Момент силы, формулы. Момент силы. Формула. Понятие. Определение
Лекция 3. Закон сохранения момента импульса.
Момент силы. Момент импульса материальной точки и механической системы. Уравнение моментов механической системы. Закон сохранения момента импульса механической системы.
Математические сведения.
Векторным произведением двух (ненулевых) векторов и называется вектор , который в декартовой системе координат (с ортами , , ) определяется по формуле
.
Величина (площадь прямоугольника на векторах и ).
Свойства векторного произведения.
1) Вектор направлен перпендикулярно к плоскости векторов и . Поэтому для любого вектора , лежащего в плоскости (линейно независимых) векторов и (т.е. ), получаем . Следовательно, если два ненулевых вектора и параллельны , то .
2) Производная по времени от векторного произведения – это вектор .
Действительно, (базисные векторы , , - постоянные)
Вектор момента импульса
Вектором момента импульса относительно точки О называется вектор
где - радиус-вектор из точки О, - вектор импульса точки. Вектор направлен перпендикулярно к плоскости векторов и . Точку О иногда называют полюсом . Найдем производную от вектора момента импульса по времени
.
Первое слагаемое в правой части: . Так как в инерциальной системе отсчета по второму закону Ньютона (в импульсной форме) , то второе слагаемое имеет вид .
Величина называется вектором момента силы относительно точки О.
Окончательно получаем:
производная от вектора момента импульса относительно точки равна моменту действующих сил относительно этой точки.
Свойства вектора момента силы.
.
3) Момент суммы сил равен сумме моментов каждой из сил .
4) Сумма моментов сил относительно точки
при переходе к другой точке О 1 , при которой изменится по правилу
.
Следовательно, момент сил не изменится, если .
5) Пусть , где , тогда .
Следовательно, если две одинаковые силы лежат на одной прямой , то их моменты одинаковые . Эта прямая называется линией действия силы . Длина вектора называется плечом силы относительно точки О.
Момент силы относительно оси.
Как следует из определения момент силы, координаты вектора моменты силы относительно координатных осей определяются формулами
, , .
Рассмотрим метод нахождения момента силы относительно некоторой оси z. Для этого надо рассмотреть вектор момента силы относительно некоторой точки О на этой оси и найти проекцию вектора момента силы на эту ось.
1) Проекция вектора момента силы на ось z не зависит от выбора точки О.
Возьмем на оси z две разные точки О 1 и О 2 и найдем моменты силы F относительно этих точек.
Разность векторов направлена перпендикулярно вектору , лежащему на оси z. Следовательно, если рассмотреть орт оси z – вектор , то проекции на ось z равны между собой
Поэтому, момент силы относительно оси z определен однозначно.
Следствие . Если момент силы относительно некоторой точки на оси равен нулю, то равен нулю момент силы относительно этой оси.
2) Если вектор силы параллелен оси z, то момент силы относительно оси равен нулю .
Действительно вектор момента силы относительно любой точки на оси должен быть перпендикулярен вектору силы, поэтому он также перпендикулярен и оси, параллельной этому вектору. Поэтому проекция вектора момента силы на эту ось будет равна нулю. Следовательно, если разложение вектора силы на компоненту параллельную оси, и компоненту , перпендикулярную оси, то
3) Если вектор силы и ось не параллельны, но лежат в одной плоскости, то момент силы относительно оси равен нулю. Действительно, в этом случае вектор момента силы относительно любой точки на оси направлен перпендикулярно этой плоскости (т.к. вектор тоже лежит в этой плоскости). Можно сказать и иначе. Если рассмотреть точку пресечения линии действия силы и прямой z, то момент силы относительно этой точки равен нулю, поэтому и момент силы относительно оси равен нулю.
Итак, чтобы найти момент силы относительно оси z, надо:
1) найти проекцию силы на любую плоскость p перпендикулярную этой оси и указать точку О - точку пересечения этой плоскости с осью z;
Похожая информация.
Самое лучшее определение вращательного момента – это тенденция силы вращать предмет вокруг оси, точки опоры или точки вращения. Вращательный момент можно рассчитать с помощью силы и плеча момента (перпендикулярное расстояние от оси до линии действия силы), или используя момент инерции и угловое ускорение.
Шаги
Использование силы и плеча момента
-
Определите силы, действующие на тело и соответствующие им моменты. Если сила не перпендикулярна рассматриваемому плечу момента (т.е. она действует под углом), то вам может понадобиться найти ее составляющие с использованием тригонометрических функций, таких как синус или косинус.
- Рассматриваемая составляющая силы будет зависеть от эквивалента перпендикулярной силы.
- Представьте себе горизонтальный стержень, к которому нужно приложить силу 10 Н под углом 30° над горизонтальной плоскостью, чтобы вращать его вокруг центра.
- Поскольку вам нужно использовать силу, не перпендикулярную плечу момента, то для вращения стержня вам необходима вертикальная составляющая силы.
- Следовательно, нужно рассматривать y-составляющую, или использовать F = 10sin30° Н.
-
Воспользуйтесь уравнением момента, τ = Fr, и просто замените переменные заданными или полученными данными.
- Простой пример: Представьте себе ребенка массой 30 кг, сидящего на одном конце качели-доски. Длина одной стороны качели составляет 1,5 м.
- Поскольку ось вращения качели находится в центре, вам не нужно умножать длину.
- Вам необходимо определить силу, прилагаемую ребенком, с помощью массы и ускорения.
- Поскольку дана масса, вам нужно умножить ее на ускорение свободного падения, g, равное 9,81 м/с 2 . Следовательно:
- Теперь у вас есть все необходимые данные для использования уравнения момента:
-
Воспользуйтесь знаками (плюс или минус), чтобы показать направление момента. Если сила вращает тело по часовой стрелке, то момент отрицательный. Если же сила вращает тело против часовой стрелки, то момент положительный.
- В случае нескольких приложенных сил, просто сложите все моменты в теле.
- Поскольку каждая сила стремится вызвать различные направления вращения, важно использовать знак поворота для того, чтобы следить за направлением действия каждой силы.
- Например, к ободу колеса, имеющего диаметр 0,050 м, были приложены две силы, F 1 = 10,0 Н, направленная по часовой стрелке, и F 2 = 9,0 Н, направленная против часовой стрелки.
- Поскольку данное тело – круг, фиксированная ось является его центром. Вам нужно разделить диаметр и получить радиус. Размер радиуса будет служить плечом момента. Следовательно, радиус равен 0,025 м.
- Для ясности мы можем решить отдельные уравнения для каждого из моментов, возникающих от соответствующей силы.
- Для силы 1 действие направлено по часовой стрелке, следовательно, создаваемый ею момент отрицательный:
- Для силы 2 действие направлено против часовой стрелки, следовательно, создаваемый ею момент положительный:
- Теперь мы можем сложить все моменты, чтобы получить результирующий вращательный момент:
Использование момента инерции и углового ускорения
-
Чтобы начать решать задачу, разберитесь в том, как действует момент инерции тела. Момент инерции тела – это сопротивление тела вращательному движению. Момент инерции зависит как от массы, так и от характера ее распределения.
- Чтобы четко понимать это, представьте себе два цилиндра одинакового диаметра, но разной массы.
- Представьте себе, что вам нужно повернуть оба цилиндра вокруг их центральной оси.
- Очевидно, что цилиндр с большей массой будет сложнее повернуть, чем другой цилиндр, поскольку он “тяжелее”.
- А теперь представьте себе два цилиндра различных диаметров, но одинаковой массы. Чтобы выглядеть цилиндрическими и иметь разную массу, но в то же время иметь разные диаметры, форма, или распределение массы обоих цилиндров должна отличаться.
- Цилиндр с большим диаметром будет выглядеть как плоская закругленная пластина, тогда как меньший цилиндр будет выглядеть как цельная трубка из ткани.
- Цилиндр с большим диаметром будет сложнее вращать, поскольку вам нужно приложить большую силу, чтобы преодолеть более длинное плечо момента.
-
Выберите уравнение, которое вы будете использовать для расчета момента инерции. Есть несколько уравнений, которые можно использовать для этого.
- Первое уравнение – самое простое: суммирование масс и плечей моментов всех частиц.
- Это уравнение используется для материальных точек, или частиц. Идеальная частица – это тело, имеющее массу, но не занимающее пространства.
- Другими словами, единственной значимой характеристикой этого тела является масса; вам не нужно знать его размер, форму или строение.
- Идея материальной частицы широко используется в физике с целью упрощения расчетов и использования идеальных и теоретических схем.
- Теперь представьте себе объект вроде полого цилиндра или сплошной равномерной сферы. Эти предметы имеют четкую и определенную форму, размер и строение.
- Следовательно, вы не можете рассматривать их как материальную точку.
- К счастью, можно использовать формулы, применимые к некоторым распространенным объектам:
-
Найдите момент инерции. Чтобы начать рассчитывать вращательный момент, нужно найти момент инерции. Воспользуйтесь следующим примером как руководством:
- Два небольших “груза” массой 5,0 кг и 7,0 кг установлены на расстоянии 4,0 м друг от друга на легком стержне (массой которого можно пренебречь). Ось вращения находится в середине стержня. Стержень раскручивается из состояния покоя до угловой скорости 30,0 рад/с за 3,00 с. Рассчитайте производимый вращательный момент.
- Поскольку ось вращения находится в середине стержня, то плечо момента обоих грузов равно половине его длины, т.е. 2,0 м.
- Поскольку форма, размер и строение “грузов” не оговаривается, мы можем предположить, что грузы являются материальными частицами.
- Момент инерции можно вычислить следующим образом:
-
Найдите угловое ускорение, α. Для расчета углового ускорения можно воспользоваться формулой α= at/r.
- Первая формула, α= at/r, может использоваться в том случае, если дано тангенциальное ускорение и радиус.
- Тангенциальное ускорение – это ускорение, направленное по касательной к направлению движения.
- Представьте себе объект, двигающийся по криволинейному пути. Тангенциальное ускорение – это попросту его линейное ускорение на любой из точек всего пути.
- В случае второй формулы, легче всего проиллюстрировать ее, связав с понятиями из кинематики: смещением, линейной скоростью и линейным ускорением.
- Смещение – это расстояние, пройденное объектом (единица СИ – метры, м); линейная скорость – это показатель изменения смещения за единицу времени (единица СИ – м/с); линейное ускорение – это показатель изменения линейной скорости за единицу времени (единица СИ – м/с 2).
- Теперь давайте рассмотрим аналоги этих величин при вращательном движении: угловое смещение, θ – угол поворота определенной точки или отрезка (единица СИ – рад); угловая скорость, ω – изменение углового смещения за единицу времени (единица СИ – рад/с); и угловое ускорение, α – изменение угловой скорости за единицу времени (единица СИ – рад/с 2).
- Возвращаясь к нашему примеру – нам были даны данные для углового момента и время. Поскольку вращение начиналось из состояния покоя, то начальная угловая скорость равна 0. Мы можем воспользоваться уравнением, чтобы найти:
-
Воспользуйтесь уравнением, τ = Iα, чтобы найти вращательный момент. Просто замените переменные ответами, полученными на предыдущих шагах.
- Вы можете заметить, что единица "рад" не подходит к нашим единицам измерения, поскольку считается безразмерной величиной.
- Это значит, что вы можете пренебречь ею и продолжить ваши расчеты.
- Для анализа единиц измерения мы можем выразить угловое ускорение в с -2 .
- В первом методе, если тело является кругом и ось его вращения находится в центре, то рассчитывать составляющие силы не нужно (при условии, что сила не приложена под наклоном), поскольку сила лежит на касательной к окружности, т.е. перпендикулярно плечу момента.
- Если вам сложно представить, как происходит вращение, то возьмите ручку и попробуйте воссоздать задачу. Для более точного воспроизведения не забудьте скопировать положение оси вращения и направление приложенной силы.
Момент пары сил
Моментом силы относительно какой-либо точки (центра) называется вектор, численно равный произведению модуля силы на плечо, т.е. на кратчайшее расстояние от указанной точки до линии действия силы, и направленный перпендикулярно плоскости, проходящей через выбранную точку и линию действия силы в ту сторону, откуда "вращение", совершаемое силой вокруг точки, представляется происходящим против хода часовой стрелки. Момент силы характеризует ее вращательное действие.
Если О – точка, относительно которой находится момент силы F , то момент силы обозначается символом М о (F) . Покажем, что если точка приложения силыF определяется радиус-вектором r , то справедливо соотношение
М о (F)=r×F . (3.6)
Согласно этому соотношению момент силы равен векторному произведению вектора r на вектор F .
В самом деле, модуль векторного произведения равен
М о (F )=rF sin=Fh , (3.7)
где h – плечо силы. Заметим также, что вектор М о (F) направлен перпендикулярно плоскости, проходящей через векторы r и F , в ту сторону, откуда кратчайший поворот вектора r к направлению вектора F представляется происходящим против хода часовой стрелки. Таким образом, формула (3.6) полностью определяет модуль и направление момента силы F .
Иногда формулу (3.7) полезно записывать в виде
М о (F )=2S , (3.8)
где S – площадь треугольника ОАВ .
Пусть x , y , z – координаты точки приложения силы, а F x , F y , F z – проекции силы на координатные оси. Тогда, если точка О находится в начале координат, момент силы выражается следующим образом:
Отсюда следует, что проекции момента силы на координатные оси определяются формулами:
M Ox (F )= yF z -zF y ,
M Oy (F )= zF x -xF z ,
M Oy (F )= xF y -yF x . (3.10)
Введем теперь понятие проекции силы на плоскость.
Пусть даны сила F и некоторая плоскость. Опустим из начала и конца вектора силы перпендикуляры на эту плоскость.
Проекцией силы на плоскость называется вектор , начало и конец которого совпадают с проекцией начала и проекцией конца силы на эту плоскость.
Если в качестве рассматриваемой плоскости принять плоскость хОу , то проекцией силы F на этуплоскость будет вектор F ху .
Момент силы F ху относительно точки О (точки пересечения оси z с плоскостью хОу ) может быть вычислен по формуле (3.9), если в ней принять z =0, F z =0. Получим
M O (F ху )=(xF y -yF x )k .
Таким образом, момент направлен вдоль оси z , а его проекция на ось z в точности совпадает с проекцией на ту же ось момента силы F относительно точки О . Другими словами,
M Oz (F )=M Oz (F ху )= xF y -yF x . (3.11)
Очевидно, тот же результат можно получить, если спроектировать силуF на любую другую плоскость, параллельную хОу . При этом точка пересечения оси z с плоскостью будет уже иной (обозначим новую точку пересечения через О 1). Однако все входящие в правую часть равенства (3.11) величины х , у , F х , F у останутся неизменными, и, следовательно, можно записать
M Oz (F )=M O 1 z (F ху ).
Другими словами, проекция момента силы относительно точки на ось, проходящую через эту точку, не зависит от выбора точки на оси . Поэтому в дальнейшем вместо символа M Oz (F ) будем применять символ M z (F ). Эта проекция момента называется моментом силы относительно оси z . Вычисление момента силы относительно оси часто бывает удобнее производить посредством проектирования силы F на плоскость, перпендикулярную оси, и вычисления величины M z (F ху ).
В соответствии с формулой (3.7) и учитывая знак проекции, получим:
M z (F )=M z (F ху )=± F ху ·h* . (3.12)
Здесь h* – плечо силы F ху относительно точки О . Если наблюдатель видит со стороны положительного направления оси z, что сила F ху стремится повернуть тело вокруг оси z против хода часовой стрелки, то берется знак "+", и в противном случае – знак "–".
Формула (3.12) дает возможность сформулировать следующее правило для вычисления момента силы относительно оси. Для этого нужно:
· выбрать на оси произвольную точку и построить плоскость, перпендикулярную оси;
· спроектировать на эту плоскость силу;
· определить плечо проекции силы h*.
Момент силы относительно оси равен произведению модуля проекции силы на ее плечо, взятому с соответствующим знаком (см. изложенное выше правило).
Из формулы (3.12) следует, что момент силы относительно оси равен нулю в двух случаях:
· когда проекция силы на плоскость, перпендикулярную оси, равна нулю, т.е. когда сила и ось параллельны ;
· когда плечо проекции h* равно нулю, т.е. когдалиния действия пересекает ось .
Оба эти случая можно объединить в один: момент силы относительно оси равен нулю тогда и только тогда, когда линия действия силы и ось находятся в одной плоскости .
Задача 3.1. Вычислить относительно точки О момент силы F , приложеннойк точке А и направленной по диагонали грани куба со стороной а .
При решении подобных задач целесообразно сначала вычислить моменты силы F относительно координатных осей x , y , z . Координаты точки А приложения силы F будут
Проекции силы F на координатные оси:
Подставляя эти значения в равенства (3.10), найдем
Эти же выражения для моментов силы F относительно координатных осей можно получить, пользуясь формулой (3.12). Для этого спроектируем силу F на плоскости, перпендикулярные оси х и у . Очевидно, что . Применяя изложенное выше правило, получим, как и следовало ожидать, те же выражения:
, , .
Модуль момента определится равенством
.
Введем теперь понятие момента пары. Найдем сначала, чему равна сумма моментов сил, составляющих пару, относительно произвольной точки. Пусть О – произвольная точка пространства, а F и F" – силы, составляющие пару.
Тогда М о (F)=ОА ×F , М о (F")=ОВ ×F" ,
М о (F)+ М о (F")= ОА ×F + ОВ ×F" ,
но так как F= -F" , то
М о (F)+ М о (F")= ОА ×F - ОВ ×F =(ОА -ОВ )× F .
Принимая во внимание равенство ОА-ОВ=ВА , окончательно находим:
М о (F)+ М о (F")= ВА ×F .
Следовательно, сумма моментов сил, составляющих пару, не зависит от положения точки, относительно которой берутся моменты .
Векторное произведение ВА ×F и называется моментом пары . Обозначается момент пары символом М(F, F") , причем
М(F, F") = ВА ×F= АВ ×F" ,
или, короче,
М = ВА ×F= АВ ×F" . (3.13)
Рассматривая правую часть этого равенства, замечаем, что момент пары представляет собой вектор, перпендикулярный плоскости пары, равный по модулю произведению модуля одной сил пары на плечо пары (т.е. на кратчайшее расстояние между линиями действия сил, составляющих пару) и направленный в ту сторону, откуда "вращение" пары видно происходящим против хода часовой стрелки . Если h – плечо пары, то М(F, F") =h×F .
Из самого определения видно, что момент пары сил представляет собой свободный вектор, линия действия которого не определена (дополнительное обоснование этого замечания следует из теорем 2 и 3 этой главы).
Для того, чтобы пара сил составляла уравновешенную систему (систему сил, эквивалентную нулю), необходимо и достаточно, чтобы момент пары равнялся нулю. Действительно, если момент пары равен нулю, М =h×F , то либо F =0, т.е. нет сил, либо плечо пары h равно нулю. Но в этом случае силы пары будут действовать по одной прямой; так как они равны по модулю и направлены в противоположные стороны, то на основании аксиомы 1 они составят уравновешенную систему. Обратно, если две силы F 1 иF 2 , составляющие пару, уравновешены, то на основании той же аксиомы 1 они действуют по одной прямой. Но в этом случае плечо пары h равно нулю и, следовательно, М =h×F =0.
Теоремы о парах
Докажем три теоремы, с помощью которых становятся возможными эквивалентные преобразования пар. При всех рассмотрениях следует помнить, что они относятся к парам, действующим на какое-либо одно твердое тело.
Теорема 1. Две пары, лежащие в одной плоскости, можно заменить одной парой, лежащей в той же плоскости, с моментом, равным сумме моментов данных двух пар.
Для доказательства этой теоремы рассмотрим две пары (F 1 ,F" 1 ) и (F 2 ,F" 2 ) и перенесем точки приложения всех сил вдоль линий их действия в точки А и В соответственно. Складывая силы по аксиоме 3, получим
R=F 1 +F 2 и R"=F" 1 +F" 2 ,
но F 1 =-F" 1 и F 2 =-F" 2 .
Следовательно, R=- R" , т.е. силы R и R" образуют пару. Найдем момент этой пары, воспользовавшись формулой (3.13):
М=М (R , R" )=ВА× R=ВА× (F 1 +F 2 )=ВА× F 1 +ВА× F 2 . (3.14)
При переносе сил, составляющих пару, вдоль линий их действия ни плечо, ни направление вращения пар не меняются, следовательно, не меняется и момент пары. Значит,
ВА×F 1 =М (F 1 ,F" 1 )=М 1 , ВА× F 2 = М (F 2 ,F" 2 )=М 2
и формула (3.14) примет вид
М=М 1 +М 2 , (3.15)
что и доказывает справедливость сформулированной выше теоремы.
Сделаем два замечания к этой теореме.
1. Линии действия сил, составляющих пары, могут оказаться параллельными. Теорема остается справедливой и в этом случае, но для ее доказательства следует воспользоваться правилом сложения параллельных сил.
2. После сложения может получиться, что М (R , R" )=0; на основании сделанного ранее замечания из этого следует, что совокупность двух пар (F 1 ,F" 1 , F 2 ,F" 2 )=0.
Теорема 2. Две пары, имеющие геометрически равные моменты, эквивалентны.
Пусть на тело в плоскости I действует пара (F 1 ,F" 1 ) с моментом М 1 . Покажем, что эту пару можно заменить другой с парой (F 2 ,F" 2 ), расположенной в плоскости II , если только ее момент М 2 равен М 1 (согласно определению (см. 1.1) это и будет означать, что пары (F 1 ,F" 1 ) и (F 2 ,F" 2 ) эквивалентны). Прежде всего заметим, что плоскости I и II должны быть параллельны, в частности они могут совпадать. Действительно, из параллельности моментов М 1 и М 2 (в нашем случае М 1 =М 2 ) следует, что плоскости действия пар, перпендикулярные моментам, также параллельны.
Введем в рассмотрение новую пару (F 3 ,F" 3 ) и приложим ее вместе с парой (F 2 ,F" 2 ) к телу, расположив обе пары в плоскости II . Для этого, согласно аксиоме 2 нужно подобрать пару (F 3 ,F" 3 ) с моментом М 3 так, чтобы приложенная система сил (F 2 ,F" 2 , F 3 ,F" 3 ) была уравновешена. Это можно сделать, например, следующим образом: положим F 3 =-F" 1 и F" 3 = -F 1 и совместим точки приложения этих сил с проекциями А 1 и В 1 точек А и В на плоскость II . В соответствии с построением будем иметь: М 3 = -М 1 или, учитывая, что М 1 = М 2 ,
М 2 +М 3 = 0.
Принимая во внимание второе замечание к предыдущей теореме, получим (F 2 ,F" 2 , F 3 ,F" 3 )=0. Таким образом, пары (F 2 ,F" 2 ) и (F 3 ,F" 3 ) взаимно уравновешены и присоединение их к телу не нарушает его состояния (аксиома 2), так, что
(F 1 ,F" 1 )= (F 1 ,F" 1 , F 2 ,F" 2 , F 3 ,F" 3 ). (3.16)
С другой стороны, силы F 1 и F 3 , а также F" 1 и F" 3 можно сложить по правилу сложения параллельных сил, направленных в одну сторону. По модулю все эти силы равны друг другу, поэтому их равнодействующие R и R" должны быть приложены в точке пересечения диагоналей прямоугольника АВВ 1 А 1 ; кроме того, они равны по модулю и направлены в противоположные стороны. Это означает, что они составляют систему, эквивалентную нулю. Итак,
(F 1 ,F" 1 , F 3 ,F" 3 )=(R , R" )=0.
Теперь мы можем записать
(F 1 ,F" 1 , F 2 ,F" 2 , F 3 ,F" 3 )=(F 3 ,F" 3 ). (3.17)
Сравнивая соотношения (3.16) и (3.17), получим (F 1 ,F" 1 )=(F 2 ,F" 2 ), что и требовалось доказать.
Из этой теоремы следует, что пару сил можно перемещать в плоскости ее действия, переносить в параллельную плоскость; наконец, в паре можно менять одновременно силы и плечо, сохраняя лишь направление вращения пары и модуль ее момента (F 1 h 1 = F 2 h 2).
В дальнейшем мы будем широко пользоваться такими эквивалентными преобразованиями пары.
Теорема 3. Две пары, лежащие в пересекающихся плоскостях, эквивалентны одной паре, момент которой равен сумме моментов двух данных пар.
Пусть пары (F 1 ,F" 1 ) и (F 2 ,F" 2 ) расположены в пересекающихся плоскостях I и II соответственно. Пользуясь следствием теоремы 2, приведем обе пары к плечу АВ , расположенному на линии пересечения плоскостей I и II . Обозначим трансформированные пары через (Q 1 ,Q" 1 ) и (Q 2 ,Q" 2 ). При этом должны выполняться равенства
М 1 =М (Q 1 ,Q" 1 )=М (F 1 ,F" 1 ) и М 2 =М (Q 2 ,Q" 2 )=М (F 2 ,F" 2 ).
Сложим по аксиоме 3 силы, приложенные в точках А и В соответственно. Тогда получим R=Q 1 +Q 2 и R"= Q" 1 +Q" 2 . Учитывая, что Q" 1 =-Q 1 и Q" 2 =-Q 2 , получим R=-R" . Таким образом, мы доказали, что система двух пар эквивалентна одной паре (R ,R" ).
Найдем момент М этой пары. На основании формулы (3.13) имеем
М (R ,R" )=ВА× (Q 1 +Q 2 )=ВА× Q 1 +ВА× Q 2 =
=М (Q 1 ,Q" 1 )+М (Q 2 ,Q" 2 )=М (F 1 ,F" 1 )+М (F 2 ,F" 2 )
М=М 1 +М 2 ,
т.е. теорема доказана.
Заметим, что полученный результат справедлив и для пар, лежащих в параллельных плоскостях. По теореме 2 такие пары можно привести к одной плоскости, а по теореме 1 их можно заменить одной парой, момент которой равен сумме моментов составляющих пар.
Доказанные выше теоремы о парах позволяют сделать важный вывод: момент пары является свободным вектором и полностью определяет действие пары на абсолютно твердое тело . В самом деле, мы уже доказали, что если две пары имеют одинаковые моменты (следовательно, лежат в одной плоскости или в параллельных плоскостях), то они друг другу эквивалентны (теорема 2). С другой стороны, две пары, лежащие в пересекающихся плоскостях, не могут быть эквивалентны, ибо это означало бы, что одна из них и пара, противоположная другой, эквивалентны нулю, что невозможно, так как сумма моментов таких пар отлична от нуля.
Таким образом, введенное понятие момента пары чрезвычайно полезно, так как оно полностью отражает механическое действие пары на тело. В этом смысле можно сказать, что момент исчерпывающим образом представляет действие пары на твердое тело.
Для деформируемых тел изложенная выше теория пар неприменима. Две противоположные пары, действующие, например, по торцам стержня, с точки зрения статики твердого тела эквивалентны нулю. Между тем их действие на деформируемый стержень вызывает его кручение, и тем большее, чем больше модули моментов.
Перейдем к решению первой и второй задач статики, когда на тело действуют только пары сил.
Моментом силы относительно произвольного центра в плоскости действия силы, называется произведение модуля силы на плечо.
Плечо - кратчайшее расстояние от центра О до линии действия силы, но не до точки приложения силы, т.к. сила-скользящий вектор.
Знак момента:
По часовой-минус, против часовой-плюс;
Момент силы можно выразить как вектор. Это перпендикуляр к плоскости по правилу Буравчика.
Если в плоскости расположены несколько сил или система сил, то алгебраическая сумма их моментов даст нам главный момент системы сил.
Рассмотрим момент силы относительно оси, вычислим момент силы относительно оси Z;
Спроецируем F на XY;
F xy =Fcosα = ab
m 0 (F xy)=m z (F), то есть m z =F xy * h = Fcosα * h
Момент силы относительно оси равен моменту ее проекции на плоскость перпендикулярную оси, взятому на пересечении осей и плоскости
Если сила параллельна оси или пересекает ее, то m z (F)=0
Выражение момента силы в виде векторного выражения
Проведем r а в точку A. Рассмотрим OA x F.
Это третий вектор m o , перпендикулярный плоскости. Модуль векторного произведения можно вычислить с помощью удвоенной площади заштрихованного треугольника.
Аналитическое выражение силы относительно координатных осей.
Предположим, что с точкой О связаны оси Y и Z, X с единичными векторами i, j, k Учитывая, что:
r x =X * Fx ; r y =Y * F y ; r z =Z * F y получим: m o (F)=x =
Раскроем определитель и получим:
m x =YF z - ZF y
m y =ZF x - XF z
m z =XF y - YF x
Эти формулы дают возможность вычислить проекцию вектор-момента на оси, а потом и сам вектор-момент.
Теорема Вариньона о моменте равнодействующей
Если система сил имеет равнодействующую, то её момент относительно любого центра равен алгебраической сумме моментов всех сил относительно этой точки
Если приложить Q= -R , то система (Q,F 1 … F n) будет равен уравновешиваться.
Сумма моментов относительно любого центра будет равен нулю.
Аналитическое условие равновесия плоской системы сил
Это плоская система сил, линии действия которых расположены в одной плоскости
Цель расчета задач данного типа - определение реакций внешних связей. Для этого используются основные уравнения в плоской системе сил.
Могут использоваться 2 или 3 уравнения моментов.
Пример
Составим уравнение суммы всех сил на ось X и Y.
Почти две тысячи лет просуществовало правило рычага, открытое Архимедом еще в третьем веке до нашей эры, пока в семнадцатом веке с легкой руки французского ученого Вариньона не получило более общую форму.
Правило момента сил
Было введено понятие момента сил. Момент силы - это физическая величина, равная произведению силы на ее плечо:
где M - момент силы,
F - сила,
l - плечо силы.
Из правила равновесия рычага напрямую вытекает правило моментов сил:
F1 / F2 = l2 / l1 или, по свойству пропорции F1 * l1= F2 * l2, то есть M1 = M2
В словесном выражении правило моментов сил звучит следующим образом: рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки. Правило моментов сил справедливо для любого тела, закрепленного вокруг неподвижной оси. На практике момент силы находят следующим образом: по направлению действия силы проводят линию действия силы. Потом из точки, в которой находится ось вращения, проводят перпендикуляр до линии действия силы. Длина этого перпендикуляра будет равняться плечу силы. Умножив значение модуля силы на ее плечо, получаем значение момента силы относительно оси вращения. То есть, мы видим, что момент силы характеризует вращающее действие силы. Действие силы зависит и от самой силы и от ее плеча.
Применение правила моментов сил в различных ситуациях
Отсюда вытекает применение правила моментов сил в различных ситуациях. Например, если мы открываем дверь, то толкать ее мы будем в районе ручки, то есть, подальше от петель. Можно проделать элементарный опыт и убедиться, что толкать дверь тем легче, чем дальше мы прилагаем силу от оси вращения. Практический эксперимент в данном случае прямо подтверждается формулой. Так как, дабы моменты сил при разных плечах были равны, надо, чтобы большему плечу соответствовала меньшая сила и наоборот, меньшему плечу соответствовала большая. Чем ближе к оси вращения мы прилагаем силу, тем она должна быть больше. Чем дальше от оси мы воздействуем рычагом, вращая тело, тем меньшую силу нам необходимо будет приложить. Числовые значения легко находятся из формулы для правила моментов.
Именно исходя из правила моментов сил мы берем лом или длинную палку, если нам надо приподнять что-то тяжелое, и, подсунув под груз один конец, тянем лом возле другого конца. По этой же причине шурупы мы вворачиваем отверткой с длинной ручкой, а гайки закручиваем длинным гаечным ключом.