В каких единицах измеряется работа. Законы сохранения в механике Закон сохранения импульса. Реактивное движение

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа - это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 - 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай - когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай - когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай - когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт - это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 - 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

Если на тело действует сила, то эта сила совершает работу по перемещению этого тела. Прежде чем дать определение работе при криволинейном движении мате­риальной точки, рассмотрим частные случаи:

В этом случае механиче­ская работа A равна:

A = F s cos =
,

или A = Fcos × s = F S × s ,

где F S – проекция силы на перемеще­ние. В данном случае F s = const , и геометрический смысл работы A – это площадь прямо­угольника, построенного в координатах F S , , s .

Построим график проекции силы на направление перемещения F S как функции перемещения s. Полное перемещение представим как сумму n малых перемещений
. Для ма­лого i -ого перемещения
работа равна

или площади заштрихованной трапеции на рисунке.

Полная механическая работа по перемещению из точки 1 в точку 2 будет равна:


.

Величина, стоящая под интегралом будет представлять элементарную работу по бесконечно малому перемещению
:

­– элементарная работа.

Разбиваем траекторию движения материальной точки на бесконечно малые перемещения и работу силы по перемещению материальной точки из точки 1 в точку 2 определяем как криволинейный интеграл:

работа при криволинейном движении.

Пример 1: Работа силы тяжести
при криволинейном движении материальной точки.


.

Далее как постоянную величину можно вынести за знак интеграла, а интеграл согласно рисунку будет представлять полное перемещение . .

Если обозначить высоту точки 1 от поверхности Земли через , а высоту точки 2 через , то

Мы видим, что в данном случае работа определяется положением материальной точки в начальный и конечный момент времени и не зависит от формы траектории или пути. Работа силы тяжести по замкнутому пути равна нулю:
.

Силы, работа которых на замкнутом пути равна нулю, называется консервативными .

Пример 2 : Работа силы трения.

Это пример неконсервативной силы. Чтобы показать это достаточно рассмотреть элементарную работу силы трения:

,

т.е. работа силы трения всегда отрицательная величина и на замкнутом пути не может быть равной нулю. Работа, совершаемая в единицу времени, называется мощностью . Если за время
совершается работа
, то мощность равна

механическая мощность .

Взяв
в виде

,

получим для мощности выражение:

.

В СИ единицей работы является джоуль:
= 1 Дж = 1 Н1 м, а единицей мощности является ватт: 1 Вт = 1 Дж/с.

Механическая энергия.

Энергия является общей количественной мерой движения взаимодействия всех видов материи. Энергия не исчезает и не возникает из нечего: она лишь может переходить из одной формы в другую. Понятие энергии связывает воедино все явления в природе. В соответствии с различными формами движения материи рассматривают разные виды энергии – механическую, внутреннюю, электромагнитную, ядерную и др.

Понятия энергии и работы тесно связаны друг с другом. Известно, что работа совершается за счет запаса энергии и, наоборот, совершая работу, можно увеличить запас энергии в каком-либо устройстве. Другими словами работа – это количественная мера изменения энергии:

.

Энергия также как и работа в СИ измеряется в джоулях: [E ]=1 Дж.

Механическая энергия бывает двух видов – кинетическая и потенциальная.

Кинетическая энергия (или энергия движения) определяется массами и скоростями рассматриваемых тел. Рассмотрим материальную точку, движущуюся под действием силы . Работа этой силы увеличивает кинетическую энергию материальной точки
. Вычислим в этом случае малое приращение (дифференциал) кинетической энергии:

При вычислении
использован второй закон Ньютона
, а также
- модуль скорости материальной точки. Тогда
можно представить в виде:

-

- кинетическая энергия движущейся материальной точки .

Умножив и разделив это выражение на
, и учитывая, что
, получим

-

- связь между импульсом и кинетической энергией движущейся материальной точки .

Потенциальная энергия (или энергия положения тел) определяется действием на тело консервативных сил и зависит только от положения тела.

Мы видели, что работу силы тяжести
при криволинейном движении материальной точки
можно представить в виде разности значений функции
, взятых в точке 1 и в точке 2 :

.

Оказывается, что всегда, когда силы консервативны, работу этих сил на пути 1
2 можно представить в виде:

.

Функция , которая зависит только от положения тела – называется потенциальной энергией .

Тогда для элементарной работы получим

работа равна убыли потенциальной энергии .

Иначе можно сказать, что работа совершается за счёт запаса потенциальной энергии.

Величину , равную сумме кинетической и потенциальной энергий частицы, называют полной механической энергией тела:

полная механическая энергия тела .

В заключении заметим, что используя второй закон Ньютона
, дифференциал кинетической энергии
можно представить в виде:

.

Дифференциал потенциальной энергии
, как указывали выше, равен:

.

Таким образом, если сила – консервативная сила и отсутствуют другие внешние силы, то , т.е. в этом случае полная механическая энергия тела сохраняется.

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа - это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 - 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай - когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай - когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай - когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт - это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 - 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

В повседневной жизни часто приходится встречаться с таким понятием как работа. Что это слово означает в физике и как определить работу силы упругости? Ответы на эти вопросы вы узнаете в статье.

Механическая работа

Работа - это скалярная алгебраическая величина, которая характеризует связь между силой и перемещением. При совпадении направления этих двух переменных она вычисляется по следующей формуле:

  • F - модуль вектора силы, которая совершает работу;
  • S - модуль вектора перемещения.

Не всегда сила, которая действует на тело, совершает работу. Например, работа силы тяжести равна нулю, если ее направление перпендикулярно перемещению тела.

Если вектор силы образует отличный от нуля угол с вектором перемещения, то для определения работы следует воспользоваться другой формулой:

A=FScosα

α - угол между векторами силы и перемещения.

Значит, механическая работа - это произведение проекции силы на направление перемещения и модуля перемещения, или произведение проекции перемещения на направление силы и модуля этой силы.

Знак механической работы

В зависимости от направления силы относительно перемещения тела работа A может быть:

  • положительной (0°≤ α<90°);
  • отрицательной (90°<α≤180°);
  • равной нулю (α=90°).

Если A>0, то скорость тела увеличивается. Пример - падение яблока с дерева на землю. При A<0 сила препятствует ускорению тела. Например, действие силы трения скольжения.

Единица измерения работы в СИ (Международной системе единиц) - Джоуль (1Н*1м=Дж). Джоуль - это работа силы, значение которой равно 1 Ньютону, при перемещении тела на 1 метр в направлении действия силы.

Работа силы упругости

Работу силы можно определить и графическим способом. Для этого вычисляется площадь криволинейной фигуры под графиком F s (x).

Так, по графику зависимости силы упругости от удлинения пружины, можно вывести формулу работы силы упругости.

Она равна:

A=kx 2 /2

  • k - жесткость;
  • x - абсолютное удлинение.

Что мы узнали?

Механическая работа совершается при действии на тело силы, которая приводит к перемещению тела. В зависимости от угла, который возникает между силой и перемещением, работа может быть равна нулю или иметь отрицательный или положительный знак. На примере силы упругости вы узнали о графическом способе определения работы.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Определение 1

Работа А, совершаемая постоянной силой F → , - это физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α , располагаемого между векторами силы F → и перемещением s → .

Данное определение рассматривается на рисунке 1 . 18 . 1 .

Формула работы записывается как,

A = F s cos α .

Работа – это скалярная величина. Это дает возможность быть положительной при (0 ° ≤ α < 90 °) , отрицательной при (90 ° < α ≤ 180 °) . Когда задается прямой угол α , тогда совершаемая сила равняется нулю. Единицы измерения работы по системе СИ - джоули (Д ж) .

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Рисунок 1 . 18 . 1 . Работа силы F → : A = F s cos α = F s s

При проекции F s → силы F → на направление перемещения s → сила не остается постоянной, а вычисление работы для малых перемещений Δ s i суммируется и производится по формуле:

A = ∑ ∆ A i = ∑ F s i ∆ s i .

Данная сумма работы вычисляется из предела (Δ s i → 0) , после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком F s (x) рисунка 1 . 18 . 2 .

Рисунок 1 . 18 . 2 . Графическое определение работы Δ A i = F s i Δ s i .

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F → , модуль которой пропорционален удлинению пружины. Это видно на рисунке 1 . 18 . 3 .

Рисунок 1 . 18 . 3 . Растянутая пружина. Направление внешней силы F → совпадает с направлением перемещения s → . F s = k x , где k обозначает жесткость пружины.

F → у п р = - F →

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Рисунок 1 . 18 . 4 . Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F → у п р равняется работе внешней силы F → , но с противоположным знаком.

Определение 2

Если на тело действует несколько сил, то формула общей работы будет выглядеть, как сумма всех работ, совершаемых над ним. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Рисунок 1 . 18 . 5 . Модель механической работы.

Определение мощности

Определение 3

Мощностью называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N , принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

Определение 4

Система С И использует в качестве единицы мощности ватт (В т) , равняющийся мощности силы, которая совершает работу в 1 Д ж за время 1 с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter