольшое количество газа имеется в нек-рых, наиболее плотных, . Кроме того, на высоких галактич. широтах обнаружены водорода.
3. Методы наблюдении межзвёздного газа
Сильная разреженность М. г. и широкий диапазон темп-р, при к-рых он может находиться, определяют разнообразие методов его исследования.
Наиболее доступны для наблюдений газовые и газово-пылевые светлые туманности. По оптич. и в меньшей степени ИК-спектрам излучения эмиссионных туманностей удалось установить плотность, темп-ру, состав и состояние ионизации вещества зон НII. Богатую информацию о М. г. в эмиссионных туманностях получают по водорода, гелия и др. элементов, а также по непрерывному радиоизлучению.
Состояние М. г. вне туманностей исследуют по межзвёздным оптич. и УФ-линиям поглощения в спектрах звёзд. По ним удалось установить, что М. г. состоит из отдельных облаков, а вещество в них находится преимущественно в нейтральном атомарном состоянии. По линиям поглощения в оптич. диапазоне были открыты (1938 г.) первые . Линии поглощения большинства атомов, ионов и молекул лежат в УФ-области спектра (рис. 3). Наблюдения их, проводимые на ИСЗ, позволили изучить распространённость элементов и ионизац. состояние М. г. и обнаружить в нём дефицит ряда тяжёлых элементов. По линиям поглощения ионов NV (1238 и 1242 ) и OVI (1032 и 1038 ) были обнаружены коридоры горячего газа. По изучают крупномасштабную и тонкую структуру областей HI в Галактике и др. галактиках, плотность и темп-ру межзвёздных облаков, их строение, движение, а также вращение вокруг центров галактик.Исследовать распределение Н 2 труднее. Для этого чаще всего пользуются косвенным методом: исследуют пространственное распределение молекулы СО, концентрация к-рой пропорциональна концентрации молекул H 2 (молекул Н 2 примерно в 10 5 раз больше, чем СО). Радиоизлучение молекулы СО с = 2,6 мм практически не поглощается межзвёздной пылью и позволяет изучать распределение молекул СО и Н 2 , а также исследовать условия в наиболее холодной и плотной части М. г.- в молекулярных облаках и газово-пылевых комплексах. Молекулы H 2 непосредственно наблюдаются только по полосам поглощения, лежащим в далёкой УФ-области спектра ( 1108 ), и в неск. случаях по ИК-линиям излучения (= 2 мкм и 4 мкм). Однако из-за межзвёздного поглощения света пылью этот метод не позволяет исследовать Н 2 в плотных непрозрачных молекулярных облаках, где эти молекулы в основном сосредоточены. Отдельные, наиболее плотные конденсации молекулярного газа, расположенные рядом с сильными источниками возбуждения (напр., ИК-звёздами), наблюдаются в виде мощных космических мазеров (см. ).
Высокое спектр. разрешение, достигнутое в радиодиапазоне, позволяет изучать молекулы, содержащие различные изотопы атомов, напр. 1 H и 2 D (дейтерий), 12 С и 13 С, 14 N и 15 N, 16 О, 17 О, 18 О и т.д., т.е. изотопный состав М. г. и его вариации. Сравнение изотопного состава совр. М. г. с изотопным составом Солнечной системы, образовавшейся из межзвёздной среды ок. лет назад, даёт возможность судить об изменениях изотопного состава, связанных с эволюцией М. г.
По поглощению рентг. лучей в межзвёздном пространстве можно судить о полном количестве межзвёздного вещества, находящегося в атомарном и молекулярном виде, а также в виде пылинок. В дальнейшем по флюоресценции атомов в рентгеновских -линиях различных элементов (см. ) можно будет получить достаточно полную информацию о распространённости элементов в межзвёздном веществе независимо от того, в каком состоянии оно находится. Наиболее горячие участки М. г. (остатки сверхновых звёзд и коридоры горячего газа) излучают в рентг. диапазоне, что позволяет методами изучить их пространственное расположение и физ. св-ва.
Межзвездная среда излучает также в -лучах. Энергичные -фотоны (с энергией 50 МэВ) возникают в М. г. за счёт того, что при столкновении протонов с протонами М. г. образуются - , которые распадаются на 2 -фотона. Вклад 50% даёт релятивистских электронов космич. лучей при соударениях с ядрами атомов М. г. Кроме того, при взаимодействии частиц космич. лучей низких энергий с ядрами атомов М. г. и пыли появляются -линии в диапазоне 1-6 МэВ. Сильная линия, с энергией фотонов 0,511 МэВ, может образовываться при аннигиляции позитронов, возникающих при взаимодействии космич. лучей с М. г.
Состояние газа в непосредств. окрестности Солнечной системы установлено по параметрам , обусловленного относительно межзвёздной среды.
Ещё одним тонким методом исследований М. г. оказались наблюдения мерцаний радиоизлучения пульсаров на мелких неоднородностях межзвездной плазмы (см. ). С его помощью удалось установить, что концентрация электронов т у в М. г. флуктуирует слабо. Среднее по лучу зрения значение (здесь - отклонение концентрации электронов от ср. значения по лучу зрения). Размеры неоднородностей могут быть различными, но при наблюдениях пульсаров осн. вклад в мерцания дают неоднородности размером ~ 10 10 -10 13 см, порождённые, по-видимому, .
4. Процессы, формирующие состояние межзвёздного газа
Тепловое и ионизационное состояния М. г.Разреженность М. г. приводит к тому, что он прозрачен для большинства видов излучения. Поэтому условия в нём очень далеки от . Однако распределение энергии между частицами М. г. в большинстве случаев (за исключением гл. обр. ударных волн в М. г., где нет равнораспределения энергии между электронами и ионами) подчиняется , благодаря чему можно говорить о темп-ре М. г.
Для определения равновесных св-в М. г. (степени ионизации, интенсивности излучения и др.) рассматривается баланс процессов возбуждения ионов, атомов и молекул (соударений, поглощения излучения и др.) и процессов снятия возбуждения (рекомбинаций, испускания фотонов), протекающих в к.-л. выделенном объёме в конечный интервал времени.
Зоны НII М. г. нагреваются УФ-излучением звёзд, расположенных внутри них (атомы водорода активно поглощают излучение с ). Области HI и молекулярные облака нагреваются проникающей радиацией: частицами космич. лучей низких энергий (~ 1-10 МэВ/нуклон), а также УФ- и мягким рентг. излучением. Роль более энергичных фотонов и частиц невелика, т.к. их меньше, а взаимодействуют они с М. г. слабее (см. ). В нек-рых местах М. г. существенны и др. механизмы нагрева, напр. ударные волны, возникающие при столкновениях облаков или при вспышках сверхновых звёзд.
Охлаждение М. г. происходит за счёт излучения в спектральных линиях чаще в ИК- и оптич. областях спектра, реже в УФ- и рентг. диапазонах или в радиодиапазоне (см. ). Излучение в непрерывном спектре играет, как правило, второстепенную роль. В целом механизм охлаждения почти всех областей М. г. подобен охлаждению зон НII, но в областях HI повышенную роль в охлаждении играет излучение в ИК-диапазоне, а в холодных молекулярных областях - в радиодиапазоне.
Ионизуется М. г. теми же видами излучений, что и нагревается. Ионизац. равновесие достигается при равенстве скорости ионизации и скорости гл. обр. радиац. рекомбинации. В отдельных случаях, напр. для иона ОН в областях HI, определённую роль играют реакции обмена зарядом (реакции перезарядки) с водородом и реже с гелием.
Формирование структуры М. г.
Другим, ещё более сильным фактором, влияющим на структуру М. г. в S-галактиках, явл. спиральные ударные волны. Они возникают при соударении М. г., уже накопленного в спиральных ветвях, с газом, к-рый при круговом движении вокруг центра галактики догоняет спиральные ветви и входит в них со сверхзвуковой скоростью (спиральные ветви вращаются вокруг центра Галактики в ту же сторону, что газ и звезды, но с меньшей скоростью). На фронте ударной волны набегающий газ тормозится и уплотняется. За счет повысившегося давления почти весь газ оказывается в плотной фазе. Так образуются газово-пылевые комплексы, наблюдаемые на внутр. сторонах спиральных ветвей.
Газово-пылевые комплексы могут возникать не только под действием спиральных ударных волн, но и вследствие т.н. газового диска галактик. В результате развития неустойчивости возникают компактные (10-30 пк) газово-пылевые сгустки, становящиеся затем очагами образования звёздных скоплений. В S-галактиках неустойчивость Рэлея-Тейлора играет, вероятно, меньшую роль, чем спиральные ударные волны, но в Ir-галактиках она, видимо, явл. осн. причиной образования комплексов М. г.
Наблюдения показывают, что межзвёздные облака имеют помимо упорядоченного движения вокруг центра Галактики хаотич. скорости со ср. значением ок. 10 км/с. В среднем через 30-100 млн. лет облако сталкивается с др. облаком, что приводит к диссипации (уменьшению) этих случайных движений, частичному слипанию облаков и формированию степенного (~ ) спектра их масс. Хаотич. движения поддерживаются взрывами сверхновых: сброшенная при взрыве М. г. оболочка звезды тормозится в М. г. и передает облакам часть своего импульса.
Из области М. г., по к-рой прошла ударная волна, вызванная вспышкой, почти весь газ оказывается выметенным. Возникшая область разреженного газа (каверна размером в десятки пк с n ~ 10 -2 см -3 и T ~ 10 6 K) может существовать ~10 7 лет. Если за это время поблизости вспыхнет ещё одна сверхцо-вая, то новая каверна, сомкнувшись с предыдущей, может образовать обширныи коридор горячего разреженного сильно ионизованного газа. Излучение горячего газа может нагревать до 300-5000 К газовые облака, находящиеся на расстоянии многих пк от коридоров (существование облаков с такой темп-рой невозможно в описанной выше простой двухфазной модели М. г.).
Вспышки сверхновых звёзд, "пробурившие" газовый диск галактики насквозь, вызывают отток газа от плоскости галактики в межгалактич. среду и нагрев его там вплоть до 10 7 -10 8 K. В результате в межгалактич. среду попадает обогащённый тяжёлыми элементами газ. Возможно, что именно благодаря этим процессам межгалактич. газ в скоплениях галактик имеет почти такое же содержание железа, как атмосфера Солнца. Часть газа, видимо, падает назад к галактич. плоскости в виде высокоширотных и высокоскоростных облаков водорода.
5. Процессы, протекающие в газово-пылевых комплексах
Вещество в газово-пылевых комплексах достаточно плотно для того, чтобы не пропускать на большую глубину осн. часть проникающей радиации. Поэтому М. г. внутри комплексов оказывается холоднее, чем в межзвёздных облаках, и существует преимущественно в молекулярной форме. Молекулы образуются гл. обр. в ион-молекулярных реакциях, а также на поверхности пылинок (молекулы Н 2 и нек-рые др., см. ). Ионизация, необходимая для протекания ион-молекулярных реакций, поддерживается УФ-излучением звёзд (в областях, где межзвёздное поглощение света ) и, по-видимому, космич. лучами низких энергий (4-12 К) сгустков. Совместно с эти процессы в холодных фрагментах молекулярных облаков ведут к возникновению самогравитирующих сгустков газово-пылевого вещества звёздной массы - протозвёзд, из к-рых впоследствии образуются звёзды.
Т.о., молекулярные облака должны быстро (за ~ 10 6 лет) превратиться в звёзды. Т.к. они существуют гораздо дольше, должны действовать факторы, замедляющие образование звёзд (напр., магн. давление, турбулентность, нагрев газа возникшими звёздами, см. ).
6. Эволюция межзвёздного газа
М. г. постоянно обменивается веществом со звёздами. Согласно оценкам, в настоящее время в Галактике в звёзды переходит газ в количестве в год. Одновременно с этим звёзды, гл. обр. на поздних стадиях эволюции, теряют вещество (см. ) и пополняют М. г.
Часть выбрасываемого вещества участвовала в термоядерных реакциях в недрах звёзд и обогатилась там тяжёлыми элементами. Поэтому со временем состав (распространённость элементов) в М. г. изменяется. В разных галактиках и в различных частях каждой галактики эти процессы идут с различными скоростями. В результате в хим. и изотопном составе М. г. появляются неоднородности, и прежде всего градиент хим. состава вдоль радиусов галактик. Ближе к центру галактик М. г. несколько более обогащён тяжёлыми элементами.
Пока неизвестно, когда и как произошло обогащение первичного газа (имевшего состав 75% Н и 25% Не по массе, см. ) тяжёлыми элементами: было ли это ещё до образования галактик или в самом начале их эволюции. Но ясно, что на первых этапах истории галактик этот процесс шёл много активнее, чем в настоящее время.
В галактиках с большим уд. моментом количества движения за время ~ 10 9 лет после их образования М. г. осел в диск, также обогатившись тяжёлыми элементами. Дальнейшее звездообразование шло в диске. В S-галактиках звездообразование в диске стимулируется спиральной ударной волной. При каждом прохождении сквозь спиральную ударную волну элементы газа тормозятся, теряют энергию и с каждым оборотом приближаются к центру галактики.
В Ir-галактиках спиральные волны не сформировались, газ исчерпывался медленно. Поэтому в настоящее время они наиболее богаты газом (ср. содержание атомарного водорода 18% от массы галактики). В линзовидных (SO) галактиках осн. часть газа была, вероятно, выметена в межгалактич. пространство при взаимодеиствии их с др. галактиками, а оставшегося газа оказалось недостаточно для активного звездообразования.
Итак, в процессе эволкщии галактик происходит круговорот вещества: М. г. звёзды М. г., приводящий к постепенному увеличению содержания тяжёлых элементов в М. г. и звёздах и уменьшению количества М. г. в каждой из галактик. В разных типах галактик исчерпание М. г. идёт существенно различающимися темпами. Не исключена возможность, что процессы формирования звёзд и обогащения газа тяжёлыми элементами шли в Галактике немонотонно, т.е. неск. раз в истории Галактики могли происходить задержки звездообразования на миллиарды дет. Это, в принципе, должно было бы сказаться на распространённости элементов в различных типах звёздного населения.