С 15 сложение и вычитание векторов. Определение разности двух векторов

ов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $\overrightarrow{a}$, то говорят, что вектор $\overrightarrow{a}$ отложен от точки $A$ (рис. 1).

Рисунок 1. $\overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $\overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

    Вектор $\overrightarrow{a}$ - нулевой.

    В этом случае, очевидно, что искомый вектор -- вектор $\overrightarrow{KK}$.

    Вектор $\overrightarrow{a}$ -- ненулевой.

    Обозначим точкой $A$ -- начало вектора $\overrightarrow{a}$, а точкой $B$ - конец вектора $\overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $\overrightarrow{a}$. Отложим на этой прямой отрезки $\left|KL\right|=|AB|$ и $\left|KM\right|=|AB|$. Рассмотрим векторы $\overrightarrow{KL}$ и $\overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $\overrightarrow{a}$ (рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Вычитание векторов. Правило первое

Пусть нам даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$.

Определение 2

Разностью двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ называется такой вектор $\overrightarrow{c}$, который при сложении с вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$, то есть

\[\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}\]

Обозначение: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{c}$.

Построение разности двух векторов рассмотрим с помощью задачи.

Пример 1

Пусть даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$. Построить вектор $\overrightarrow{a}-\overrightarrow{b}$.

Решение.

Построим произвольную точку $O$ и отложим от нее векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$. Соединив точку $B$ с точкой $A$, получим вектор $\overrightarrow{BA}$ (рис. 3).

Рисунок 3. Разность двух векторов

По правилу треугольника для построения суммы двух векторов видим, что

\[\overrightarrow{OB}+\overrightarrow{BA}=\overrightarrow{OA}\]

\[\overrightarrow{b}+\overrightarrow{BA}=\overrightarrow{a}\]

Из определения 2, получаем, что

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}\]

Ответ: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}$.

Из этой задачи получаем следующее правило для нахождения разности двух векторов. Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$ и соединить конец второго вектор с концом первого вектора.

Вычитание векторов. Правило второе

Вспомним следующее необходимое нам понятие.

Определение 3

Вектор $\overrightarrow{a_1}$ называется произвольным для вектора $\overrightarrow{a}$, если эти векторы противоположно направлены и имеют равную длину.

Обозначение: Вектор $(-\overrightarrow{a})$ противоположный для вектора $\overrightarrow{a}$.

Для того чтобы ввести второе правило для разности двух векторов, нам необходимо в начале ввести и доказать следующую теорему.

Теорема 2

Для любых двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ справедливо следующее равенство:

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\]

Доказательство.

По определению 2, имеем

Прибавим к обеим частям вектор $\left(-\overrightarrow{b}\right)$, получим

Так как векторы $\overrightarrow{b}$ и $\left(-\overrightarrow{b}\right)$ противоположны, то $\overrightarrow{b}+\left(-\overrightarrow{b}\right)=\overrightarrow{0}$. Имеем

Теорема доказана.

Из этой теоремы получаем следующее правило для разности двух векторов: Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить вектор $\overrightarrow{OA}=\overrightarrow{a}$, затем от полученной точки $A$ отложить вектор $\overrightarrow{AB}=-\overrightarrow{b}$ и соединить начало первого вектора с концом второго вектора.

Пример задачи на понятие разности векторов

Пример 2

Пусть дан параллелограмм $ADCD$, диагонали которого пересекаются в точке $O$. $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AD}=\overrightarrow{b}$ (рис. 4). Выразить через векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ следующие векторы:

а) $\overrightarrow{DC}+\overrightarrow{CB}$

б) $\overrightarrow{BO}-\overrightarrow{OC}$

Рисунок 4. Параллелограмм

Решение.

а) Произведем сложение по правилу треугольника, получим

\[\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\]

Из первого правила разности двух векторов, получаем

\[\overrightarrow{DB}=\overrightarrow{a}-\overrightarrow{b}\]

б) Так как $\overrightarrow{OC}=\overrightarrow{AO}$, получим

\[\overrightarrow{BO}-\overrightarrow{OC}=\overrightarrow{BO}-\overrightarrow{AO}\]

По теореме 2, имеем

\[\overrightarrow{BO}-\overrightarrow{AO}=\overrightarrow{BO}+\left(-\overrightarrow{AO}\right)=\overrightarrow{BO}+\overrightarrow{OA}\]

Используя правило треугольника, окончательно имеем

\[\overrightarrow{BO}+\overrightarrow{OA}=\overrightarrow{BA}=-\overrightarrow{AB}=-\overrightarrow{a}\]

Вектор - это математический объект, который характеризуется величиной и направлением (например, ускорение, перемещение), чем и отливается от скаляров, у которых направления нет (например, расстояние, энергия). Скаляры можно складывать, сложив их значения (например, 5 кДж работы плюс 6 кДж работы равно 11 кДж работы), а вот векторы складывать и вычитать не так просто.

Шаги

Сложение и вычитание векторов с известными компонентами

    Так как векторы имеют величину и направление, то их можно разложить на компоненты, основываясь на размерностях х, у и/или z. Они, как правило, обозначаются так же, как точки в системе координат (например, <х,у,z>). Если компоненты известны, то сложить/вычесть векторы так же просто, как сложить/вычесть координаты x, y, z.

    • Обратите внимание, что векторы могут быть одномерными, двумерными или трехмерными. Таким образом, векторы могут иметь компонент «х», компоненты «х» и «у» или компоненты «х», «у», «z». Ниже рассмотрены трехмерные векторы, но процесс аналогичен для одномерных и двумерных векторов.
    • Предположим, что вам даны два трехмерных вектора - вектор А и вектор B. Запишите эти векторы в векторной форме: А = и B = , где a1 и а2 - компоненты «х», b1 и b2 - компоненты «у», c1 и c2 - компоненты «z».
  1. Для сложения двух векторов сложите их соответствующие компоненты. Другими словами, сложите компонент «х» первого вектора с компонентом «х» второго вектора (и так далее). В результате вы получите компоненты х, у, z результирующего вектора.

    • A+B = .
    • Сложим векторы A и B. A = <5, 9, -10> и B = <17, -3, -2>. A + B = <5+17, 9+-3, -10+-2>, или <22, 6, -12> .
  2. Для вычитания одного вектора из другого необходимо вычесть соответствующие компоненты. Как будет показано ниже, вычитание можно заменить сложением одного вектора и вектора, обратного другому. Если компоненты двух векторов известны, вычтите соответствующие компоненты одного вектора из компонентов другого.

    • A-B =
    • Вычтем векторы A и B. A = <18, 5, 3> и B = <-10, 9, -10>. A - B = <18--10, 5-9, 3--10>, or <28, -4, 13> .

    Графическое сложение и вычитание

    1. Так как векторы имеют величину и направление, то у них есть начало и конец (начальная точка и конечная точка, расстояние между которыми равно значению вектора). При графическом отображении вектора он рисуется в виде стрелки, у которой наконечник - конец вектора, а противоположная точка - начало вектора.

      • При графическом отображении векторов стройте все углы очень точно; в противном случае вы получите неправильный ответ.
    2. Для сложения векторов нарисуйте их так, чтобы конец каждого предыдущего вектора соединялся с началом следующего вектора. Если вы складываете только два вектора, то это все, что вам нужно сделать, прежде чем найти результирующий вектор.

      • Обратите внимание, что порядок соединения векторов не важен, то есть вектор А + вектор B = вектор B + вектор А.
    3. Для вычитания вектора просто прибавьте обратный вектор, то есть измените направление вычитаемого вектора, а затем соедините его начало с концом другого вектора. Другими словами, чтобы вычесть вектор, поверните его на 180 o (вокруг точки начала) и сложите его с другим вектором.

      Если вы складываете или вычитаете насколько (больше двух) векторов, то последовательно соедините их концы и начала. Порядок, в котором вы соединяете векторы, не имеет значения. Этот метод можно использовать для любого числа векторов.

    4. Нарисуйте новый вектор, начиная от начала первого вектора и заканчивая концом последнего вектора (при этом число складываемых векторов не важно). Вы получите результирующий вектор, равный сумме всех складываемых векторов. Обратите внимание, что этот вектор совпадает с вектором, полученным путем сложения компонентов «х», «у», «z» всех векторов.

      • Если вы нарисовали длины векторов и углы между ними очень точно, то вы можете найти значение результирующего вектора, просто измерив его длину. Кроме того, вы можете измерить угол (между результирующим вектором и другим указанным вектором или горизонтальной/вертикальной прямыми), чтобы найти направление результирующего вектора.
      • Если вы нарисовали длины векторов и углы между ними очень точно, то вы можете найти значение результирующего вектора при помощи тригонометрии, а именно теоремы синусов или теоремы косинусов. Если вы складываете несколько векторов (более двух), сначала сложите два вектора, затем сложите результирующий вектор и третий вектор и так далее. Смотрите следующий раздел для получения дополнительной информации.
    5. Представьте результирующий вектор, обозначив его значение и направление. Как отмечалось выше, если вы нарисовали длины складываемых векторов и углы между ними очень точно, то значение результирующего вектора равно его длине, а направление - это угол между ним и вертикальной или горизонтальной прямой. К значению вектора не забудьте приписать единицы измерения, в которых даны складываемые/вычитаемые вектора.

      • Например, если вы складываете векторы скорости, измеряемые в м/с, то и к значению результирующего вектора припишите «м/с», а также укажите угол результирующего вектора в формате « o к горизонтальной прямой».

    Сложение и вычитание векторов через нахождение значений их компонентов

    1. Чтобы найти значения компонентов векторов необходимо знать значения самих векторов и их направление (угол относительно горизонтальной или вертикальной прямой). Рассмотрим двумерный вектор. Сделайте его гипотенузой прямоугольного треугольника, тогда катетами (параллельными осям Х и Y) этого треугольника будут компоненты вектора. Эти компоненты можно рассматривать как соединенные два вектора, которые при сложении дают исходный вектор.

      • Длины (значения) двух компонентов (компонентов «х» и «у») исходного вектора можно вычислить при помощи тригонометрии. Если «х» - это значение (модуль) исходного вектора, то компонент вектора, прилежащий к углу исходного вектора, равен xcosθ, а компонент вектора, противолежащий углу исходного вектора, равен xsinθ.
      • Важно отметить направление компонентов. Если компонент направлен противоположно направлению одной из осей, то его значение будет отрицательным, например, если на двумерной плоскости координат компонент направлен влево или вниз.
      • Например, дан вектор с модулем (значением) 3 и направлением 135 o (по отношению к горизонтали). Тогда компонент «х» равен 3cos 135 = -2,12, а компонент «у» равен 3sin135 = 2,12.
    2. После того, как вы нашли компоненты всех складываемых векторов, просто сложите их значения и найдете значения компонентов результирующего вектора. Сначала сложите значения всех горизонтальных компонентов (то есть компонентов, параллельных оси Х). Затем сложите значения всех вертикальных компонентов (то есть компонентов, параллельных оси Y). Если значение компонента отрицательное, то оно вычитается, а не прибавляется.

      • Например, сложим вектор <-2,12, 2,12> и вектор <5,78, -9>. Результирующий вектор будет таким <-2,12 + 5,78, 2,12-9> или <3,66, -6,88>.
    3. Вычислите длину (значение) результирующего вектора, используя теорему Пифагора: c 2 =a 2 +b 2 (так как треугольник, образованный исходным вектором и его компонентами является прямоугольным). В этом случае катетами являются компоненты «х» и «у» результирующего вектора, а гипотенузой - сам результирующий вектор.

      • Например, если в нашем примере вы складывали силу, измеряемую в Ньютонах, то ответ запишите так: 7,79 Н под углом -61,99 o (к горизонтальной оси).
    • Не путайте векторы с их модулями (значениями).
    • Векторы, у которых одно направление, можно складывать или вычитать, просто сложив или отняв их значения. Если складываются два противоположно направленных вектора, то их значения вычитаются, а не складываются.
    • Векторы, которые представлены в виде xi + yj + zk можно сложить или вычесть, просто сложив или вычтя соответствующие коэффициенты. Ответ также запишите в виде i,j,k.
    • Значение вектора в трехмерном пространстве можно найти с помощью формулы a 2 =b 2 +c 2 +d 2 , где a - значение вектора, b, c, и d - компоненты вектора.
    • Векторы-столбцы можно складывать/вычитать, сложив/вычтя соответствующие значения в каждой строке.

Как происходит сложение векторов, не всегда понятно ученикам. Дети не представляют того, что за ними скрывается. Приходится просто запоминать правила, а не вдумываться в суть. Поэтому именно о принципах сложения и вычитания векторных величин требуется много знаний.

В результате сложения двух и более векторов всегда получается еще один. Причем он всегда обязательно будет одинаковым, независимо от приема его нахождения.

Чаще всего в школьном курсе геометрии рассматривается сложение двух векторов. Оно может быть выполнено по правилу треугольника или параллелограмма. Эти рисунки выглядят по-разному, но результат от действия один.

Как происходит сложение по правилу треугольника?

Оно применяется тогда, когда векторы неколлинеарные. То есть не лежат на одной прямой или на параллельных.

В этом случае от некоторой произвольной точки нужно отложить первый вектор. Из его конца требуется провести параллельный и равный второму. Результатом станет вектор, исходящий из начала первого и завершающийся в конце второго. Рисунок напоминает треугольник. Отсюда и название правила.

Если векторы коллинеарные, то это правило тоже можно применять. Только рисунок будет расположен вдоль одной линии.

Как выполняется сложение по правилу параллелограмма?

Опять же? применяется только для неколлинеарных векторов. Построение выполняется по другому принципу. Хотя начало такое же. Нужно отложить первый вектор. И от его начала - второй. На их основе достроить параллелограмм и провести диагональ из начала обоих векторов. Она и будет результатом. Так выполняется сложение векторов по правилу параллелограмма.

До сих пор их было два. А как быть, если их 3 или 10? Использовать следующий прием.

Как и когда применяется правило многоугольника?

Если требуется выполнить сложение векторов, число которых — больше двух, пугаться не стоит. Достаточно последовательно отложить их все и соединить начало цепочки с ее концом. Этот вектор и будет искомой суммой.

Какие свойства действительны для действий с векторами?

О нулевом векторе. Которое утверждает, что при сложении с ним получается исходный.

О противоположном векторе. То есть о таком, который имеет противоположное направление и равное по модулю значение. Их сумма будет равна нулю.

О коммутативности сложения. То, что известно еще с начальной школы. Смена мест слагаемых не приводит к изменению результата. Другими словами, неважно какой вектор откладывать сначала. Ответ все равно будет верным и единственным.

Об ассоциативности сложения. Этот закон позволяет складывать попарно любые векторы из тройки и к ним прибавлять третий. Если записать это с помощью знаков, то получится следующее:

первый + (второй + третий) = второй + (первый + третий) = третий + (первый + второй).

Что известно о разности векторов?

Отдельной операции вычитания не существует. Это связано с тем, что оно, по сути, является сложением. Только второму из них задается противоположное направление. А потом все выполняется так, как если бы рассматривалось сложение векторов. Поэтому об их разности практически не говорят.

Для того чтобы упростить работу с их вычитанием, видоизменено правило треугольника. Теперь (при вычитании) второй вектор нужно отложить из начала первого. Ответом будет тот, что соединяет конечную точку уменьшаемого с ней же вычитаемого. Хотя можно и откладывать так, как было описано ранее, просто изменив направление второго.

Как найти сумму и разность векторов в координатах?

В задаче даны координаты векторов и требуется узнать их значения для итогового. При этом построений выполнять не нужно. То есть можно воспользоваться несложными формулами, которые описывают правило сложения векторов. Они выглядят так:

а (х, у, z) + в (k, l, m) = с (х+k, y+l, z+m);

а (х, у, z) -в (k, l, m) = с (х-k, y-l, z-m).

Легко заметить, что координаты нужно просто сложить или вычесть в зависимости от конкретного задания.

Первый пример с решением

Условие. Дан прямоугольник АВСД. Его стороны равны 6 и 8 см. Точка пересечения диагоналей обозначена буквой О. Требуется вычислить разность векторов АО и ВО.

Решение. Сначала нужно изобразить эти векторы. Они направлены от вершин прямоугольника к точке пересечения диагоналей.

Если внимательно посмотреть на чертеж, то можно увидеть, что векторы уже совмещены так, чтобы второй из них соприкасался с концом первого. Вот только его направление неверное. Он должен из этой точки начинаться. Это если векторы складываются, а в задаче — вычитание. Стоп. Это действие означает, что нужно прибавить противоположно направленный вектор. Значит, ВО нужно заменить на ОВ. И получится, что два вектора уже образовали пару сторон из правила треугольника. Поэтому результат от их сложения, то есть искомая разность, — вектор АВ.

А он совпадает со стороной прямоугольника. Для того чтобы записать числовой ответ, потребуется следующее. Начертить прямоугольник вдоль так, чтобы большая сторона шла горизонтально. Нумерацию вершин начинать с левой нижней и идти против часовой стрелки. Тогда длина вектора АВ будет равна 8 см.

Ответ. Разность АО и ВО равна 8 см.

Второй пример и его подробное решение

Условие. У ромба АВСД диагонали равны 12 и 16 см. Точка их пересечения обозначена буквой О. Вычислите длину вектора, образованного разностью векторов АО и ВО.

Решение. Пусть обозначение вершин ромба будет таким же, как в предыдущей задаче. Аналогично решению первого примера получается, что искомая разность равна вектору АВ. А его длина неизвестна. Решение задачи свелось к тому, чтобы вычислить одну из сторон ромба.

Для этой цели потребуется рассмотреть треугольник АВО. Он прямоугольный, потому что диагонали ромба пересекаются под углом в 90 градусов. А его катеты равны половинам диагоналей. То есть 6 и 8 см. Искомая в задаче сторона совпадает с гипотенузой в этом треугольнике.

Для ее нахождения потребуется теорема Пифагора. Квадрат гипотенузы будет равен сумме чисел 6 2 и 8 2 . После возведения в квадрат получатся значения: 36 и 64. Их сумма — 100. Отсюда следует, что гипотенуза равна 10 см.

Ответ. Разность векторов АО и ВО составляет 10 см.

Третий пример с детальным решением

Условие. Вычислить разность и сумму двух векторов. Известны их координаты: у первого — 1 и 2, у второго — 4 и 8.

Решение. Для нахождения суммы потребуется сложить попарно первые и вторые координаты. Результатом будут числа 5 и 10. Ответом будет вектор с координатами (5; 10).

Для разности нужно выполнить вычитание координат. После выполнения этого действия получатся числа -3 и -6. Они и будут координатами искомого вектора.

Ответ. Сумма векторов — (5; 10), их разность — (-3; -6).

Четвертый пример

Условие. Длина вектора АВ равна 6 см, ВС — 8 см. Второй отложен от конца первого под углом в 90 градусов. Вычислить: а) разность модулей векторов ВА и ВС и модуль разности ВА и ВС; б) сумму этих же модулей и модуль суммы.

Решение: а) Длины векторов уже даны в задаче. Поэтому вычислить их разность не составит труда. 6 - 8 = -2. Несколько сложнее обстоит дело с модулем разности. Сначала нужно узнать, какой вектор будет являться результатом вычитания. Для этой цели следует отложить вектор ВА, который направлен в противоположную сторону АВ. Потом от его конца провести вектор ВС, направив его в сторону, противоположную исходному. Результатом вычитания получится вектор СА. Его модуль можно вычислить по теореме Пифагора. Несложные вычисления приводят к значению 10 см.

б) Сумма модулей векторов получается равной 14 см. Для поиска второго ответа потребуется некоторое преобразование. Вектор ВА противоположно направлен тому, который дан — АВ. Оба вектора направлены из одной точки. В этой ситуации можно использовать правило параллелограмма. Результатом сложения будет диагональ, причем не просто параллелограмма, а прямоугольника. Его диагонали равны, значит, модуль суммы такой же, как в предыдущем пункте.

Ответ: а) -2 и 10 см; б) 14 и 10 см.

Никто не будет спорить, что к месту назначения невозможно добраться не зная направления движения. В физике это понятие называется вектором . До этого момента мы с вами оперировали некоторыми числами и значениями, которые называются величинами. Вектор отличается от величины наличием направления.

При работе с вектором оперируют его направлением и величиной . Физический параметр без учета направления называют скаляром .

Визуально вектор отображают в виде стрелки. Длина стрелки - величина вектора.

В физике для обозначения векторов используют заглавную букву со стрелкой наверху.

Векторы можно сравнивать. Два вектора будут равны, если они имеют одинаковую величину и направление.

Вектора можно складывать. Результирующий вектор является суммой обоих векторов и определяет расстояние и направление. Например, вы проживаете в Киеве и решили проведать старых друзей в Москве, а оттуда сделать визит к любимой теще во Львов. Насколько далеко вы будете находиться от родного дома, гостюя у мамы жены?

Для ответа на этот вопрос вам надо начертить вектор от исходной точки путешествия (Киев) и до конечной (Львов). Новый вектор определяют результат всего путешествия от начала и до конца.

  • Вектор А - Киев-Москва
  • Вектор В - Москва-Львов
  • Вектор С - Киев-Львов

С = А+В , где С - сумма векторов или результирующий вектор

Вектора можно не только складывать, но и вычитать! Для этого надо совместить основания вычитаемого и вычитающего векторов и соединить их концы со стрелками:

  • Вектор А = С-В
  • Вектор В = С-А

Наложим на наши вектора координатную сетку. Для вектора А можно сказать, что он направлен на 5 клеток вверх (положительное значение оси Y) и на 3 клетки влево (отрицательное значение оси Х): X=-3; Y=5.

Для вектора В: направление на 4 клетки влево и 7 клеток вниз: X=-4; Y=-7.

Т.о., для сложения векторов по осям X и Y надо сложить их координаты. Чтобы получить координаты результирующего вектора по осям X и Y:

Рассмотрим задачу: шар движется со скоростью 10м/с по наклонной плоскости с длиной основания X=1м, распложенной под 30° к горизонту. Требуется определить время, за которое шар переместится от начала к концу плоскости.

В данной задаче скорость является вектором V с величиной 10м/с и направлением α=30° к горизонтали. Чтобы определить скорость перемещения шара вдоль основания наклонной плоскости, нам надо определить X-составляющую перемещения шара, которая является скаляром (имеет только значение, но не направление) и обозначается V x . Аналогично, Y-составляющая скорости также скаляр и обозначается V y . Вектор скорости через составляющие: V = (V x ;V y)


Определим составляющие (V x ;V y). Вспоминаем тригонометрию:

V x = V·cosα
V y = V·sinα

Х-составляющая скорости шара:

V x = V·cosα = V·cos30° = 10,0·0,866 = 8,66 м/с

Горизонтальная скорость шара равна 8,66 м/с.

Т.к. длина основания наклонной плоскости равна 1м, то это расстояние шар преодолеет за:

1,00(м)/8,66(м/с) = 0,12 с

Т.о., шару потребуется 0,12с для перемещения вдоль наклонной плоскости. Ответ: 0,12с

Интереса ради определим Y-составляющую скорости:

V y = V·sinα = 10·1/2 = 5,0 м/с

Поскольку время "путешествия" шара одинаково для обеих составляющих, то можем определить высоту Y, с которой катился шар:

5,0(м/с)·0,12(с) = 0,6 м

Расстояние, пройденное шаром:

Обратная задача

Рассмотрим задачу, обратную предыдущей:

Шар переместился вдоль наклонной плоскости на высоту 0,6м, при этом в горизонтальной плоскости его перемещение составило 1,0м. Необходимо найти расстояние, пройденное шаром и угол.

Расстояние вычисляем по теореме Пифагора:

L = √1,00 2 + 0,60 2 = √1,36 = 1,16м

По тригонометрии:

X = L·cosα; Y = L·sinα

X/L = cosα; Y/L = sinα

Теперь можно найти угол:

α = arccos(X/L); α = arcsin(Y/L)

Подставляем цифры:

α = arccos(1/1,16) = 30°

Промежуточное вычисление L можно исключить:

Y = X·tgα

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых - это численное значение? В том, что они обладают направлением.

Максимально наглядно применение векторных величин объясняется в физике. Самыми простыми примерами являются силы (сила трения, сила упругости, вес), скорость и ускорение, поскольку помимо численных значений они также обладают направлением действия. Для сравнения приведём пример скалярных величин : это может быть расстояние между двумя точками или масса тела. Для чего же необходимо выполнять действия над векторными величинами такие как сложение или вычитание? Это нужно, чтобы было возможно определить результат действия системы векторов, состоящей из 2 или более элементов.

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) - это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c , начало которого совпадает с началом первого, а конец - с концом второго при условии, что b начинается в той же точке, в которой заканчивается a .
  7. Разностью векторов a и b называют сумму a и (- b ), где (- b ) - противоположно направленный к вектору b . Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c , который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a {a₁; a₂ } и b {b₁; b₂ } расчёты будут иметь следующий вид: c {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a {a₁; a₂ ; a₃ } и b {b₁; b₂; b₃ } координаты разности будут также получены попарным вычитанием: c {c₁; c₂; c₃ } = {a₁ – b₁; a₂ – b₂; a₃ – b₃ }.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

Результат операции вычитания показан на рисунке ниже .

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1 . На плоскости заданы 4 точки: A (1; -3), B (0; 4), C (5; 8), D (-3; 2). Определить координаты вектора q = AB - CD, а также рассчитать его длину.

Решение . Вначале следует найти координаты AB и CD . Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; -3), а концом – B (0; 4). Рассчитаем координаты направленного отрезка:

AB {0 - 1; 4 - (- 3)} = {- 1; 7}

Аналогичный расчёт выполняется для CD :

CD {- 3 - 5; 2 - 8} = {- 8; - 6}

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = a - b координаты имеют вид {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }. Для конкретного случая можно записать:

q = {- 1 - 8; 7 - (- 6)} = { - 9; - 1}

Чтобы найти длину q , воспользуемся формулой | q | = √(q₁² + q ₂²) = √((- 9)² + (- 1)²) = √(81 + 1) = √82 ≈ 9,06.

Задача 2 . На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p - n; m - n; m - n - p. Выяснить, какая из них обладает наименьшим модулем.

Решение . В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p - n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m - n . Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

Часть 3. Для того чтобы найти разность m - n - p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m - (n + p) : в этом случае вначале строится сумма n + p , которая затем вычитается из m ;
  • (m - n) - p : здесь сначала нужно найти m - n , а затем отнять от этой разности p ;
  • (m - p) - n : первым действием определяется m - p , после чего из полученного результата нужно вычесть n .

Так как в предыдущей части задачи мы уже нашли разность m - n , нам остаётся лишь вычесть из неё p . Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным - окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p - n, m - n и m - n - p . Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m - n - p .