Спутниковая карта для измерения площадей и расстояний. Измерение по карте расстояний, площадей и углов
Масштаб карт . Масштабом топографических карт называется отношение длины линии на карте к длине горизонтальной проекции соответствующей линии местности. На равнинных территориях, при небольших углах наклона физической поверхности, горизонтальные проекции линий весьма мало отличаются от длин самих линий, и в этих случаях можно считать масштабом отношение длины линии на карте к длине соответствующей линии местности, т.е. степень уменьшения длин линий на карте относительно их длины на местности. Масштаб указывается под южной рамкой листа карты в виде отношения чисел (численный масштаб), а также в виде именованного и линейного (графического) масштабов.
Численный масштаб (М) выражается дробью, где в числителе единица, а в знаменателе число, показывающее степень уменьшения: М =1/m . Так, например, на карте в масштабе 1:100 000 длины уменьшены сравнительно с их горизонтальными проекциями (или с действительностью) в 100 000 раз. Очевидно, чем больше знаменатель масштаба, тем больше уменьшение длин, тем мельче изображение объектов на карте, т.е. тем мельче масштаб карты.
Именованный масштаб - пояснение, указывающее соотношение длин линий на карте и на местности. При М= 1:100 000 1 см на карте соответствует 1 км.
Линейный масштаб служит для определения по картам длин линий в натуре. Это прямая, разделенная на равные отрезки, соответствующие «круглым» десятичным числам расстояний местности (рис. 5).
Рис. 5. Обозначение масштаба на топографической карте: а - основание линейного масштаба: b - наименьшее деление линейного масштаба; точность масштаба 100 м. Величина масштаба - 1 км
Отрезки a, откладываемые вправо от нуля, называются основанием масштаба . Расстояние на местности, соответствующее основанию, называется величиной линейного масштаба . Для повышения точности определения расстояний крайний слева отрезок линейного масштаба делится на более мелкие части в, называемые наименьшими делениями линейного масштаба. Расстояние на местности, выражаемое одним таким делением, является точностью линейного масштаба. Как видно на рисунке 5, при численном масштабе карты 1:100 000 и основании линейного масштаба в 1 см величина масштаба будет 1 км, а точность масштаба (при наименьшем делении в 1 мм) - 100 м. Точность измерений по картам и точность графических построений на бумаге связаны как с техническими возможностями измерений, так и с разрешающей способностью человеческого зрения. Точность построений на бумаге (графическую точность) принято считать равной 0,2 мм. Разрешающая способность нормального зрения близка к 0,1 мм.
Предельная точность масштаба карты - отрезок на местности, соответствующий 0,1 мм в масштабе данной карты. При масштабе карты 1:100 000 предельная точность составит 10 м, при масштабе 1:10 000 она будет равна 1 м. Очевидно, что возможности изображения на этих картах контуров в их действительных очертаниях будут весьма различны.
Масштабы топографических карт в значительной степени обусловливают отбор и детальность показа изображаемых на них объектов. С уменьшением масштаба, т.е. с увеличением его знаменателя, теряется детальность изображения объектов местности.
Для удовлетворения разнообразных потребностей отраслей народного хозяйства, науки и обороны страны необходимы карты разных масштабов. Для государственных топографических карт СССР разработан ряд стандартных масштабов, основанных на метрической десятичной системе мер (табл. 1).
Таблица 1. Масштабы топографических карт СССР | |||
Численный масштаб | Название карты | 1 см на карте соответствует на местности расстоянию | 1 см 2 на карте соответ-ствует на местности площади |
1:5 000 | Пятитысячная | 50 м | 0,25 га |
1:10 000 | Десятитысячная | 100 м | 1 га |
1:25 000 | Двадцатипятитысячная | 250 м | 6,25 га |
1:50 000 | Пятидесятитысячная | 500 м | 25 га |
1:100 000 | Стотысячная | 1 км | 1 км 2 |
1:200 000 | Двухсоттысячная | 2 км | 4 км 2 |
1:500 000 | Пятисоттысячная | 5 км | 25 км 2 |
1:1 000 000 | Миллионная | 10 км | 100 км 2 |
В комплексе карт, названных в табл. 1, выделяют собственно топографические карты масштабов 1:5000-1:200 000 и обзорно-топографические карты масштабов 1:500 000 и 1:1 000 000. Последние уступают в точности и подробности изображения местности, но отдельные листы охватывают значительные территории, и эти карты используют для общего ознакомления с местностью, для ориентирования при движении с большой скоростью.
Измерение расстояний и площадей по картам . При измерении расстояний по картам следует помнить, что в результате получают длины горизонтальных проекций линий, а не длины линий на земной поверхности. Однако при малых углах наклона разница в длине наклонной линии и ее горизонтальной проекции очень мала и может не учитываться. Так, например, при угле наклона 2° горизонтальная проекция короче самой линии на 0,0006, а при 5° - на 0,0004 ее длины.
При измерении по картам расстояний в горных районах действительное расстояние на наклонной поверхности можно вычислить
по формуле S = d·cos α, где d - длина горизонтальной проекции линии S, α - угол наклона. Углы наклона можно измерить по топографической карте методом, указанным в §11. Поправки в длины наклонных линий приводятся также в таблицах.
Рис. 6. Положение циркуля-измерителя при измерении расстояний по карте с помощью линейного масштаба
Для определения длины отрезка прямой между двумя точками в раствор циркуля-измерителя берут с карты заданный отрезок, переносят на линейный масштаб карты (как указано на рисунке 6) и получают длину линии, выраженную в поземельных мерах (метрах или километрах). Аналогичным образом измеряют длины ломаных линий, беря в раствор циркуля каждый отрезок отдельно и затем суммируя их длины. Измерения расстояний по кривым линиям (по дорогам, границам, рекам и т. п.) более сложны и менее точны. Очень плавные кривые измеряют как ломаные, разбив предварительно на прямолинейные отрезки. Извилистые линии измеряют малым постоянным раствором циркуля, переставляя его («шагая») по всем изгибам линии. Очевидно, что мелкоизвилистые линии следует измерять при весьма малом растворе циркуля (2-4 мм). Зная, какой длине на местности соответствует раствор циркуля, и подсчитав число его установок по всей линии, определяют общую ее длину. При этих измерениях применяют микроизмеритель или пружинный циркуль, раствор которого регулируется винтом, пропущенным через ножки циркуля.
Рис. 7. Курвиметр
Следует иметь в виду, что любые измерения неизбежно сопровождаются погрешностями (ошибками). По их происхождению ошибки подразделяются на грубые промахи (возникают из-за невнимательности лица, производящего измерения), систематические ошибки (из-за погрешностей мерных приборов и др.), случайные ошибки, которые не могут быть полностью учтены (причины их не ясны). Очевидно, что истинное значение измеряемой величины из-за влияния ошибок измерений остается неизвестным. Поэтому определяют ее вероятнейшее значение. Таким значением является арифметическое среднее из всех отдельных измерений x - (a 1 +a 2 + …+а n):n=∑a/n , где x - вероятнейшее значение измеренной величины, a 1 , a 2 … a n - результаты отдельных измерений; 2 - знак суммы, n - число измерений. Чем больше измерений, тем ближе вероятнейшее значение к истинной величине A. Если предположить, что значение A известно, то разность между этой величиной и измерением а даст истинную погрешность измерения Δ=A-a. Отношение погрешности измерения какой-либо величины A к ее значению называется относительной погрешностью -. Эта погрешность выражается в виде правильной дроби, где в знаменателе - доля ошибки от измеряемой величины, т.е. Δ/A = 1/(A:Δ).
Так, например, при измерении длин кривых курвиметром возникает ошибка измерений порядка 1-2%, т. е. она составит 1/100 - 1/50 часть длины измеряемой линии. Таким образом, при измерении линии длиной 10 см возможна относительная ошибка 1-2 мм. Эта величина в разных масштабах дает разные ошибки в длинах измеряемых линий. Так, на карте масштаба 1:10 000 2 мм соответствует 20 м, а на карте масштаба 1:1 000 000 это будет 200 м. Отсюда следует, что более точные результаты измерений получаются при использовании карт крупных масштабов.
Определение площадей участков по топографическим картам основано на геометрической зависимости между площадью фигуры и ее линейными элементами. Масштаб площадей равен квадрату линейного масштаба. Если стороны прямоугольника на карте уменьшены в n раз, то площадь этой фигуры уменьшится в п2 раз. Для карты масштаба 1:10 000 (1 см - 100 м) масштаб площадей будет равен (1:10 000)2 или 1 см 2 - (100 м) 2 , т.е. в 1 см 2 - 1 га, а на карте масштаба 1:1 000 000 в 1 см 2 - 100 км 2 .
Для измерения площадей по картам применяют графические и инструментальные способы. Применение того или иного способа измерений диктуется формой измеряемого участка, заданной точностью результатов измерений, требуемой быстротой получения данных и наличием необходимых приборов.
Рис. 8. Спрямление криволинейных границ участка и разбивка его площади на простые геометрические фигуры: точками обозначены отсекаемые участки, штриховкой - причленяемые участки
При измерении площади участка с прямолинейными границами делят участок на простые геометрические фигуры, измеряют площадь каждой из них геометрическим способом и, суммируя площади отдельных участков, вычисленных с учетом масштаба карты, получают общую площадь объекта. Объект с криволинейным контуром разбивают на геометрические фигуры, предварительно спрямив границы с таким расчетом, чтобы сумма отсеченных участков и сумма избытков взаимно компенсировали друг друга (рис. 8). Результаты измерений будут в некоторой степени приближенными.
Рис. 9. Квадратная сеточная палетка, наложенная на измеряемую фигуру. Площадь участка Р=a 2 n, a - сторона квадрата, выраженная в масштабе карты; n - число квадратов, попавших в пределы контура измеряемого участка
Измерение площадей участков, имеющих сложную неправильную конфигурацию, чаще производят с помощью палеток и планиметров, что дает наиболее точные результаты. Сеточная палетка (рис. 9) представляет собой прозрачную пластину (из пластика, органического стекла или кальки) с награвированной или начерченной сеткой квадратов. Палетку накладывают на измеряемый контур и по ней подсчитывают количество клеток и их частей, оказавшихся внутри контура. Доли неполных квадратиков оцениваются на глаз, поэтому для повышения точности измерений применяются палетки с мелкими квадратами (со стороной 2-5 мм). Перед работой на данной карте определяют площадь одной ячейки в поземельных мерах, т.е. цену деления палетки.
Рис. 10. Точечная палетка - видоизмененная квадратная палетка. Р=a 2 n
Помимо сеточных палеток, применяются точечные и параллельные палетки, представляющие собой прозрачные пластины с награвированными точками или линиями. Точки ставятся в одном из углов ячеек сеточной палетки с известной ценой деления, затем линии сетки удаляют (рис. 10). Вес-каждой точки равен цене деления палетки. Площадь измеряемого участка определяется путем подсчета количества точек, оказавшихся внутри контура, и умножением этого количества на вес точки.
Рис. 11. Палетка, состоящая из системы параллельных линий. Площадь фигуры равна сумме длин отрезков (средних пунктирных), отсекаемых контуром участка, умноженной на расстояние между линиями палетки. P = р∑l
На параллельной палетке награвированы равноотстоящие параллельные прямые. Измеряемый участок окажется разделенным на ряд трапеций с одинаковой высотой при наложении на него палетки (рис. 11). Отрезки параллельных линий внутри контура посредине между линиями являются средними линиями трапеций. Измерив все средние линии, умножают их сумму на длину промежутка между линиями и получают площадь всего участка (с учетом площадного масштаба).
Измерение площадей значительных участков производится по картам с помощью планиметра. Наиболее распространенным является полярный планиметр, работа с которым не представляет большой сложности. Однако теория этого прибора довольно сложна и рассматривается в руководствах по геодезии.
1.1.Масштабы карт
Масштаб карты показывает, во сколько раз длина линии на карте меньше соответствующей ей длины на местности. Он выражается в виде отношения двух чисел. Например, масштаб 1:50 000 означает, что все линии местности изображены на карте с уменьшением в 50000 раз, т. е. 1 см на карте соответствует 50000 см (или 500 м) на местности.
Рис. 1. Оформление численного и линейного масштабов на топографических картах и планах городов
Масштаб указывается под нижней стороной рамки карты в цифровом выражении (численный масштаб) и в виде прямой линии (линейный масштаб), на отрезках которой подписаны соответствующие им расстояния на местности (рис. 1). Здесь же указывается и величина масштаба - расстояние в метрах (или километрах) на местности, соответствующее одному сантиметру на карте.
Полезно запомнить правило: если в правой части отношения зачеркнуть два последних нуля, то оставшееся число покажет, сколько метров на местности соответствует 1 см на карте, т. е. величину масштаба.
При сравнении нескольких масштабов более крупным будет тот, у которого число в правой части отношения меньше. Допустим, что на один и тот же участок местности имеются карты масштабов 1:25000, 1:50000 и 1:100000. Из них масштаб 1:25000 будет самым крупным, а масштаб 1:100 000-самым мелким.
Чем крупнее масштаб карты, тем подробнее на ней изображена местность. С уменьшением масштаба карты уменьшается и количество наносимых на нее деталей местности
Подробность изображения местности на топографических картах зависит от ее характера: чем меньше деталей содержит местность, тем полнее они отображаются на картах более мелких масштабов.
В нашей стране и многих других странах в качестве основных масштабов топографических карт приняты: 1:10000, 1:25000, 1: 50000, 1: 100000, 1: 200000, 1: 500000 и 1:1000000.
Используемые в войсках карты подразделяются на крупномасштабные, среднемасштабные и мелкомасштабные.
Масштаб карты | Наименование карты | Классификация карт | |
по масштабам | по основному назначению | ||
1:10 000 (в 1 см 100 м) | десятитысячная | крупномасштабные | тактические |
1:25 000 (в 1 см 250 м) | двадцатипятитысячная | ||
1:50 000 (в 1 см 500 м) | пятитысячная | ||
1:100 000 (в 1 см 1 км) | стотысячная | среднемасштабные | |
1:200 000 (в 1 см 2 км) | двухсоттысячная | оперативные | |
1:500 000 (в 1 см 5 км) | пятисоттысячная | мелкомасштабные | |
1:1 000 000 (в 1 см 10 км) | миллионная |
1.2. Измерение по карте прямых и извилистых линий
Чтобы определить по карте расстояние между точками местности (предметами, объектами), пользуясь численным масштабом, надо измерить на карте расстояние между этими точками в сантиметрах и умножить полученное число на величину масштаба.
Пример, на карте масштаба 1:25000 измеряем линейкой расстояние между мостом и ветряной мельницей (рис. 2); оно равно 7,3 см, умножаем 250 м на 7,3 и получаем искомое расстояние; оно равно 1825 метров (250х7,3=1825).
Рис. 2. Определить по карте расстояние между точками местности с помощью линейки.
Небольшое расстояние между двумя точками по прямой линии проще определить, пользуясь линейным масштабом (рис. 3). Для этого достаточно циркуль-измеритель, раствор которого равен расстоянию между заданными точками на карте, приложить к линейному масштабу и снять отсчет в метрах или километрах. На рис. 3 измеренное расстояние равно 1070 м.
Рис. 3. Измерение на карте расстояний циркулем-измерителем по линейному масштабу
Рис. 4. Измерение на карте расстояний циркулем-измерителем по извилистым линиям
Большие расстояния между точками по прямым линиям измеряют обычно с помощью длинной линейки или циркуля-измерителя.
В первом случае для определения расстояния по карте с помощью линейки пользуются численным масштабом (см. рис. 2).
Во втором случае раствор «шаг» циркуля-измерителя устанавливают так, чтобы он соответствовал целому числу километров, и на измеряемом по карте отрезке откладывают целое число «шагов». Расстояние, не укладывающееся в целое число «шагов» циркуля-измерителя, определяют с помощью линейного масштаба и прибавляют к полученному числу километров.
Таким же способом измеряют расстояния по извилистым линиям (рис. 4). В этом случае «шаг» циркуля-измерителя следует брать 0,5 или 1 см в зависимости от длины и степени извилистости измеряемой линии.
Рис. 5. Измерения расстояния курвиметром
Для определения длины маршрута по карте применяют специальный прибор, называемый курвиметром (рис. 5), который особенно удобен для измерения извилистых и длинных линий.
В приборе имеется колесико, которое соединено системой передач со стрелкой.
При измерении расстояния курвиметром нужно установить его стрелку на деление 99. Держа курвиметр в вертикальном положении вести его по измеряемой линии, не отрывая от карты вдоль маршрута так, чтобы показания шкалы возрастали. Доведя до конечной точки, отсчитать измеренное расстояние и умножить его на знаменатель численного масштаба. (В данном примере 34х25000=850000, или 8500 м)
1.3. Точность измерения расстояний по карте. Поправки на расстояние за наклон и извилистость линий
Точность определения расстояний по карте зависит от масштаба карты, характера измеряемых линий (прямые, извилистые), выбранного способа измерения, рельефа местности и других факторов.
Наиболее точно определить расстояние по карте можно по прямой линии.
При измерении расстояний с помощью циркуля-измерителя или линейкой с миллиметровыми делениями средняя величина ошибки измерения на равнинных участках местности обычно не превышает 0,7-1 мм в масштабе карты, что составляет для карты масштаба 1:25000 - 17,5-25 м, масштаба 1:50000 – 35-50 м, масштаба 1:100000 – 70-100 м.
В горных районах при большой крутизне скатов ошибки будут больше. Это объясняется тем, что при съемке местности на карту наносят не длину линий на поверхности Земли, а длину проекций этих линий на плоскость.
Например, При крутизне ската 20° (рис. 6) и расстоянии на местности 2120 м его проекция на плоскость (расстояние на карте) составляет 2000 м, т. е. на 120 м меньше.
Подсчитано, что при угле наклона (крутизне ската) 20° полученный результат измерения расстояния по карте следует увеличивать на 6% (на 100 м прибавлять 6 м), при угле наклона 30° - на 15%, а при угле 40° - на 23%.
Рис. 6. Проекция длины ската на плоскость (карту)
При определении длины маршрута по карте следует учитывать, что расстояния по дорогам, измеренные на карте с помощью циркуля или курвиметра, в большинстве случаев получаются короче действительных расстояний.
Это объясняется не только наличием спусков и подъемов на дорогах, но и некоторым обобщением извилин дорог на картах.
Поэтому получаемый по карте результат измерения длины маршрута следует с учетом характера местности и масштаба карты умножить на коэффициент, указанный в таблице.
1.4. Простейшие способы измерения площадей по карте
Приближенную оценку размеров площадей производят на глаз по квадратам километровой сетки, имеющейся на карте. Каждому квадрату сетки карт масштабов 1:10000 - 1:50000 на местности соответствует 1 км2 , квадрату сетки карт масштаба 1: 100000 - 4 км2, квадрату сетки карт масштаба 1:200000 - 16 км2.
Более точно площади измеряют палеткой , представляющей собой лист прозрачного пластика с нанесенной на него сеткой квадратов со стороной 10 мм (в зависимости от масштаба карты и необходимой точности измерений).
Наложив такую палетку на измеряемый объект на карте, подсчитывают по ней сначала число квадратов, полностью укладывающихся внутри контура объекта, а затем число квадратов пересекаемых контуром объекта. Каждый из неполных квадратов принимаем за половину квадрата. В результате перемножения площади одного квадрата на сумму квадратов получают площадь объекта.
По квадратам масштабов 1:25000 и 1:50000 площади небольших участков удобно измерять офицерской линейкой, имеющей специальные вырезы прямоугольной формы. Площади этих прямоугольников {в гектарах) указаны на линейке для каждого масштаба гарты.
2. Азимуты и дирекционный угол. Магнитное склонение, сближение меридианов и поправка направления
Истинный азимут (Аи) - горизонтальный угол, измеряемый по ходу часовой стрелки от 0° до 360° между северным направлением истинного меридиана данной точки и направлением на объект (см. рис. 7).
Магнитный азимут (Ам) - горизонтальный угол, измеряемый по ходу часовой стрелки от 0е до 360° между северным направлением магнитного меридиана данной точки и направлением на объект.
Дирекционный угол (α; ДУ) - горизонтальный угол, измеряемый по ходу часовой стрелки от 0° до 360° между северным направлением вертикальной линии координатной сетки данной точки и направлением на объект.
Магнитное склонение (δ; Ск) - угол между северным направлением истинного и магнитного меридианов в данной точке.
Если магнитная стрелка отклоняется от истинного меридиана к востоку, то склонение восточное (учитывается со знаком +), при отклонении магнитной стрелки к западу - западное (учитывается со знаком -).
Рис. 7. Углы, направления и их взаимосвязь на карте
Сближение меридианов (γ; Сб) - угол между северным направлением истинного меридиана и вертикальной линией координатной сетки в данной точке. При отклонении линии сетки к востоку – сближение меридиана восточное (учитывается со знаком +), при отклонении линии сетки к западу - западное (учитывается со знаком -).
Поправка направления (ПН) - угол между северным направлением вертикальной линии координатной сетки и направлением магнитного меридиана. Она равна алгебраической разности магнитного склонения и сближения меридианов:
3. Измерение и построение дирекционных углов на карте. Переход от дирекционного угла к магнитному азимуту и обратно
На местности при помощи компаса (буссоли) измеряют магнитные азимуты направлений, от которых затем переходят к дирекционным углам.
На карте наоборот, измеряют дирекционные углы и от них переходят к магнитным азимутам направлений на местности.
Рис. 8. Изменение дирекционных угловна карте транспортиром
Дирекционные углы на карте измеряются транспортиром или хордоугломером.
Измерение дирекционных углов транспортиром производят в следующей последовательности:
- ориентир, на который измеряют дирекционный угол, соединяют прямой линией с точкой стояния так, чтобы эта прямая была больше радиуса транспортира и пересекала хотя бы одну вертикальную линию координатной сетки;
- совмещают центр транспортира с точкой пересечения, как показано на рис. 8 и отсчитывают по транспортиру значение дирекционного угла. В нашем примере дирекционный угол с точкой А на точку В равен 274° (рис. 8, а), а с точки А на точку С – 65° (рис. 8, б).
На практике часто возникает необходимость в определении магнитного АМ по известному дирекционному углу ά , или, наоборот, угла ά no известному магнитному азимуту.
Переход от дирекционного угла к магнитному азимуту и обратно
Переход от дирекционного угла к магнитному азимуту и обратно выполняют тогда, когда на местности необходимо с помощью компаса (буссоли) найти направление, дирекционный угол которого измерен по карте, или наоборот, когда на карту необходимо нанести направление, магнитный азимут которого измерен, на местности с помощью компаса.
Для решения этой задачи необходимо знать величину отклонения магнитного меридиана данной точки от вертикальной километровой линии. Эту величину называют поправкой направления (ПН).
Рис. 10. Определение поправки для перехода от дирекционного угла к магнитному азимуту и обратно
Поправка направления и составляющие ее углы - сближение меридианов и магнитное склонение указываются на карте под южной стороной рамки в виде схемы, имеющей вид, показанный на рис. 9.
Сближение меридианов (g) - угол между истинным меридианом точки и вертикальной километровой линией зависит от удаления этой точки от осевого меридиана зоны и может иметь значение от 0 до ±3°. На схеме показывают среднее для данного листа карты сближение меридианов.
Магнитное склонение (d) - угол между истинным и магнитным меридианами указан на схеме на год съемки (обновления) карты. В тексте, помещаемом рядом со схемой, приводятся сведения о направлении и величине годового изменения магнитного склонения.
Чтобы избежать ошибок в определении величины и знака поправки направления, рекомендуется следующий прием.
Из вершины углов на схеме (рис. 10) провести произвольное направление ОМ и обозначить дужками дирекционный угол ά и магнитный азимут Ам этого направления. Тогда сразу будет видно, каковы величина и знак поправки направления.
Если, например, ά = 97°12", то Ам = 97°12" - (2°10"+10°15") = 84°47" .
4. Подготовка по карте данных для движения по азимутам
Движение по азимутам – это основной способ ориентирования на местности, бедной ориентирами, особенно ночью и при ограниченной видимости.
Сущность его заключается в выдерживании на местности направлений, заданных магнитными азимутами, и расстояний, определенных по карте между поворотными пунктами намеченного маршрута. Направления движения выдерживают с помощью компаса, расстояния измеряют шагами или по спидометру.
Исходные данные для движения по азимутам (магнитные азимуты и расстояния) определяют по карте, а время движения – по нормативу и оформляют в виде схемы (рис. 11) или вписывают в таблицу (табл. 1). Данные в таком виде выдают командирам, которые не имеют топографических карт. Если командир имеет свою рабочую карту, то исходные данные для движения по азимутам он оформляет непосредственно на рабочей карте.
Рис. 11. Схема для движения по азимуту
Маршрут движения по азимутам выбирают с учетом проходимости местности, ее защитных и маскировочных свойств, чтобы он обеспечивал в боевой обстановке быстрый и скрытный выход к указанному пункту.
В маршрут обычно включают дороги, просеки и другие линейные ориентиры, которые облегчают выдерживание направления движения. Поворотные пункты выбирают у ориентиров, легко опознаваемых на местности (например, постройки башенного типа, перекрестки дорог, мосты, путепроводы, геодезические пункты и т. п.).
Опытным путем установлено, что расстояния между ориентирами на поворотных пунктах маршрута не должны превышать 1 км при движении днем в пешем порядке, а при движении на машине – 6–10 км.
Для движения ночью ориентиры намечаются по маршруту чаще.
Чтобы обеспечить скрытный выход к указанному пункту, маршрут намечают по лощинам, массивам растительности и другим объектам, обеспечивающим маскировку движения. Необходимо избегать передвижений по гребням возвышенностей и открытым участкам.
Расстояния между выбранными на маршруте движения ориентирами на поворотных пунктах измеряют по прямым линиям с помощью циркуля-измерителя и линейного масштаба или возможно точнее – линейкой с миллиметровыми делениями. Если маршрут намечен по холмистой (горной) местности, то в измеренные по карте расстояния вводят поправку за рельеф.
Таблица 1
5. Выполнение нормативов
№ норм. | Наименование норматива | Условия (порядок) выполнения норматива | Категория обучаемых | Оценка по времени | ||
«отл.» | «хор.» | «уд.» | ||||
1 | Определение направления (азимута) на местности | Дан азимут направления (ориентир). Указать направление, соответствующее заданному азимуту на местности, или определить азимут на указанный ориентир.
Время на выполнение норматива отсчитывается от постановки задачи до доклада о направлении (значении азимута). Выполнение норматива оценивается |
Военнослужащий | 40 с | 45 с | 55 с |
5 | Подготовка данных для движения по азимутам | На карте М 1:50000 указаны два пункта на расстоянии не менее 4 км. Изучить по карте местность, наметить маршрут движения, выбрать не менее трех промежуточных ориентиров, определить дирекционные углы и расстояния между ними.
Оформить схему (таблицу) данных для движения по азимутам (дирекционные углы перевести в магнитные азимуты, а расстояния – в пары шагов). Ошибки, снижающие оценку до «неудовлетворительно»:
Время на выполнение норматива отсчитывается от момента выдачи карты до представления схемы (таблицы). |
Офицеры | 8 мин | 9 мин | 11 мин |
Очень часто пользователи сталкиваются с ситуацией, когда требуется рассчитать расстояние пути. Однако как и с помощью чего это сделать? Первое, что приходит на ум, — навигатор, способный определять расстояние. Однако проблема в том, что навигатор работает только с автомобильной дорогой, и если вы будете находиться, например, в парке и захотите узнать сколько километров требуется пройти по пустынным областям, подобное «решение» проблемы вовсе не решит её.
Однако мы бы не стали писать статью, если бы у нас не было козыря в рукаве: речь идет о Картах. Приложение с каждым днем обновляется и дополняется новыми фишками, сказать точно, когда появилась возможность определять расстояние, мы не можем, однако это, вероятно, одна из полезнейших функций.
Для того чтобы узнать расстояние пройденного или планируемого пути, нужно:
По мере проложения пути расстояние, отображаемое в нижнем левом углу, будет увеличиваться. Для того чтобы удалить последнюю точку, нужно нажать на кнопку возврата, которая расположена в верхнем правом углу рядом с кнопкой «Меню». К слову, нажав на три точки меню, можно полностью очистить весь проложенный маршрут.
Таким образом, мы научились определять расстояние интересующего маршрута.
Стоит отметить в целом стабильную и качественную работу Google Карт. В Play Маркет существует множество подобных приложений, включая MAPS.ME, Яндекс.Карты, однако почему-то именно решение от Google, во-первых, лучше всего внешне вписывается в систему, привнося свои Material-фишки, во-вторых, программно реализовано на достаточно высоком уровне. Здесь можно просмотреть улицу с помощью StreetView-панорамы, загружать офлайн-навигацию и так далее. Одним словом, если вас интересуют карты — смело скачивайте официальное решение Google.
Местность на карте всегда изображается в уменьшенном виде. Степень уменьшения местности определяется масштабом карты.
Масштаб показывает во сколько раз длина линии на карте меньше соответствующей ей длины на местности. Масштаб указан - на каждом листе карты под южной (нижней) стороной рамки в числовом и графическом виде.
Численный масштаб обозначается на картах в виде отношения единицы к числу, показывающему, во сколько раз уменьшены длины линий на местности при изображении их на карте.
Пример : масштаб 1:50000 означает, что все линии местности изображены на карте с уменьшением в 50000 раз, т. е. 1 см на карте соответствует 50000 см на местности.
Количество метров (километров) на местности, соответствующее 1 см на карте, называется величиной масштаба. Она указывается на карте под численным масштабом.
Полезно запомнить правило : если в правой части отношения зачеркнуть два последних нуля 1:50000, то оставшееся число покажет, сколько метров на местности содержится в 1 см на карте, т. е. величину масштаба.
При сравнении нескольких масштабов более крупным будет тот, у которого число в правой части отношения меньше. Чем крупнее масштаб карты, тем подробнее и точнее на ней изображена местность.
Линейный масштаб - графическое изображение численного масштаба в виде прямой линии с делениями (в километрах, метрах) для непосредственного отчета расстояний, измеряемых на карте.
Способы измерения расстояний по карте.
Расстояние по карте измеряют, пользуясь численным или линейным масштабом.
Расстояние на местности равно произведению длины отрезка, измеренного на карте в сантиметрах на величину масштаба.
Расстояние между точками по прямым или ломаным линиям измеряют обычно при помощи линейки, умножая это значение на величину масштаба.
Пример 1: по карте 1:50000 (СНОВ) измерить длину дороги от мукомольного завода в свх. Беличи (6511) до пересечения с железной дорогой.
Длина дроги на карте - 4, 6 см
Величина масштаба - 500 м
Длина дороги на местности 4,6х500 = 2300 м
Пример 2 : по карте 1:50000 (СНОВ) измерить длину полевой дороги от Воронихи (7419) до моста через реку Губановку (7622). Длина дороги по карте равна 2 см + 1 см + 2, 3 см + 1, 4 см + 0,4 см = 7, 1 см. длина полевой дороги на местности 7, 1 х 500 = 3550 м.
Небольшие прямолинейные участки измеряют, пользуясь линейным масштабом без всяких вычислений. Для этого достаточно отложить циркулем расстояние между заданными точками на карте и, приложив циркуль к линейному масштабу, снять готовый отсчет в метрах или километрах.
Пример 3: по карте 1:50000 (СНОВ) определить длину озера Камышовое (7412) при помощи линейного масштаба.
Длина озера - 575 м.
Пример 4 : пользуясь линейным масштабом определить длину реки Воронка от плотины (6717) до впадения в реку Соть.
Длина реки Воронка - 2175 м.
Для измерения кривых и извилистых линий используют либо циркуль-измеритель, либо специальный прибор - курвиметр.
При использовании циркуля - измерителя необходимо установить раствор циркуля, соответствующий целому числу метров (километров), а также соизмеримый с кривизной измеряемой линии.
Этим раствором проходят измеряемую линию, считая «шаги». Затем, пользуясь величиной масштаба, находят длину линии.
Пример 5 : по карте 1:50000 (СНОВ) измерить длину участка реки Андога от железнодорожного моста до места впадения Андоги в реку Соть.
Выбранный раствор циркуля - 0,5 см.
Количество шагов - 6.
Остаток - 0,2 см.
Величина масштаба - 500 м.
Длина участка реки Андоги на местности (0,5 х 6) х 500 + (0,2 х 500) = 1500 м + 100 м = 1600 м.
Для измерения кривых и извилистых линий используют также специальный прибор - курвиметр . Механизм этого прибора состоит из измерительного колесика, соединенного со стрелкой, которая движется по циферблату. При движении колесика вдоль измеряемой по карте линии стрелка передвигается по циферблату и указывает пройденное колесиком расстояние в сантиметрах.
Для измерения кривых линий курвиметром следует предварительно установить стрелку курвиметра на «0», а затем прокатить его по измеряемой линии, следя за тем, чтобы стрелка курвиметра двигалась по направлению движения часовой стрелки. Умножив показания курвиметра в см на величину масштаба, получают расстояние на местности.
Пример 6: по карте 1:50000 (СНОВ) при помощи курвиметра измерить длину участка железной дороги Мирцевск - Бельцово ограниченного рамкой карты.
Показания стрелки курвиметра - 33 см
Величина масштаба - 500 м
Длина участка железной дороги Мирцевск - Бельцово на местности составляет: 33х500 = 16500 м = 16, 5 км.
Точность измерения расстояния по карте.
Точность измерения расстояний по карте зависит от ее масштаба, погрешностей в составлении самой карты, помятости и деформации бумаги, рельефа местности, измерительных приборов, зрения и аккуратности человека.
Предельная графическая точность в топографии принята 0,5 мм 5% от величины масштаба карты.
Измеренные по карте расстояния получаются всегда несколько короче действительных. Это происходит потому что, по карте измеряются горизонтальные проложения, в то время как соответствующие им линии на местности наклонные, т. е. длиннее своих горизонтальных проложений.
Поэтому при расчетов приходится вводить соответствующие поправки на наклон линий.
Наклон линий — 10° поправка - 2% от длины линии
Наклон линий — 20° поправка - 6% от длины линии
Наклон линий — 30° поправка - 15% от длины линии
Измерение площадей по карте.
Площади объектов чаще всего измеряют подсчетом квадратов координатной сетки. Каждому квадрату сетки карт 1:10000 - 1:50000 на местности соответствует 1 км, 1:100000 - 4 км, 1:200000 - 16 км.
При измерении больших площадей по карте или аэрофотоснимку применяется геометрический способ, который заключается в измерении линейных элементов участка и последующем вычислении его по формулам.
Если участок на карте имеет сложную конфигурацию, его делят прямыми линиями на прямоугольники ((а+в) х 2), треугольника ((ахв) : 2) и вычисляют площади полученных фигур, которые затем суммируют.
Площади небольших участков удобно измерять офицерской линейкой, имеющей специальные вырезы прямоугольной формы.
Площадь радиоактивного заражения местности рассчитывают по формуле для определения площади трапеции:
где R - радиус круга заражения, км
а - хорда, км.
Понятие системы координат.
Координатами называются линейные или угловые величины, определяющие положение точки на плоскости или в пространстве.
Системой координат называется совокупность линий и плоскостей, относительно которых определяют положение точек, объектов, целей и т.п.
Существует множество систем координат, которые находят применение в математике, физике, технике, военном деле.
В военной топографии для определения положения точек (объектов, целей) на земной поверхности и на карте применяются географические, плоские прямоугольные и полярные системы координат.
Географическая система координат.
В этой системе положение любой точки на наземной поверхности определяется двумя углами - географической широтой и географической долготой, относительно экватора и начального (нулевого меридиана).
Географическая широта (В) - это угол, образованный плоскостью экватора и ответственной линией в данной точке земной поверхности.
Широты отсчитываются по дуге меридиана к северу и к югу от экватора от) 0° на экваторе до 90° у полюсов. В северном полушарии - южные широты.
Географическая долгота (L) - угол, образованный плоскость начального (нулевого) меридиана и плоскостью меридиана, проходящего через данную точку.
За начальный меридиан принят меридиан, проходящий через астрономическую обсерваторию в Гринвиче (около Лондона). Все точки на земном шаре, расположенные к востоку от начального меридиана имеют восточную долготу от 0° до 180° а к западу - западную долготу, также от 0° до 180°. Все точки, лежащие на одном меридиане имеют одинаковою долготу.
Разность долгот двух точек показывает не только их взаимное расположение, но и разницу во времени в этих точках. Каждые 15° по долготе соответствует 1 час, т. к. поворот Земли на 360° совершается на 24 часа.
Таким образом, зная долготу двух пунктов, легко определить разность местного времени в этих пунктах.
Географическая сетка на топографических картах.
Линии, соединяющие точки земной поверхности одинаковой широты, называется параллелями.
Линии, соединяющие точки земной поверхности одинаковой долготы, называются меридианами.
Параллели и меридианы являются рамками листов топографических карт.
Нижняя и верхняя стороны рамки являются параллелями, а боковые стороны - меридианами.
Широты и долготы рамки подписываются на углах каждого листа кары (прочитать и показать на карте и плакате). На крупномасштабных и среднемасштабных топографических картах стороны рамок разделены на отрезки, равные одной минуте. Минутные отрезки оттенены через один черной краской и разделены точками на части по 10 секунд.
Кроме того, непосредственно на карте показывается пересечения средних параллелей и меридианов и дается их оцифровка в градусах и минутах, а по внутренней рамке показываются штрихами 2-3 мм выходы минутных делений.
Это позволяет прочерчивать параллели и меридианы на карте, склеенной из нескольких листов.
Чтобы определить географические координаты, какой либо точки по топографической карте, нужно через эту точку провести линии параллели и меридиана. Для чего из этой точки опустить перпендикуляры на нижнюю (верхнюю) и боковую стороны рамки карты. После этого произвести расчеты градусов, минут и секунд по шкалам широт и долгот на сторонах рамки карты.
Точность определения географических координат по крупномасштабным картам составляет около 2-х секунд.
Пример : географические координаты условного знака аэродрома (7407) на карте СНОВ будут соответственно:
B = 54 45’ 23” - северной широты;
L = 18 00’ 20” - восточной долготы.
Система плоских прямоугольных координат.
Плоскими прямоугольными координатами в топографии называются линейные величины:
Абсцисса Х,
Ордината У.
Эти координаты несколько отличаются от принятых в математике декартовых координат на плоскости. За положительное направление осей координат принято для оси абсцисс (осевой меридиан зоны) направление на север, для оси ординат (экватора эллипсоида) на восток.
Оси координат делят шестиградусную зону на четыре четверти, счет которых ведется по ходу часовой стрелки от положительного направления оси абсцисс Х. Положение любой точки, например точки М, определяется кратчайшим расстоянием до осей координат, то есть по перпендикулярам.
Ширина любой координатной зоны составляет на экваторе примерно 670 км, на широте 40 - 510 км, на широте 50 - 430 км. В северном полушарии Земли (I и IV четверти зон) знаки абсцисс положительные. Знак ординаты в IV четверти отрицательный. Чтобы не иметь отрицательных значений ординат при работе с топографическими картами, в точке начала координат каждой зоны величина ординаты принята равной 500 км, а ордината точки расположенной к западу от осевого меридиана зоны, будет всегда положительной и по абсолютному значению меньше 500 км, а ордината точки, расположенной к востоку от осевого меридиана, будет всегда больше 500 км.
Чтобы определить по карте расстояние между точками местности (предметами, объектами), пользуясь численным масштабом, надо измерить на карте расстояние между этими точками в сантиметрах и умножить полученное число на значение масштаба (рис. 20).
Рис. 20. Измерение расстояний на карте циркулем-измерителем
по линейному масштабу
Например, на карте масштаба 1: 50 000 (значение масштаба 500 м) расстояние между двумя ориентирами составляет 4,2 см.
Следовательно, искомое расстояние между этими ориентирами на местности будет равно 4,2·500 = 2100 м.
Небольшое расстояние между двумя точками по прямой линии проще определять, пользуясь линейным масштабом (см. рис. 20). Для этого достаточно циркуль-измеритель, раствор которого равен расстоянию между заданными точками на карте, приложить к линейному масштабу и снять отсчет в метрах или километрах. На рис. 20 измеренное расстояние равно 1250 м.
Большие расстояния между точками по прямым линиям измеряют обычно с помощью длинной линейки или циркуля-измерителя. В первом случае для определения расстояния по карте с помощью линейки пользуются численным масштабом. Во втором случае раствор («шаг») циркуля-измерителя устанавливают так, чтобы он соответствовал целому числу километров, и на измеряемом по карте отрезке откладывают целое число «шагов». Расстояние, не укладывающееся в целое число «шагов» циркуля-измерителя, определяют с помощью линейного масштаба и прибавляют к полученному числу километров.
Таким способом измеряют расстояния по извилистым линиям. В этом случае «шаг» циркуля-измерителя следует брать 0,5 или 1 см в зависимости от длины и степени извилистости измеряемой линии (рис. 21).
Рис. 21. Измерение расстояний по извилистым линиям
Для определения длины маршрута по карте применяют специальный прибор, называемый курвиметром. Он удобен для измерения извилистых и длинных линий. В приборе имеется колесико, которое соединено системой передач со стрелкой. При измерении расстояния курвиметром нужно установить его стрелку на нулевое деление, а затем прокатить колесико вдоль маршрута так, чтобы показания шкалы возрастали. Полученный отсчет в сантиметрах умножают на значение масштаба и получают расстояние на местности.
Точность определения расстояний по карте зависит от масштаба карты, характера измеряемых линий (прямые, извилистые), выбранного способа измерения рельефа местности и других факторов.
Наиболее точно определить расстояние по карте можно по прямой линии. При измерении расстояний с помощью циркуля–измерителя или линейки с миллиметровыми делениями среднее значение ошибки измерения на равнинных участках местности обычно не превышает 0,5–1 мм в масштабе карты, что составляет для карты масштаба 1: 25 000 – 12,5–25 м, масштаба 1: 50 000 – 25–50 м, масштаба 1: 100 000 – 50–100 м. В горных районах при большой крутизне скатов ошибки будут больше. Это объясняется тем, что при съемке местности на карту наносят не длину линий на поверхности Земли, а длину проекций этих линий на плоскость.
При крутизне ската 20° и расстоянии на местности 2120 м его проекция на плоскость (расстояние на карте) составляет 2000 м, т. е. на 120 м меньше. Подсчитано, что при угле наклона (крутизне ската) 20° полученный результат измерения расстояния по карте следует увеличивать на 6% (на 100 м прибавлять 6 м), при угле наклона 30° – на 15%, а при угле 40° – на 23%.
При определении длины маршрута по карте следует учитывать, что расстояния по дорогам, измеренные на карте с помощью циркуля или курвиметра, получаются короче действительных расстояний. Это объясняется не только наличием спусков и подъемов на дорогах, но и некоторым обобщением извилин дорог на картах. Поэтому получаемый по карте результат измерения длины маршрута следует с учетом характера местности и масштаба карты умножить на коэффициент, указанный в табл. 3.