Показательные уравнения и неравенства
Урок и презентация на тему: "Показательные уравнения и показательные неравенства"
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"
Определение показательных уравнений
Ребята, мы изучили показательные функций, узнали их свойства и построили графики, разобрали примеры уравнений, в которых встречались показательные функции. Сегодня мы будем изучать показательные уравнения и неравенства.Определение. Уравнения вида: $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ называются показательными уравнениями.
Вспомнив теоремы, которые мы изучали в теме "Показательная функция", можно ввести новую теорему:
Теорема. Показательное уравнение $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ равносильно уравнению $f(x)=g(x)$.
Примеры показательных уравнений
Пример.Решить уравнения:
а) $3^{3x-3}=27$.
б) ${(\frac{2}{3})}^{2x+0,2}=\sqrt{\frac{2}{3}}$.
в) $5^{x^2-6x}=5^{-3x+18}$.
Решение.
а) Мы хорошо знаем, что $27=3^3$.
Перепишем наше уравнение: $3^{3x-3}=3^3$.
Воспользовавшись теоремой выше, получаем, что наше уравнение сводится к уравнению $3х-3=3$, решив это уравнение, получим $х=2$.
Ответ: $х=2$.
Б) $\sqrt{\frac{2}{3}}={(\frac{2}{3})}^{\frac{1}{5}}$.
Тогда наше уравнение можно переписать:
${(\frac{2}{3})}^{2x+0,2}={(\frac{2}{3})}^{\frac{1}{5}}={(\frac{2}{3})}^{0,2}$.
$2х+0,2=0,2$.
$х=0$.
Ответ: $х=0$.
В) Исходное уравнение равносильно уравнению:
$x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ и $x_2=-3$.
Ответ: $x_1=6$ и $x_2=-3$.
Пример.
Решить уравнение: $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=16*{(0,0625)}^{x+1}$.
Решение:
Последовательно выполним ряд действий и приведем обе части нашего уравнения к одинаковым основаниям.
Выполним ряд операций в левой части:
1) ${(0,25)}^{x-0,5}={(\frac{1}{4})}^{x-0,5}$.
2) $\sqrt{4}=4^{\frac{1}{2}}$.
3) $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=\frac{{(\frac{1}{4})}^{x-0,5}}{4^{\frac{1}{2}}}=
\frac{1}{4^{x-0,5+0,5}}=\frac{1}{4^x}={(\frac{1}{4})}^x$.
Перейдем к правой части:
4) $16=4^2$.
5) ${(0,0625)}^{x+1}=\frac{1}{{16}^{x+1}}=\frac{1}{4^{2x+2}}$.
6) $16*{(0,0625)}^{x+1}=\frac{4^2}{4^{2x+2}}=4^{2-2x-2}=4^{-2x}=\frac{1}{4^{2x}}={(\frac{1}{4})}^{2x}$.
Исходное уравнение равносильно уравнению:
${(\frac{1}{4})}^x={(\frac{1}{4})}^{2x}$.
$x=2x$.
$x=0$.
Ответ: $х=0$.
Пример.
Решить уравнение: $9^x+3^{x+2}-36=0$.
Решение:
Перепишем наше уравнение:
${(3^2)}^x+9*3^x-36=0$.
${(3^x)}^2+9*3^x-36=0$.
Давайте сделаем замену переменных, пусть $a=3^x$.
В новых переменных уравнение примет вид:
$a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ и $a_2=3$.
Выполним обратную замену переменных: $3^x=-12$ и $3^x=3$.
На прошлом уроке мы узнали, что показательные выражения могут принимать только положительные значения, вспомните график. Значит, первое уравнение не имеет решений, второе уравнение имеет одно решение: $х=1$.
Ответ: $х=1$.
Давайте составим памятку способов решения показательных уравнений:
1. Графический метод.
Представляем обе части уравнения в виде функций и строим их графики, находим точки пересечений графиков. (Этим методом мы пользовались на прошлом уроке).
2. Принцип равенства показателей.
Принцип основан на том, что два выражения с одинаковыми основаниями равны, тогда и только тогда, когда равны степени (показатели) этих оснований.
$a^{f(x)}=a^{g(x)}$ $f(x)=g(x)$.
3. Метод замены переменных.
Данный метод стоит применять, если уравнение при замене переменных упрощает свой вид и его гораздо легче решить.
Пример.
Решить систему уравнений: $\begin {cases} {27}^y*3^x=1, \\ 4^{x+y}-2^{x+y}=12. \end {cases}$.
Решение.
Рассмотрим оба уравнения системы по отдельности:
$27^y*3^x=1$.
$3^{3y}*3^x=3^0$.
$3^{3y+x}=3^0$.
$x+3y=0$.
Рассмотрим второе уравнение:
$4^{x+y}-2^{x+y}=12$.
$2^{2(x+y)}-2^{x+y}=12$.
Воспользуемся методом замены переменных, пусть $y=2^{x+y}$.
Тогда уравнение примет вид:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ и $y_2=-3$.
Перейдем к начальным переменным, из первого уравнения получаем $x+y=2$. Второе уравнение не имеет решений.
Тогда наша начальная система уравнений, равносильна системе: $\begin {cases} x+3y=0, \\ x+y=2. \end {cases}$.
Вычтем из первого уравнения второе, получим:
$\begin {cases} 2y=-2, \\ x+y=2. \end {cases}$.
$\begin {cases} y=-1, \\ x=3. \end {cases}$.
Ответ: $(3;-1)$.
Показательные неравенства
Перейдем к неравенствам. При решении неравенств необходимо обращать внимание на основание степени. Возможны два варианта развития событий при решении неравенств.Теорема. Если $а>1$, то показательное неравенство $a^{f(x)}>a^{g(x)}$ равносильно неравенству $f(x)>g(x)$.
Если $0a^{g(x)}$ равносильно неравенству $f(x)
Пример.
Решить неравенства:
а) $3^{2x+3}>81$.
б) ${(\frac{1}{4})}^{2x-4}
в) ${0,3}^{x^2+6x}≤{0,3}^{4x+15}$.
Решение.
а) $3^{2x+3}>81$.
$3^{2x+3}>3^4$.
Наше неравенство равносильно неравенству:
$2x+3>4$.
$2x>1$.
$x>0,5$.
Б) ${(\frac{1}{4})}^{2x-4}
${(\frac{1}{4})}^{2x-4}
В нашем уравнении основание при степени меньше 1, тогда при замене неравенства на эквивалентное необходимо поменять знак.
$2x-4>2$.
$x>3$.
В) Наше неравенство эквивалентно неравенству:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Воспользуемся интервальным методом решения:
Ответ: $(-∞;-5]U
Где в роли $b$ может быть обычное число, а может быть и что-нибудь пожёстче. Примеры? Да пожалуйста:
\[\begin{align} & {{2}^{x}} \gt 4;\quad {{2}^{x-1}}\le \frac{1}{\sqrt{2}};\quad {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,1}^{1-x}} \lt 0,01;\quad {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}. \\\end{align}\]
Думаю, смысл понятен: есть показательная функция ${{a}^{x}}$, её с чем-то сравнивают, а затем просят найти $x$. В особо клинических случаях вместо переменной $x$ могут засунуть какую-нибудь функцию $f\left(x \right)$ и тем самым чуть-чуть усложнить неравенство.:)
Конечно, в некоторых случаях неравенство может выглядеть более сурово. Вот, например:
\[{{9}^{x}}+8 \gt {{3}^{x+2}}\]
Или даже вот:
В целом, сложность таких неравенств может быть самой разной, но в итоге они всё равно сводятся к простой конструкции ${{a}^{x}} \gt b$. А уж с такой конструкцией мы как-нибудь разберёмся (в особо клинических случаях, когда ничего не приходит в голову, нам помогут логарифмы). Поэтому сейчас мы научимя решать такие простые конструкции.
Решение простейших показательных неравенств
Рассмотрим что-нибудь совсем простое. Например, вот это:
\[{{2}^{x}} \gt 4\]
Очевидно, что число справа можно переписать в виде степени двойки: $4={{2}^{2}}$. Таким образом, исходное неравенство перепишется в очень удобной форме:
\[{{2}^{x}} \gt {{2}^{2}}\]
И вот уже руки чешутся «зачеркнуть» двойки, стоящие в основаниях степеней, дабы получить ответ $x \gt 2$. Но перед тем как что там зачёркивать, давайте вспомним степени двойки:
\[{{2}^{1}}=2;\quad {{2}^{2}}=4;\quad {{2}^{3}}=8;\quad {{2}^{4}}=16;...\]
Как видим, чем большее число стоит в показателе степени, тем больше получается число на выходе. «Спасибо, кэп!» — воскликнет кто-нибудь из учеников. Разве бывает по-другому? К сожалению, бывает. Например:
\[{{\left(\frac{1}{2} \right)}^{1}}=\frac{1}{2};\quad {{\left(\frac{1}{2} \right)}^{2}}=\frac{1}{4};\quad {{\left(\frac{1}{2} \right)}^{3}}=\frac{1}{8};...\]
Тут тоже всё логично: чем больше степень, тем больше раз число 0,5 умножается само на себя (т.е. делится пополам). Таким образом, полученная последовательность чисел убывает, а разница между первой и второй последовательностью состоит лишь в основании:
- Если основание степени $a \gt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ тоже будет расти;
- И наоборот, если $0 \lt a \lt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ будет убывать.
Суммируя эти факты, мы получаем самое главное утверждение, на котором и основано всё решение показательных неравенств:
Если $a \gt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \gt n$. Если $0 \lt a \lt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \lt n$.
Другими словами, если основание больше единицы, его можно просто убрать — знак неравенства при этом не поменяется. А если основание меньше единицы, то его тоже можно убрать, но при этом придётся поменять и знак неравенства.
Обратите внимание: мы не рассмотрели варианты $a=1$ и $a\le 0$. Потому что в этих случаях возникает неопределённость. Допустим, как решить неравенство вида ${{1}^{x}} \gt 3$? Единица в любой степени снова даст единицу — мы никогда не получим тройку или больше. Т.е. решений нет.
С отрицательными основаниями всё ещё интереснее. Рассмотрим для примера вот такое неравенство:
\[{{\left(-2 \right)}^{x}} \gt 4\]
На первый взгляд, всё просто:
Правильно? А вот и нет! Достаточно подставить вместо $x$ парочку чётных и парочку нечётных чисел, чтобы убедиться что решение неверно. Взгляните:
\[\begin{align} & x=4\Rightarrow {{\left(-2 \right)}^{4}}=16 \gt 4; \\ & x=5\Rightarrow {{\left(-2 \right)}^{5}}=-32 \lt 4; \\ & x=6\Rightarrow {{\left(-2 \right)}^{6}}=64 \gt 4; \\ & x=7\Rightarrow {{\left(-2 \right)}^{7}}=-128 \lt 4. \\\end{align}\]
Как видите, знаки чередуются. А ведь есть ещё дробные степени и прочая жесть. Как, например, прикажете считать ${{\left(-2 \right)}^{\sqrt{7}}}$ (минус двойка в степени корень из семи)? Да никак!
Поэтому для определённости полагают, что во всех показательных неравенствах (и уравнениях, кстати, тоже) $1\ne a \gt 0$. И тогда всё решается очень просто:
\[{{a}^{x}} \gt {{a}^{n}}\Rightarrow \left[ \begin{align} & x \gt n\quad \left(a \gt 1 \right), \\ & x \lt n\quad \left(0 \lt a \lt 1 \right). \\\end{align} \right.\]
В общем, ещё раз запомните главное правило: если основание в показательном уравнении больше единицы, его можно просто убрать; а если основание меньше единицы, его тоже можно убрать, но при этом поменяется знак неравенства.
Примеры решения
Итак, рассмотрим несколько простых показательных неравенств:
\[\begin{align} & {{2}^{x-1}}\le \frac{1}{\sqrt{2}}; \\ & {{0,1}^{1-x}} \lt 0,01; \\ & {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}. \\\end{align}\]
Первостепенная задача во всех случаях одна и та же: свести неравенств к простейшему виду ${{a}^{x}} \gt {{a}^{n}}$. Именно это мы сейчас и сделаем с каждым неравенством, а заодно повторим свойства степеней и показательной функции. Итак, поехали!
\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\]
Что здесь можно сделать? Ну, слева у нас и так стоит показательное выражение — ничего менять не надо. А вот справа стоит какая-то хрень: дробь, да ещё и в знаменателе корень!
Однако вспомним правила работы с дробями и степенями:
\[\begin{align} & \frac{1}{{{a}^{n}}}={{a}^{-n}}; \\ & \sqrt[k]{a}={{a}^{\frac{1}{k}}}. \\\end{align}\]
Что это значит? Во-первых, мы легко можем избавиться от дроби, превратив её в степень с отрицательным показателем. А во-вторых, поскольку в знаменателе стоит корень, было бы неплохо превратить и его в степень — на этот раз с дробным показателем.
Применим эти действия последовательно к правой части неравенства и посмотрим, что получится:
\[\frac{1}{\sqrt{2}}={{\left(\sqrt{2} \right)}^{-1}}={{\left({{2}^{\frac{1}{3}}} \right)}^{-1}}={{2}^{\frac{1}{3}\cdot \left(-1 \right)}}={{2}^{-\frac{1}{3}}}\]
Не забываем, что при возведении степени в степень показатели этих степеней складываются. И вообще, при работе с показательными уравнениями и неравенствами совершенно необходимо знать хотя бы простейшие правила работы со степенями:
\[\begin{align} & {{a}^{x}}\cdot {{a}^{y}}={{a}^{x+y}}; \\ & \frac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}}; \\ & {{\left({{a}^{x}} \right)}^{y}}={{a}^{x\cdot y}}. \\\end{align}\]
Собственно, последнее правило мы только что и применили. Поэтому наше исходное неравенство перепишется следующим образом:
\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\Rightarrow {{2}^{x-1}}\le {{2}^{-\frac{1}{3}}}\]
Теперь избавляемся от двойки в основании. Поскольку 2 > 1, знак неравенства останется прежним:
\[\begin{align} & x-1\le -\frac{1}{3}\Rightarrow x\le 1-\frac{1}{3}=\frac{2}{3}; \\ & x\in \left(-\infty ;\frac{2}{3} \right]. \\\end{align}\]
Вот и всё решение! Основная сложность — вовсе не в показательной функции, а в грамотном преобразовании исходного выражения: нужно аккуратно и максимально быстро привести его к простейшему виду.
Рассмотрим второе неравенство:
\[{{0,1}^{1-x}} \lt 0,01\]
Так, так. Тут нас поджидают десятичные дроби. Как я уже много раз говорил, в любых выражениях со степенями следует избавляться от десятичных дробей — зачастую только так можно увидеть быстрое и простое решение. Вот и мы избавимся:
\[\begin{align} & 0,1=\frac{1}{10};\quad 0,01=\frac{1}{100}={{\left(\frac{1}{10} \right)}^{2}}; \\ & {{0,1}^{1-x}} \lt 0,01\Rightarrow {{\left(\frac{1}{10} \right)}^{1-x}} \lt {{\left(\frac{1}{10} \right)}^{2}}. \\\end{align}\]
Перед нами вновь простейшее неравенство, да ещё и с основанием 1/10, т.е. меньшим единицы. Что ж, убираем основания, попутно меняя знак с «меньше» на «больше», и получаем:
\[\begin{align} & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\end{align}\]
Получили окончательный ответ: $x\in \left(-\infty ;-1 \right)$. Обратите внимание: ответом является именно множество, а ни в коем случае не конструкция вида $x \lt -1$. Потому что формально такая конструкция — это вовсе не множество, а неравенство относительно переменной $x$. Да, оно очень простое, но это не ответ!
Важное замечание . Данное неравенство можно было решить и по-другому — путём приведения обеих частей к степени с основанием, большим единицы. Взгляните:
\[\frac{1}{10}={{10}^{-1}}\Rightarrow {{\left({{10}^{-1}} \right)}^{1-x}} \lt {{\left({{10}^{-1}} \right)}^{2}}\Rightarrow {{10}^{-1\cdot \left(1-x \right)}} \lt {{10}^{-1\cdot 2}}\]
После такого преобразования мы вновь получим показательное неравенство, но с основанием 10 > 1. А это значит, что можно просто зачеркнуть десятку — знак неравенства при этом не поменяется. Получим:
\[\begin{align} & -1\cdot \left(1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\end{align}\]
Как видите, ответ получился точь-в-точь такой же. При этом мы избавили себя от необходимости менять знак и вообще помнить какие-то там правила.:)
\[{{2}^{{{x}^{2}}-7x+14}} \lt 16\]
Однако пусть вас это не пугает. Чтобы ни находилось в показателях, технология решения самого неравенства остаётся прежней. Поэтому заметим для начала, что 16 = 2 4 . Перепишем исходное неравенство с учётом этого факта:
\[\begin{align} & {{2}^{{{x}^{2}}-7x+14}} \lt {{2}^{4}}; \\ & {{x}^{2}}-7x+14 \lt 4; \\ & {{x}^{2}}-7x+10 \lt 0. \\\end{align}\]
Ура! Мы получили обычное квадратное неравенство! Знак нигде не менялся, поскольку в основании стоит двойка — число, большее единицы.
Нули функции на числовой прямой
Расставляем знаки функции $f\left(x \right)={{x}^{2}}-7x+10$ — очевидно, её графиком будет парабола ветвями вверх, поэтому по бокам будут «плюсы». Нас интересует та область, где функция меньше нуля, т.е. $x\in \left(2;5 \right)$ — это и есть ответ к исходной задаче.
Наконец, рассмотрим ещё одно неравенство:
\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\]
Опять видим показательную функцию с десятичной дробью в основании. Переводим эту дробь в обыкновенную:
\[\begin{align} & 0,2=\frac{2}{10}=\frac{1}{5}={{5}^{-1}}\Rightarrow \\ & \Rightarrow {{0,2}^{1+{{x}^{2}}}}={{\left({{5}^{-1}} \right)}^{1+{{x}^{2}}}}={{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\end{align}\]
В данном случае мы воспользовались приведённым ранее замечанием — свели основание к числу 5 > 1, чтобы упростить себе дальнейшее решение. Точно так же поступим и с правой частью:
\[\frac{1}{25}={{\left(\frac{1}{5} \right)}^{2}}={{\left({{5}^{-1}} \right)}^{2}}={{5}^{-1\cdot 2}}={{5}^{-2}}\]
Перепишем исходное неравенство с учётом обоих преобразований:
\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\Rightarrow {{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\ge {{5}^{-2}}\]
Основания с обеих сторон одинаковы и превосходят единицу. Никаких других слагаемых справа и слева нет, поэтому просто «зачёркиваем» пятёрки и получаем совсем простое выражение:
\[\begin{align} & -1\cdot \left(1+{{x}^{2}} \right)\ge -2; \\ & -1-{{x}^{2}}\ge -2; \\ & -{{x}^{2}}\ge -2+1; \\ & -{{x}^{2}}\ge -1;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}\le 1. \\\end{align}\]
Вот тут надо быть аккуратнее. Многие ученики любят просто извлечь квадратный корень их обеих частей неравенства и записать что-нибудь в духе $x\le 1\Rightarrow x\in \left(-\infty ;-1 \right]$. Делать этого ни в коем случае нельзя, поскольку корень из точного квадрата — это модуль, а ни в коем случае не исходная переменная:
\[\sqrt{{{x}^{2}}}=\left| x \right|\]
Однако работать с модулями — не самое приятное занятие, правда? Вот и мы не будем работать. А вместо этого просто перенесём все слагаемые влево и решим обычное неравенство методом интервалов:
$\begin{align} & {{x}^{2}}-1\le 0; \\ & \left(x-1 \right)\left(x+1 \right)\le 0 \\ & {{x}_{1}}=1;\quad {{x}_{2}}=-1; \\\end{align}$
Вновь отмечаем полученные точки на числовой прямой и смотрим знаки:
Обратите внимание: точки закрашеныПоскольку мы решали нестрогое неравенство, все точки на графике закрашены. Поэтому ответ будет такой: $x\in \left[ -1;1 \right]$ — не интервал, а именно отрезок.
В целом хотел бы заметить, что ничего сложного в показательных неравенствах нет. Смысл всех преобразований, которые мы сегодня выполняли, сводится к простому алгоритму:
- Найти основание, к которому будем приводить все степени;
- Аккуратно выполнить преобразования, чтобы получилось неравенство вида ${{a}^{x}} \gt {{a}^{n}}$. Разумеется вместо переменных $x$ и $n$ могут стоять гораздо более сложные функции, но смысл от этого не поменяется;
- Зачеркнуть основания степеней. При этом может поменяться знак неравенства, если основание $a \lt 1$.
По сути, это универсальный алгоритм решения всех таких неравенств. А всё, что вам ещё будут рассказывать по этой теме — лишь конкретные приёмы и хитрости, позволяющие упростить и ускорить преобразования. Вот об одном из таких приёмов мы сейчас и поговорим.:)
Метод рационализации
Рассмотрим ещё одну партию неравенств:
\[\begin{align} & {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1; \\ & {{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}; \\ & {{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1. \\\end{align}\]
Ну и что в них такого особенного? Они же лёгкие. Хотя, стоп! Число π возводится в какую-то степень? Что за бред?
А как возвести в степень число $2\sqrt{3}-3$? Или $3-2\sqrt{2}$? Составители задач, очевидно, перепили «Боярышника» перед тем, как сесть за работу.:)
На самом деле ничего страшного в этих задачах нет. Напомню: показательной функцией называется выражение вида ${{a}^{x}}$, где основание $a$ — это любое положительное число, за исключением единицы. Число π положительно — это мы и так знаем. Числа $2\sqrt{3}-3$ и $3-2\sqrt{2}$ тоже положительны — в этом легко убедиться, если сравнить их с нулём.
Получается, что все эти «устрашающие» неравенства ничем не отличаются решаются от простых, рассмотренных выше? И решаются точно так же? Да, совершенно верно. Однако на их примере я хотел бы рассмотреть один приём, который здорово экономит время на самостоятельных работах и экзаменах. Речь пойдёт о методе рационализации. Итак, внимание:
Всякое показательное неравенство вида ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $\left(x-n \right)\cdot \left(a-1 \right) \gt 0$.
Вот и весь метод.:) А вы думали, что будет какая-нибудь очередная дичь? Ничего подобного! Но этот простой факт, записанный буквально в одну строчку, значительно упростит нам работу. Взгляните:
\[\begin{matrix} {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}} \\ \Downarrow \\ \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\\end{matrix}\]
Вот и нет больше показательных функций! И не надо помнить: меняется знак или нет. Но возникает новая проблема: что делать с грёбаным множителем \[\left(\text{ }\!\!\pi\!\!\text{ }-1 \right)\]? Мы ведь не знаем, чему равно точное значение числа π. Впрочем, капитан очевидность как бы намекает:
\[\text{ }\!\!\pi\!\!\text{ }\approx 3,14... \gt 3\Rightarrow \text{ }\!\!\pi\!\!\text{ }-1 \gt 3-1=2\]
В общем, точное значение π нас особо-то и не колышет — нам лишь важно понимать, что в любом случае $\text{ }\!\!\pi\!\!\text{ }-1 \gt 2$, т.е. это положительная константа, и мы можем разделить на неё обе части неравенства:
\[\begin{align} & \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\ & x+7-\left({{x}^{2}}-3x+2 \right) \gt 0; \\ & x+7-{{x}^{2}}+3x-2 \gt 0; \\ & -{{x}^{2}}+4x+5 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-4x-5 \lt 0; \\ & \left(x-5 \right)\left(x+1 \right) \lt 0. \\\end{align}\]
Как видите, в определённый момент пришлось разделить на минус единицу — при этом знак неравенства поменялся. В конце я разложил квадратный трёхчлен по теореме Виета — очевидно, что корни равны ${{x}_{1}}=5$ и ${{x}_{2}}=-1$. Дальше всё решается классическим методом интервалов:
Решаем неравенство методом интерваловВсе точки выколоты, поскольку исходное неравенство строгое. Нас интересует область с отрицательными значениями, поэтому ответ: $x\in \left(-1;5 \right)$. Вот и всё решение.:)
Перейдём к следующей задаче:
\[{{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1\]
Тут вообще всё просто, потому что справа стоит единица. А мы помним, что единица — это любое число в нулевой степени. Даже если этим числом является иррациональное выражение, стоящее в основании слева:
\[\begin{align} & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1={{\left(2\sqrt{3}-3 \right)}^{0}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt {{\left(2\sqrt{3}-3 \right)}^{0}}; \\\end{align}\]
Что ж, выполняем рационализацию:
\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-3-1 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-4 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0. \\\end{align}\]
Осталось лишь разобраться со знаками. Множитель $2\left(\sqrt{3}-2 \right)$ не содержит переменной $x$ — это просто константа, и нам необходимо выяснить её знак. Для этого заметим следующее:
\[\begin{matrix} \sqrt{3} \lt \sqrt{4}=2 \\ \Downarrow \\ 2\left(\sqrt{3}-2 \right) \lt 2\cdot \left(2-2 \right)=0 \\\end{matrix}\]
Получается, что второй множитель — не просто константа, а отрицательная константа! И при делении на неё знак исходного неравенства поменяется на противоположный:
\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0; \\ & {{x}^{2}}-2x-0 \gt 0; \\ & x\left(x-2 \right) \gt 0. \\\end{align}\]
Теперь всё становится совсем очевидно. Корни квадратного трёхчлена, стоящего справа: ${{x}_{1}}=0$ и ${{x}_{2}}=2$. Отмечаем их на числовой прямой и смотрим знаки функции $f\left(x \right)=x\left(x-2 \right)$:
Случай, когда нас интересуют боковые интервалыНас интересуют интервалы, отмеченные знаком «плюс». Осталось лишь записать ответ:
Переходим к следующему примеру:
\[{{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}\]
Ну, тут совсем всё очевидно: в основаниях стоят степени одного и того же числа. Поэтому я распишу всё кратко:
\[\begin{matrix} \frac{1}{3}={{3}^{-1}};\quad \frac{1}{9}=\frac{1}{{{3}^{2}}}={{3}^{-2}} \\ \Downarrow \\ {{\left({{3}^{-1}} \right)}^{{{x}^{2}}+2x}} \gt {{\left({{3}^{-2}} \right)}^{16-x}} \\\end{matrix}\]
\[\begin{align} & {{3}^{-1\cdot \left({{x}^{2}}+2x \right)}} \gt {{3}^{-2\cdot \left(16-x \right)}}; \\ & {{3}^{-{{x}^{2}}-2x}} \gt {{3}^{-32+2x}}; \\ & \left(-{{x}^{2}}-2x-\left(-32+2x \right) \right)\cdot \left(3-1 \right) \gt 0; \\ & -{{x}^{2}}-2x+32-2x \gt 0; \\ & -{{x}^{2}}-4x+32 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}+4x-32 \lt 0; \\ & \left(x+8 \right)\left(x-4 \right) \lt 0. \\\end{align}\]
Как видите, в процессе преобразований пришлось умножать на отрицательное число, поэтому поменялся знак неравенства. В самом конце я вновь применил теорему Виета для разложения на множители квадратного трёхчлена. В итоге ответ будет следующий: $x\in \left(-8;4 \right)$ — желающие могут убедиться в этом, нарисовав числовую прямую, отметив точки и посчитав знаки. А мы тем временем перейдём к последнему неравенству из нашего «комплекта»:
\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1\]
Как видим, в основании снова стоит иррациональное число, а справа снова стоит единица. Поэтому перепишем наше показательное неравенство следующим образом:
\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt {{\left(3-2\sqrt{2} \right)}^{0}}\]
Применяем рационализацию:
\[\begin{align} & \left(3x-{{x}^{2}}-0 \right)\cdot \left(3-2\sqrt{2}-1 \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot \left(2-2\sqrt{2} \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0. \\\end{align}\]
Однако совершенно очевидно, что $1-\sqrt{2} \lt 0$, поскольку $\sqrt{2}\approx 1,4... \gt 1$. Поэтому второй множитель — вновь отрицательная константа, на которую можно разделить обе части неравенства:
\[\begin{matrix} \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0 \\ \Downarrow \\\end{matrix}\]
\[\begin{align} & 3x-{{x}^{2}}-0 \gt 0; \\ & 3x-{{x}^{2}} \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-3x \lt 0; \\ & x\left(x-3 \right) \lt 0. \\\end{align}\]
Переход к другому основанию
Отдельной проблемой при решении показательных неравенств является поиск «правильного» основания. К сожалению, далеко не всегда при первом взгляде на задание очевидно, что брать за основание, а что делать степенью этого основания.
Но не переживайте: здесь нет никакой магии и «секретных» технологий. В математике любой навык, который нельзя алгоритмизировать, можно легко выработать с помощью практики. Но для этого придётся решать задачи разного уровня сложности. Например, вот такие:
\[\begin{align} & {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}; \\ & {{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & {{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1; \\ & {{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81. \\\end{align}\]
Сложно? Страшно? Да это же проще, чем цыплёнка об асфальт! Давайте попробуем. Первое неравенство:
\[{{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}\]
Ну, я думают, тут и ежу всё понятно:
Переписываем исходное неравенство, сводя всё к основанию «два»:
\[{{2}^{\frac{x}{2}}} \lt {{2}^{\frac{8}{x}}}\Rightarrow \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0\]
Да, да, вы всё правильно поняли: я только что применил метод рационализации, описанный выше. Теперь нужно работать аккуратно: у нас получилось дробно-рациональное неравенство (это такое, у которого в знаменателе стоит переменная), поэтому прежде чем что-то приравнивать к нулю, необходимо привести всё к общему знаменателю и избавиться от множителя-константы.
\[\begin{align} & \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0; \\ & \left(\frac{{{x}^{2}}-16}{2x} \right)\cdot 1 \lt 0; \\ & \frac{{{x}^{2}}-16}{2x} \lt 0. \\\end{align}\]
Теперь используем стандартный метод интервалов. Нули числителя: $x=\pm 4$. Знаменатель обращается в ноль только при $x=0$. Итого три точки, которые надо отметить на числовой прямой (все точки выколоты, т.к. знак неравенства строгий). Получим:
Более сложный случай: три корня
Как нетрудно догадаться, штриховкой отмечены те интервалы, на которых выражение слева принимает отрицательные значения. Поэтому в окончательный ответ пойдут сразу два интервала:
Концы интервалов не входят в ответ, поскольку исходное неравенство было строгим. Никаких дополнительных проверок этого ответа не требуется. В этом плане показательные неравенства намного проще логарифмических: никаких ОДЗ, никаких ограничений и т.д.
Переходим к следующей задаче:
\[{{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\]
Здесь тоже никаких проблем, поскольку мы уже знаем, что $\frac{1}{3}={{3}^{-1}}$, поэтому всё неравенство можно переписать так:
\[\begin{align} & {{\left({{3}^{-1}} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\Rightarrow {{3}^{-\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & \left(-\frac{3}{x}-\left(2+x \right) \right)\cdot \left(3-1 \right)\ge 0; \\ & \left(-\frac{3}{x}-2-x \right)\cdot 2\ge 0;\quad \left| :\left(-2 \right) \right. \\ & \frac{3}{x}+2+x\le 0; \\ & \frac{{{x}^{2}}+2x+3}{x}\le 0. \\\end{align}\]
Обратите внимание: в третьей строчке я решил не мелочиться и сразу разделить всё на (−2). Минул ушёл в первую скобку (теперь там везде плюсы), а двойка сократилась с множителем-константой. Именно так и стоит поступать при оформлении реальных выкладок на самостоятельных и контрольных работах — не надо расписывать прям каждое действие и преобразование.
Далее в дело вступает знакомый нам метод интервалов. Нули числителя: а их нет. Потому что дискриминант будет отрицательный. В свою очередь знаменатель обнуляется лишь при $x=0$ — как и в прошлый раз. Ну и понятно, что справа от $x=0$ дробь будет принимать положительные значения, а слева — отрицательные. Поскольку нас интересуют именно отрицательные значения, то окончательный ответ: $x\in \left(-\infty ;0 \right)$.
\[{{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1\]
А что нужно делать с десятичными дробями в показательных неравенствах? Правильно: избавляться от них, переводя в обыкновенные. Вот и мы переведём:
\[\begin{align} & 0,16=\frac{16}{100}=\frac{4}{25}\Rightarrow {{\left(0,16 \right)}^{1+2x}}={{\left(\frac{4}{25} \right)}^{1+2x}}; \\ & 6,25=\frac{625}{100}=\frac{25}{4}\Rightarrow {{\left(6,25 \right)}^{x}}={{\left(\frac{25}{4} \right)}^{x}}. \\\end{align}\]
Ну и что мы получили в основаниях показательных функций? А получили мы два взаимно обратных числа:
\[\frac{25}{4}={{\left(\frac{4}{25} \right)}^{-1}}\Rightarrow {{\left(\frac{25}{4} \right)}^{x}}={{\left({{\left(\frac{4}{25} \right)}^{-1}} \right)}^{x}}={{\left(\frac{4}{25} \right)}^{-x}}\]
Таким образом исходное неравенство можно переписать так:
\[\begin{align} & {{\left(\frac{4}{25} \right)}^{1+2x}}\cdot {{\left(\frac{4}{25} \right)}^{-x}}\ge 1; \\ & {{\left(\frac{4}{25} \right)}^{1+2x+\left(-x \right)}}\ge {{\left(\frac{4}{25} \right)}^{0}}; \\ & {{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}. \\\end{align}\]
Разумеется, при умножении степеней с одинаковым основанием их показатели складываются, что и произошло во второй строчке. Кроме того, мы представили единицу, стоящую справа, тоже в виде степени по основанию 4/25. Осталось лишь выполнить рационализацию:
\[{{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}\Rightarrow \left(x+1-0 \right)\cdot \left(\frac{4}{25}-1 \right)\ge 0\]
Заметим, что $\frac{4}{25}-1=\frac{4-25}{25} \lt 0$, т.е. второй множитель является отрицательной константой, и при делении на неё знак неравенства поменяется:
\[\begin{align} & x+1-0\le 0\Rightarrow x\le -1; \\ & x\in \left(-\infty ;-1 \right]. \\\end{align}\]
Наконец, последнее неравенство из текущего «комплекта»:
\[{{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81\]
В принципе, идея решения тут тоже ясна: все показательные функции, входящие в состав неравенства, необходимо свести к основанию «3». Но для этого придётся немного повозиться с корнями и степенями:
\[\begin{align} & \frac{27}{\sqrt{3}}=\frac{{{3}^{3}}}{{{3}^{\frac{1}{3}}}}={{3}^{3-\frac{1}{3}}}={{3}^{\frac{8}{3}}}; \\ & 9={{3}^{2}};\quad 81={{3}^{4}}. \\\end{align}\]
С учётом этих фактов исходное неравенство можно переписать так:
\[\begin{align} & {{\left({{3}^{\frac{8}{3}}} \right)}^{-x}} \lt {{\left({{3}^{2}} \right)}^{4-2x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x+4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{4-4x}}. \\\end{align}\]
Обратите внимание на 2-ю и 3-ю строчку выкладок: прежде чем что-то делать с неравенством, обязательно приведите его к тому виду, о котором мы говорили с самого начала урока: ${{a}^{x}} \lt {{a}^{n}}$. До тех пор, пока у вас слева или справа есть какие-то левые множители, дополнительные константы и т.д., никакую рационализацию и «зачёркивание» оснований выполнять нельзя ! Бесчисленное множество задач было выполнено неправильно из-за непонимания этого простого факта. Я сам постоянно наблюдаю эту проблему у моих учеников, когда мы только-только приступаем к разбору показательных и логарифмических неравенств.
Но вернёмся к нашей задаче. Попробуем в этот раз обойтись без рационализации. Вспоминаем: основание степени больше единицы, поэтому тройки можно просто зачеркнуть — знак неравенства при этом не поменяется. Получим:
\[\begin{align} & -\frac{8x}{3} \lt 4-4x; \\ & 4x-\frac{8x}{3} \lt 4; \\ & \frac{4x}{3} \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\end{align}\]
Вот и всё. Окончательный ответ: $x\in \left(-\infty ;3 \right)$.
Выделение устойчивого выражения и замена переменной
В заключение предлагаю решить ещё четыре показательных неравенства, которые уже являются довольно сложными для неподготовленных учеников. Чтобы справиться с ними, необходимо вспомнить правила работы со степенями. В частности — вынесение общих множителей за скобки.
Но самое главное — научиться понимать: что именно можно вынести за скобки. Такое выражение называется устойчивым — его можно обозначить новой переменной и таким образом избавиться от показательной функции. Итак, посмотрим на задачи:
\[\begin{align} & {{5}^{x+2}}+{{5}^{x+1}}\ge 6; \\ & {{3}^{x}}+{{3}^{x+2}}\ge 90; \\ & {{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500; \\ & {{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768. \\\end{align}\]
Начнём с самой первой строчки. Выпишем это неравенство отдельно:
\[{{5}^{x+2}}+{{5}^{x+1}}\ge 6\]
Заметим, что ${{5}^{x+2}}={{5}^{x+1+1}}={{5}^{x+1}}\cdot 5$, поэтому правую часть можно переписать:
Заметим, что никаких других показательных функций, кроме ${{5}^{x+1}}$, в неравенстве нет. И вообще, нигде больше не встречается переменная $x$, поэтому введём новую переменную: ${{5}^{x+1}}=t$. Получим следующую конструкцию:
\[\begin{align} & 5t+t\ge 6; \\ & 6t\ge 6; \\ & t\ge 1. \\\end{align}\]
Возвращаемся к исходной переменной ($t={{5}^{x+1}}$), а заодно вспоминаем, что 1=5 0 . Имеем:
\[\begin{align} & {{5}^{x+1}}\ge {{5}^{0}}; \\ & x+1\ge 0; \\ & x\ge -1. \\\end{align}\]
Вот и всё решение! Ответ: $x\in \left[ -1;+\infty \right)$. Переходим ко второму неравенству:
\[{{3}^{x}}+{{3}^{x+2}}\ge 90\]
Здесь всё то же самое. Заметим, что ${{3}^{x+2}}={{3}^{x}}\cdot {{3}^{2}}=9\cdot {{3}^{x}}$. Тогда левую часть можно переписать:
\[\begin{align} & {{3}^{x}}+9\cdot {{3}^{x}}\ge 90;\quad \left| {{3}^{x}}=t \right. \\ & t+9t\ge 90; \\ & 10t\ge 90; \\ & t\ge 9\Rightarrow {{3}^{x}}\ge 9\Rightarrow {{3}^{x}}\ge {{3}^{2}}; \\ & x\ge 2\Rightarrow x\in \left[ 2;+\infty \right). \\\end{align}\]
Вот примерно так и нужно оформлять решение на настоящих контрольных и самостоятельных работах.
Что ж, попробуем что-нибудь посложнее. Например, вот такое неравенство:
\[{{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500\]
В чём тут проблема? Прежде всего, основания показательных функций, стоящих слева, разные: 5 и 25. Однако 25 = 5 2 , поэтому первое слагаемое можно преобразовать:
\[\begin{align} & {{25}^{x+1,5}}={{\left({{5}^{2}} \right)}^{x+1,5}}={{5}^{2x+3}}; \\ & {{5}^{2x+3}}={{5}^{2x+2+1}}={{5}^{2x+2}}\cdot 5. \\\end{align}\]
Как видите, сначала мы всё привели к одинаковому основанию, а затем заметили, что первое слагаемое легко сводится ко второму — достаточно лишь разложить показатель. Теперь можно смело вводить новую переменную: ${{5}^{2x+2}}=t$, и всё неравенство перепишется так:
\[\begin{align} & 5t-t\ge 2500; \\ & 4t\ge 2500; \\ & t\ge 625={{5}^{4}}; \\ & {{5}^{2x+2}}\ge {{5}^{4}}; \\ & 2x+2\ge 4; \\ & 2x\ge 2; \\ & x\ge 1. \\\end{align}\]
И вновь никаких трудностей! Окончательный ответ: $x\in \left[ 1;+\infty \right)$. Переходим к заключительному неравенству в сегодняшнем уроке:
\[{{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768\]
Первое, на что следует обратить внимание — это, конечно, десятичная дробь в основании первой степени. От неё необходимо избавиться, а заодно привести все показательные функции к одному и тому же основанию — числу «2»:
\[\begin{align} & 0,5=\frac{1}{2}={{2}^{-1}}\Rightarrow {{\left(0,5 \right)}^{-4x-8}}={{\left({{2}^{-1}} \right)}^{-4x-8}}={{2}^{4x+8}}; \\ & 16={{2}^{4}}\Rightarrow {{16}^{x+1,5}}={{\left({{2}^{4}} \right)}^{x+1,5}}={{2}^{4x+6}}; \\ & {{2}^{4x+8}}-{{2}^{4x+6}} \gt 768. \\\end{align}\]
Отлично, первый шаг мы сделали — всё привели к одному и тому же основанию. Теперь необходимо выделить устойчивое выражение. Заметим, что ${{2}^{4x+8}}={{2}^{4x+6+2}}={{2}^{4x+6}}\cdot 4$. Если ввести новую переменную ${{2}^{4x+6}}=t$, то исходное неравенство можно переписать так:
\[\begin{align} & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256={{2}^{8}}; \\ & {{2}^{4x+6}} \gt {{2}^{8}}; \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac{1}{2}=0,5. \\\end{align}\]
Естественно, может возникнуть вопрос: каким это образом мы обнаружили, что 256 = 2 8 ? К сожалению, тут нужно просто знать степени двойки (а заодно степени тройки и пятёрки). Ну, или делить 256 на 2 (делить можно, поскольку 256 — чётное число) до тех пор, пока не получим результат. Выглядеть это будет примерно так:
\[\begin{align} & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & ={{2}^{8}}.\end{align}\]
То же самое и с тройкой (числа 9, 27, 81 и 243 являются её степенями), и с семёркой (числа 49 и 343 тоже было бы неплохо запомнить). Ну, и у пятёрки тоже есть «красивые» степени, которые нужно знать:
\[\begin{align} & {{5}^{2}}=25; \\ & {{5}^{3}}=125; \\ & {{5}^{4}}=625; \\ & {{5}^{5}}=3125. \\\end{align}\]
Конечно, все эти числа при желании можно восстановить в уме, просто последовательно умножая их друг на друга. Однако, когда вам предстоит решить несколько показательных неравенств, причём каждое следующее сложнее предыдущего, то последнее, о чём хочется думать — это степени каких-то там чисел. И в этом смысле данные задачи являются более сложными, нежели «классические» неравенства, которые решаются методом интервалов.