По какой формуле нужно искать гипотенузу. Как найти гипотенузу, если известны катеты
Есть три варианта решения этой задачи. Первый - если в условиях задачи дано, что катеты равны (по сути, мы имеем прямоугольный равнобедренный треугольник). Второй - если еще дан какой-то угол (кроме угла в 45%, тогда мы имеем тот же равнобедренный треугольник и возвращаемся к первому варианту). И третий - когда известен один из катетов. Рассмотрим данные варианты подробнее.
Как найти равные катеты, при известной гипотенузе
- первый катет (обозначим его буквой "a") равен второму катету ((обозначим его буквой "b"): a=b;
- размер катетов;
В этом варианте решение задачи основывается на использовании теоремы Пифагора. Ее применяют к прямоугольным треугольникам и основной ее вариант звучит, как: "Квадрат гипотенузы равен сумме квадратов катетов". Так, как катеты у нас равны, то мы можем обозначать оба катета одним и тем же сиволом: a=b, значит - a=a.
- Подставляем наши условные обозначения в теорему (с учетом вышеизложенного):
c^2=a^2+a^2, - Далее максимально упрощаем формулу:
с^2=2*(a^2) - группируем,
с=√2*а - подносим обе части уравнения к квадратному кореню,
a=c/√2 - выносим искомое. - Подставлем данное значение гипотенузы и получаем решение:
a=x/√2
Как найти катеты, при известной гипотенузе и угле
- гипотенуза (обозначим ее буквой "c") равна х см: c=x;
- угол β равный q: β=q;
- размер катетов;
Для решения этой задачи необходимо использовать тригонометрические функции. Найболее популярны две из них:
- функция синуса - синус искомого угла равен отношению противолежащего катета к гипотенузе;
- функция косинуса - косинус искомого угла равен отношению прилежащего катета к гипотенузе;
Вы можете использовать любую. Я наведу пример с использованием первой. Пусть катеты у нас обозначаються символами "a" (прилежащий к углу) и "b" (противолежащий к углу). Соответственно наш угол лежит между катетом "a" и гипотенузой.
- Подставляем выбранные условные обозначения в формулу:
sinβ = b/c - Выводим катет:
b=c*sinβ - Подставляем наши данный и имеем один катет.
b=c*sinq
Второй катет можно найти воспользовавшись второй тригонометрической функцией, или же перейти к третьему варианту.
Как найти один катет, если известна гипотенуза и другой катет
- гипотенуза (обозначим ее буквой "c") равна х см: c=x;
- катет (обозначим его буквой "b") равен y см: b=y;
- размер другого катета (обозначим его буквой "a");
В этом варианте решением задачи, как и в первом, является использование теоремы Пифагора.
- Подставляем наши условные обозначения в теорему:
c^2=a^2+b^2, - Выносим необходимый катет:
a^2=c^2-b^2 - Подносим обе части уравнения к квадратному кореню:
a=√(c^2-b^2) - Подставляем данные значения и имеем решение:
a=√(x^2-y^2)
Катетами называют называют две стороны прямоугольного треугольника, образующие прямой угол. Противоположная прямому углу самая длинная сторона треугольника именуется гипотенузой. Дабы обнаружить гипотенузу, необходимо знать длину катетов.
Инструкция
1. Длины катетов и гипотенузы связаны соотношением, которое описывается теоремой Пифагора. Алгебраическая формулировка: “В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.”Формула Пифагора выглядит так:c2 = a2 + b2,где с - длина гипотенузы, a и b - длины катетов.
2. Зная длины катетов, по теореме Пифагора дозволено обнаружить гипотенузу прямоугольного треугольника:c = ?(a2 + b2).
3. Пример. Длина одного из катетов равна 3 см, длина иного - 4 см. Сумма их квадратов равна 25 см?:9 см? + 16 см? = 25 см?.Длина гипотенузы в нашем случае равна квадратному корню из 25 см? – 5 см. Стало быть, длина гипотенузы равняется 5 см.
Гипотенузой именуется сторона в прямоугольном треугольнике, которая находится наоборот угла в 90 градусов. Для того, дабы рассчитать его длину, довольно знать длину одного из катетов и величину одного из острых углов треугольника.
Инструкция
1. При знаменитом катете и остром угле прямоугольного треугольника, то размер гипотенузы может быть равен отношению катета к косинусу/синусу этого угла, если данный угол является ему противолежащим/прилежащим:h = C1(либо C2)/sin?;h = С1(либо С2)/cos?.Пример: Пускай дан прямоугольный треугольник ABC с гипотенузой AB и прямым углом C. Пускай угол B равен 60 градусам, а угол A 30 градусам Длина катета BC 8 см. Нужно обнаружить длину гипотенузы AB. Для этого дозволено воспользоваться любым из предложенных выше методов:AB = BC/cos60 = 8 см.AB = BC/sin30 = 8 см.
Гипотенуза – самая длинная сторона прямоугольного треугольника . Она расположена противоположно прямому углу. Метод нахождения гипотенузы прямоугольного треугольника зависит от того, какими начальными данными вы владеете.
Инструкция
1. Если вестимы катеты прямоугольного треугольника , то длина гипотенузы прямоугольного треугольника может быть обнаружена с подмогой теоремы Пифагора – квадрат длины гипотенузы равен сумме квадратов длин катетов:с2 = а2 + b2, где а и b – длины катетов прямоугольного треугольника .
2. Если вестим один из катетов и острый угол, то формула для нахождения гипотенузы будет зависеть от того, какой данный угол по отношению к вестимому катету – прилежащий (расположенный вблизи катета) либо противолежащий (расположенный наоборот него.В случае прилежащего угла, гипотенуза равна отношению катета на косинус этого угла: с = a/cos?;E угол противолежащий, гипотенуза равна отношению катета на синус угла: с = a/sin?.
Видео по теме
Гипотенузой называют сторону прямоугольного треугольника, лежащую наоборот прямого угла. Она является наибольшей стороной прямоугольного треугольника. Рассчитать ее дозволено по теореме Пифагора либо с поддержкой формул тригонометрических функций.
Инструкция
1. Катетами называют стороны прямоугольного треугольника, прилежащие к прямому углу. На рисунке катеты обозначены как AB и BC. Пускай заданы длины обоих катетов. Обозначим их как |AB| и |BC|. Для того, дабы обнаружить длину гипотенузы |AC|, воспользуемся теоремой Пифагора. Согласно данной теореме сумма квадратов катетов равна квадрату гипотенузы, т.е. в обозначениях нашего рисунка |AB|^2 + |BC|^2 = |AC|^2. Из формулы получаем, что длина гипотенузы AC находится как |AC| = ?(|AB|^2 + |BC|^2) .
2. Разглядим пример. Пускай заданы длины катетов |AB| = 13, |BC| = 21. По теореме Пифагора получаем, что |AC|^2 = 13^2 + 21^2 = 169 + 441 = 610. Для того, дабы получить длину гипотенузы, нужно извлечь квадратный корень из суммы квадратов катетов, т.е. из числа 610: |AC| = ?610. Воспользовавшись таблицей квадратов целых чисел, выясняем, что число 610 не является полным квадратом какого-нибудь целого числа. Для того, дабы получить окончательное значение длины гипотенузы, испробуем перенести полный квадрат из под знака корня. Для этого разложим число 610 на множители. 610 = 2 * 5 * 61. По таблице примитивных чисел глядим, что 61 – число примитивное. Следственно последующее приведение числа?610 нереально. Получаем окончательный результат |AC| = ?610.Если бы квадрат гипотенузы был равен, к примеру, 675, тогда?675 = ?(3 * 25 * 9) = 5 * 3 * ?3 = 15 * ?3. В случае, если сходственное приведение допустимо, исполняйте обратную проверку – возведите итог в квадрат и сравните с начальным значением.
3. Пускай нам знаменит один из катетов и прилежащий к нему угол. Для определенности пускай это будут катет |AB| и угол?. Тогда мы можем воспользоваться формулой для тригонометрической функции косинус – косинус угла равен отношению прилежащего катета к гипотенузе. Т.е. в наших обозначениях cos ? = |AB| / |AC|. Отсель получаем длину гипотенузы |AC| = |AB| / cos ?.Если же нам знамениты катет |BC| и угол?, то воспользуемся формулой для вычисления синуса угла – синус угла равен отношению противолежащего катета к гипотенузе: sin ? = |BC| / |AC|. Получаем, что длина гипотенузы находится как |AC| = |BC| / cos ?.
4. Для наглядности разглядим пример. Пускай дана длина катета |AB| = 15. И угол? = 60°. Получаем |AC| = 15 / cos 60° = 15 / 0.5 = 30. Разглядим, как дозволено проверить свой итог с подмогой теоремы Пифагора. Для этого нам нужно посчитать длину второго катета |BC|. Воспользовавшись формулой для тангенса угла tg ? = |BC| / |AC|, получаем |BC| = |AB| * tg ? = 15 * tg 60° = 15 * ?3. Дальше применяем теорему Пифагора, получаем 15^2 + (15 * ?3)^2 = 30^2 => 225 + 675 = 900. Проверка исполнена.
Полезный совет
Рассчитав гипотенузу, исполняйте проверку – удовлетворяет ли полученное значение теореме Пифагора.
Теорема Пифагора является фундаментальной для каждой математики. Она устанавливает соотношение между сторонами прямоугольного треугольника. Теперь зафиксировано 367 доказательств этой теоремы.
Инструкция
1. Классическая школьная формулировка теоремы Пифагора звучит так: квадрат гипотенузы равен сумме квадратов катетов. Таким образом, дабы обнаружить гипотенузу прямоугольного треугольника по двум катетам, нужно поочередно построить в квадрат длины катетов, сложить их и извлечь квадратный корень из итога. В первоначальной своей формулировке теорема утверждала, что площадь квадрата, построенного на гипотенузе, равна сумме площадей 2-х квадратов, построенных на катетах. Впрочем современная алгебраическая формулировка не требует вводить представление площади.
2. Пускай, скажем, дан прямоугольный треугольник, катеты которого равны 7 см и 8 см. Тогда, согласно теореме Пифагора, квадрат гипотенузы равен 7?+8?=49+64=113 см?. Сама гипотенуза равна корню квадратному из числа 113. Получилось иррациональное число, которое идет в результат.
3. Если катеты треугольника равны 3 и 4, тогда гипотенуза равна?25=5. При извлечении квадратного корня получилось естественное число. Числа 3, 4, 5 составляют пифагорову тройку, так как они удовлетворяют соотношению x?+y?=z?, будучи все естественными. Другие примеры пифагоровой тройки: 6, 8, 10; 5, 12, 13; 15, 20, 25; 9, 40, 41.
4. В том случае если катеты равны между собой, тогда теорема Пифагора переходит в больше примитивное уравнение. Пускай, к примеру, оба катета равны числу A, а гипотенуза обозначена за C. Тогда C?=A?+A?, C?=2A?, C=A?2. В этом случае не надобно возводить в квадрат число A.
5. Теорема Пифагора – частный случай больше всеобщей теоремы косинусов, которая устанавливает соотношение между тремя сторонами треугольника для произвольного угла между какими-нибудь двумя из них.
Гипотенузой именуется сторона в прямоугольном треугольнике, которая находится наоборот угла в 90 градусов. Для того, дабы рассчитать его длину, довольно знать длину одного из катетов и величину одного из острых углов треугольника.
Инструкция
1. При знаменитом катете и остром угле прямоугольного треугольника, то размер гипотенузы может быть равен отношению катета к косинусу/синусу этого угла, если данный угол является ему противолежащим/прилежащим:h = C1(либо C2)/sin?;h = С1(либо С2)/cos?.Пример: Пускай дан прямоугольный треугольник ABC с гипотенузой AB и прямым углом C. Пускай угол B равен 60 градусам, а угол A 30 градусам Длина катета BC 8 см. Нужно обнаружить длину гипотенузы AB. Для этого дозволено воспользоваться любым из предложенных выше методов:AB = BC/cos60 = 8 см.AB = BC/sin30 = 8 см.
Гипотенуза – самая длинная сторона прямоугольного треугольника . Она расположена противоположно прямому углу. Метод нахождения гипотенузы прямоугольного треугольника зависит от того, какими начальными данными вы владеете.
Инструкция
1. Если вестимы катеты прямоугольного треугольника , то длина гипотенузы прямоугольного треугольника может быть обнаружена с поддержкой теоремы Пифагора – квадрат длины гипотенузы равен сумме квадратов длин катетов:с2 = а2 + b2, где а и b – длины катетов прямоугольного треугольника .
2. Если знаменит один из катетов и острый угол, то формула для нахождения гипотенузы будет зависеть от того, какой данный угол по отношению к знаменитому катету – прилежащий (расположенный вблизи катета) либо противолежащий (расположенный наоборот него.В случае прилежащего угла, гипотенуза равна отношению катета на косинус этого угла: с = a/cos?;E угол противолежащий, гипотенуза равна отношению катета на синус угла: с = a/sin?.
Видео по теме
Полезный совет
Прямоугольный треугольник, стороны которого соотносятся как 3:4:5, назван египетским треугольником, от того что именно такие фигуры энергично применялись архитекторами Старинного Египта. Он является также простейшим примером Героновых треугольников, в которых стороны и площадь представлены целыми числами.
Инструкция
Треугольник называется прямоугольным, если один из его углов равен 90 градусов. Он состоит из двух катетов и гипотенузы. Гипотенузой называют большую сторону этого треугольника. Она лежит против прямого угла. Катетами, соответственно, называют меньшие его стороны. Они могут быть как равны между собой, так и иметь разную величину. Равенство катетов , что вы работаете с прямоугольным треугольником. Прелесть его в том, что он объединяет в себе двух фигур: прямоугольного и равнобедренного треугольника. Если катеты не равны, то треугольник произвольный и основному закону: чем больше угол, тем больше лежащий напротив него катит.
Существует несколько способов нахождения гипотенузы по и углу. Но прежде чем воспользоваться одним из них, следует определить, какой и угол известны. Если дан угол и прилежащий к нему катет, то гипотенузу легче все найти по косинусу угла. Косинусом острого угла (cos a) в прямоугольном треугольнике называют отношение прилежащего катета к гипотенузе. Отсюда вытекает, что гипотенуза (с) будет равна отношению прилежащего катета (b) к косинуса угла a (cos a). Это можно записать так: cos a=b/c => c=b/cos a.
Если дан угол и противолежащий катет, то следует работать . Синус острого угла (sin a) в прямоугольном треугольнике есть отношение противолежащего катета (a) к гипотенузе (c). Здесь принцип, что и в предыдущем примере, только вместо функции косинуса берется синус. sin a=a/c => c=a/sin a.
Также можно воспользоваться такой тригонометрической функцией, как . Но нахождение искомой величины слегка усложнится. Тангенсом острого угла (tg a) в прямоугольном треугольнике называют отношение противолежащего катета (а) к прилежащему (b). Найдя оба катета, примените теорему Пифагора (квадрат гипотенузы равен сумме квадратов катетов) и большая будет найдена.
Обратите внимание
Работая с теоремой Пифагора, не забывайте, что вы имеете дело со степенью. Найдя сумму квадратов катетов, для получения окончательного ответа следует извлечь квадратный корень.
Источники:
- как найти катет и гипотенузу
Гипотенузой называется сторона в прямоугольном треугольнике, которая находится напротив угла в 90 градусов. Для того, чтобы рассчитать его длину, достаточно знать длину одного из катетов и величину одного из острых углов треугольника.
Инструкция
При известном и остром угле прямоугольного , то размер гипотенузы быть отношению катета к / этого угла, если данный угол является ему противолежащим/прилежащим:
h = C1(или C2)/sinα;
h = С1(или С2)/cosα.
Пример: Пусть дан ABC с гипотенузой AB и C. Пусть угол B равен 60 градусам, а угол A 30 градусам Длина катета BC 8 см. Надо длину гипотенузы AB. Для этого можно воспользоваться любым из предложенных выше способов:
AB = BC/cos60 = 8 см.
AB = BC/sin30 = 8 см.
Слово «катет » происходит от греческих слов «перпендикуляр» или «отвесный» - это объясняет, почему именно так назвали обе стороны прямоугольного треугольника, составляющие его девяностоградусный угол. Найти длину любого из катет ов нетрудно, если известна величина прилегающего к нему угла и еще какой-либо из параметров, так как в этом случае фактически станут известны величины всех трех углов.
Инструкция
Если кроме величины прилегающего угла (β) известна длина второго катет а (b), то длину катет а (a) можно определить как частное от деления длины известного катет а на известного угла: a=b/tg(β). Это вытекает из определения этой тригонометрической . Можно обойтись без тангенса, если воспользоваться теоремой . Из нее следует, что длины искомой к синусу противолежащего угла отношению длины известного катет а к синусу известного угла. Противолежащий искомому катет у острый угол можно выразить через известный угол как 180°-90°-β = 90°-β, так как сумма всех углов любого треугольника должна составлять 180°, а один из его углов равен 90°. Значит, искомую длину катет а можно вычислить по формуле a=sin(90°-β)∗b/sin(β).
Если известны величина прилегающего угла (β) и длина гипотенузы (c), то длину катет а (a) можно вычислить как произведение длины гипотенузы на косинус известного угла: a=c∗cos(β). Это вытекает из определения косинуса, как тригонометрической функции. Но можно воспользоваться, как и в предыдущем шаге, теоремой синусов и тогда длина искомого катет а будет равняться произведению синуса между 90° и известным углом на отношение длины гипотенузы к синусу прямого угла. А поскольку синус 90° равен единице, то можно записать так: a=sin(90°-β)∗c.
Практические вычисления можно производить, например, при помощи имеющегося в составе ОС Windows программного калькулятора. Для его запуска можно в главном меню на кнопке «Пуск» выбрать пункт «Выполнить», набрать команду calc и нажать кнопку «OK». В открывающемся по умолчанию простейшем варианте интерфейса этой программы тригонометрические функции не предусмотрены, поэтому после его запуска надо щелкнуть в меню раздел «Вид» и выбрать строку «Научный» или «Инженерный» (зависит от используемой версии операционной системы).
Видео по теме
Слово «катет» пришло в русский язык из греческого. В точном переводе оно означает отвес, то есть перпендикуляр к поверхности земли. В математике катетами называются стороны, образующие прямой угол прямоугольного треугольника. Противолежащая этому углу сторона называется гипотенузой. Термин «катет» применяется также в архитектуре и технологии сварочных работ.
Начертите прямоугольный треугольник АСВ. Обозначьте его катеты как а и b, а гипотенузу - как с. Все стороны и углы прямоугольного треугольника между собой определенными . Отношение катета, противолежащего одному из острых углов, к гипотенузе называется синусом данного угла. В данном треугольнике sinCAB=a/c. Косинус - это отношение к гипотенузе прилежащего катета, то есть cosCAB=b/c. Обратные отношения называются секансом и косекансом.
Секанс данного угла получается при делении гипотенузы на прилежащий катет, то есть secCAB=c/b. Получается величина, обратная косинусу, то есть выразить ее можно по формуле secCAB=1/cosSAB.
Косеканс равен частному от деления гипотенузы на противолежащий катет и это величина, обратная синусу. Она может быть рассчитана по формуле cosecCAB=1/sinCAB
Оба катета связаны между собой и котангенсом. В данном случае тангенсом будет отношение стороны a к стороне b, то есть противолежащего катета к прилежащему. Это отношение может быть выражено формулой tgCAB=a/b. Соответственно, обратным отношением будет котангенс: ctgCAB=b/a.
Соотношение между размерами гипотенузы и обоих катетов определил еще древнегреческий Пифагор. Теоремой, его именем, люди пользуются до сих пор. Она гласит, что квадрат гипотенузы равен сумме квадратов катетов, то есть с2=a2+b2. Соответственно, каждый катет будет равняться квадратному корню из разности квадратов гипотенузы и другого катета. Эту формулу можно записать как b=√(с2-а2).
Длину катета можно выразить и через известные вам соотношения. Согласно теоремам синусов и косинусов, катет равен произведению гипотенузы на одну из этих функций. Можно его выразить и или котангенс. Катет а можно найти, например, по формуле a = b*tan CAB. Точно таким же образом, в зависимости от заданных тангенса или , определяется и второй катет.
В архитектуре также используется термин «катет». Он применяется по отношению к ионической капители и отвес через середину ее задка. То есть и в этом случае этим термином перпендикуляр к заданной линии.
В технологии сварочных работ есть «катет углового шва». Как и в других случаях, это самое короткое расстояние. Здесь речь идет о промежутке между одной из свариваемых деталей до границы шва, находящегося на поверхности другой детали.
Видео по теме
Источники:
- что такое катет и гипотенуза в 2019
В самом начале напомним, что треугольник – это многогранник, у которого имеются 3 угла. Как найти гипотенузу прямоугольного треугольника, если известны другие величины треугольника?
Инструкция
- Известны длины катетов. В данном случае, гипотенузу можно вычислить, применяя теорему Пифагора. Данная теорема звучит так: сумма квадратов катетов равна квадрату гипотенузы. Из этого следует, чтобы рассчитать длину гипотенузы, необходимо возвести в квадрат поочередно величину каждого катета. После чего полученные цифры сложить, а из общего результата уже извлечь квадратный корень.
- Как находить гипотенузу в треугольнике KFB, если известен катет (ВК) и прилежащий к нему угол? Известный угол обозначим α. Одно из свойств прямоугольного треугольника гласит следующее, отношение длины катета прямоугольного треугольника к длине гипотенузы равно косинусу угла, расположенного между гипотенузой и этим катетом. Записать это можно следующим образом: FB=BK*cos(α).
- Известен другой катет (KF) и этот же самый угол α, Теперь уже он будет противолежащим. Гипотенуза также можно найти, если применить те же самые свойства прямоугольного треугольника. Здесь мы получим, отношение длины катета прямоугольного треугольника к длине его гипотенузы равно синусу угла, противолежащего катету. Записываем: FB=KF*sin(α).
- Как найти гипотенузу треугольника, если около него описана окружность, у которой известен ее радиус. Из свойств окружности, которая описана вокруг прямоугольного треугольника известно, что у такой окружности центр совпадает с точкой гипотенузы, которая разделяет его пополам. Иными словами – радиус равен половине гипотенузы. А это значит, что два радиуса составляют гипотенузу: FB=2*R.
Зная свойства прямоугольного треугольника и теорему Пифагора, очень просто вычислить длину гипотенузы. Если вам все же сложно запомнить все свойства, тогда просто выучите готовые формулы, в которые очень просто подставить известные значения, чтобы рассчитать длину гипотенузы.