История, развитие и становление компьютерной лингвистики как научного направления. Что такое компьютерная лингвистика
КУРСОВАЯ РАБОТА
по дисциплине «Информатика»
по теме: «Компьютерная лингвистика»
ВВЕДЕНИЕ
2. Современные интерфейсы компьютерной лингвистики
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Введение
В жизни современного общества важную роль играют автоматизированные информационные технологии. С течением времени их значение непрерывно возрастает. Но развитие информационных технологий происходит весьма неравномерно: если современный уровень вычислительной техники и средств связи поражает воображение, то в области смысловой обработки информации успехи значительно скромнее. Эти успехи зависят, прежде всего, от достижений в изучении процессов человеческого мышления, процессов речевого общения между людьми и от умения моделировать эти процессы на ЭВМ.
Когда речь идет о создании перспективных информационных технологий, то проблемы автоматической обработки текстовой информации, представленной на естественных языках, выступают на передний план. Это определяется тем, что мышление человека тесно связано с его языком. Более того, естественный язык является инструментом мышления. Он является также универсальным средством общения между людьми – средством восприятия, накопления, хранения, обработки и передачи информации. Проблемами использования естественного языка в системах автоматической обработки информации занимается наука компьютерная лингвистика. Эта наука возникла сравнительно недавно – на рубеже пятидесятых и шестидесятых годов прошлого столетия. За прошедшие полвека в области компьютерной лингвистики были получены значительные научные и практические результаты: были созданы системы машинного перевода текстов с одних естественных языков на другие, системы автоматизированного поиска информации в текстах, системы автоматического анализа и синтеза устной речи и многие другие. Данная работа посвящена построению оптимального компьютерного интерфейса средствами компьютерной лингвистики при проведении лингвистических исследований.
1. Место и роль компьютерной лингвистики в лингвистических исследованиях
В современном мире при проведении различных лингвистических исследований все более активно используется компьютерная лингвистика.
Компьютерная лингвистика – это область знаний, связанная c решением задач автоматической обработки информации, представленной на естественном языке. Центральными научными проблемами компьютерной лингвистики являются проблема моделирования процесса понимания смысла текстов (перехода от текста к формализованному представлению его смысла) и проблема синтеза речи (перехода от формализованного представления смысла к текстам на естественном языке). Эти проблемы возникают при решении ряда прикладных задач и, в частности, задач автоматического обнаружения и исправления ошибок при вводе текстов в ЭВМ, автоматического анализа и синтеза устной речи, автоматического перевода текстов с одних языков на другие, общения с ЭВМ на естественном языке, автоматической классификации и индексирования текстовых документов, их автоматического реферирования, поиска документов в полнотекстовых базах данных.
Лингвистические средства, создаваемые и применяемые в компьютерной лингвистике, можно условно разделить на две части: декларативную и процедурную. К декларативной части относятся словари единиц языка и речи, тексты и различного рода грамматические таблицы, к процедурной части – средства манипулирования единицами языка и речи, текстами и грамматическими таблицами. Компьютерный интерфейс относится к процедурной части компьютерной лингвистики.
Успех в решении прикладных задач компьютерной лингвистики зависит, прежде всего, от полноты и точности представления в памяти ЭВМ декларативных средств и от качества процедурных средств. На сегодняшний день необходимый уровень решения этих задач пока еще не достигнут, хотя работы в области компьютерной лингвистики ведутся во всех развитых странах мира (Россия, США, Англия, Франция, Германия, Япония и др.).
Тем не менее, можно отметить серьезные научные и практические достижения в области компьютерной лингвистики. Так в ряде стран(Россия, США, Япония, и др.) построены экспериментальные и промышленные системы машинного перевода текстов с одних языков на другие, построен ряд экспериментальных систем общения с ЭВМ на естественном языке, ведутся работы по созданию терминологических банков данных, тезаурусов, двуязычных и многоязычных машинных словарей (Россия, США, Германия, Франция и др.), строятся системы автоматического анализа и синтеза устной речи (Россия, США, Япония и др.), ведутся исследования в области построения моделей естественных языков.
Важной методологической проблемой прикладной компьютерной лингвистики является правильная оценка необходимого соотношения между декларативной и процедурной компонентами систем автоматической обработки текстовой информации. Чему отдать предпочтение: мощным вычислительным процедурам, опирающимся на относительно небольшие словарные системы с богатой грамматической и семантической информацией, или мощной декларативной компоненте при относительно простых компьютерных интерфейсах? Большинство ученых считают что, второй путь предпочтительнее. Он быстрее приведет к достижению практических целей, так как при этом меньше встретится тупиков и трудно преодолимых препятствий и здесь можно будет в более широких масштабах использовать ЭВМ для автоматизации исследований и разработок.
Необходимость мобилизации усилий, прежде всего, на развитии декларативной компоненты систем автоматической обработки текстовой информации подтверждается полувековым опытом развития компьютерной лингвистики. Ведь здесь, несмотря на бесспорные успехи этой науки, увлечение алгоритмическими процедурами не принесло ожидаемого успеха. Наступило даже некоторое разочарование в возможностях процедурных средств.
В свете вышеизложенного, представляется перспективным такой путь развития компьютерной лингвистики, когда основные усилия будут направлены на создание мощных словарей единиц языка и речи, изучение их семантико-синтаксической структуры и на создание базовых процедур морфологического, семантико-синтаксического и концептуального анализа и синтеза текстов. Это позволит в дальнейшем решать широкий спектр прикладных задач.
Перед компьютерной лингвистикой стоят, прежде всего, задачи лингвистического обеспечения процессов сбора, накопления, обработки и поиска информации. Наиболее важными из них являются:
1. Автоматизация составления и лингвистической обработки машинных словарей;
2. Автоматизация процессов обнаружения и исправления ошибок при вводе текстов в ЭВМ;
3. Автоматическое индексирование документов и информационных запросов;
4. Автоматическая классификация и реферирование документов;
5. Лингвистическое обеспечение процессов поиска информации в одноязычных и многоязычных базах данных;
6. Машинный перевод текстов с одних естественных языков на другие;
7. Построение лингвистических процессоров, обеспечивающих общение пользователей с автоматизированными интеллектуальными информационными системами (в частности, с экспертными системами) на естественном языке, или на языке, близком к естественному;
8. Извлечение фактографической информации из неформализованных текстов.
Подробно остановимся на проблемах, наиболее относящихся к теме исследования.
В практической деятельности информационных центров есть необходимость решения задачи автоматизированного обнаружения и исправления ошибок в текстах при их вводе в ЭВМ. Эта комплексная задача может быть условно расчленена на три задачи – задачи орфографического, синтаксического и семантического контроля текстов. Первая из них может быть решена с помощью процедуры морфологического анализа, использующей достаточно мощный эталонный машинный словарь основ слов. В процессе орфографического контроля слова текста подвергаются морфологическому анализу, и если их основы отождествляются с основами эталонного словаря, то они считаются правильными; если не отождествляются, то они в сопровождении микроконтекста выдаются на просмотр человеку. Человек обнаруживает и исправляет искаженные слова, а соответствующая программная система вносит эти исправления в корректируемый текст.
Задача синтаксического контроля текстов с целью обнаружения в них ошибок существенно сложнее задачи их орфографического контроля. Во-первых, потому, что она включает в свой состав и задачу орфографического контроля как свою обязательную компоненту, а, во-вторых, потому, что проблема синтаксического анализа неформализованных текстов в полном объеме еще не решена. Тем не менее, частичный синтаксический контроль текстов вполне возможен. Здесь можно идти двумя путями: либо составлять достаточно представительные машинные словари эталонных синтаксических структур и сравнивать с ними синтаксические структуры анализируемого текста; либо разрабатывать сложную систему правил проверки грамматической согласованности элементов текста. Первый путь нам представляется более перспективным, хотя он, конечно, не исключает и возможности применения элементов второго пути. Синтаксическая структура текстов должна описываться в терминах грамматических классов слов (точнее – в виде последовательностей наборов грамматической информации к словам).
Задачу семантического контроля текстов с целью обнаружения в них смысловых ошибок следует отнести к классу задач искусственного интеллекта. В полном объеме она может быть решена только на основе моделирования процессов человеческого мышления. При этом, по-видимому, придется создавать мощные энциклопедические базы знаний и программные средства манипулирования знаниями. Тем не менее, для ограниченных предметных областей и для формализованной информации эта задача вполне разрешима. Она должна ставиться и решаться как задача семантико-синтаксического контроля текстов.
Проблема автоматизации индексирования документов и запросов является традиционной для систем автоматизированного поиска текстовой информации. Поначалу под индексированием понимали процесс присвоения документам и запросам классификационных индексов, отражающих их тематическое содержание. В дальнейшем это понятие трансформировалось и термином «индексирование» стали называть процесс перевода описаний документов и запросов с естественного языка на формализованный, в частности, на язык «поисковых образов». Поисковые образы документов стали, как правило, оформляться в виде перечней ключевых слов и словосочетаний, отражающих их тематическое содержание, а поисковые образы запросов – в виде логических конструкций, в которых ключевые слова и словосочетания соединялись друг с другом логическими и синтаксическими операторами.
Автоматическое индексирование документов удобно проводить по текстам их рефератов (если они имеются), поскольку в рефератах основное содержание документов отражается в концентрированном виде. Индексирование может проводиться с контролем по тезаурусу или без контроля. В первом случае в тексте заголовка документа и его реферата ищутся ключевые слова и словосочетания эталонного машинного словаря и в ПОД включаются только те из них, которые нашлись в словаре. Во втором случае ключевые слова и словосочетания выделяются из текста и включаются в ПОД независимо от их принадлежности к какому-либо эталонному словарю. Был реализован еще и третий вариант, где наряду с терминами из машинного тезауруса в ПОД включались еще и термины, выделенные из заголовка и первого предложения реферата документа. Эксперименты показали, что ПОДы, составленные в автоматическом режиме по заголовкам и рефератам документов, обеспечивают большую полноту поиска, чем ПОДы, составленные вручную. Объясняется это тем, что система автоматического индексирования более полно отражает различные аспекты содержания документов, чем система ручного индексирования.
При автоматическом индексировании запросов возникают примерно те же проблемы, что и при автоматическом индексировании документов. Здесь также приходится выделять ключевые слова и словосочетания из текста и нормализовать слова, входящие в текст запроса. Логические связки между ключевыми словами и словосочетаниями и контекстуальные операторы могут проставляться вручную или с помощью автоматизированной процедуры. Важным элементом процесса автоматического индексирования запроса является дополнение входящих в его состав ключевых слов и словосочетаний их синонимами и гипонимами (иногда также гиперонимами и другими терминами, ассоциированными с исходными терминами запроса). Это может быть сделано в автоматическом или в интерактивном режиме с помощью машинного тезауруса.
Проблему автоматизации поиска документальной информации мы уже частично рассматривали в связи с задачей автоматического индексирования. Наиболее перспективным здесь является поиск документов по их полным текстам, так как использование для этой цели всякого рода заменителей (библиографических описаний, поисковых образов документов и текстов их рефератов) приводит к потерям информации при поиске. Наибольшие потери имеют место тогда, когда в качестве заменителей первичных документов используются их библиографические описания, наименьшие – при использовании рефератов.
Важными характеристиками качества поиска информации являются его полнота и точность. Полнота поиска может быть обеспечена путем максимального учета парадигматических связей между единицами языка и речи (словами и словосочетаниями), а точность – путем учета их синтагматических связей. Существует мнение, что полнота и точность поиска находятся в обратной зависимости: меры по улучшению одной из этих характеристик приводят к ухудшению другой. Но это справедливо только для фиксированной логики поиска. Если эту логику совершенствовать, то обе характеристики могут улучшаться одновременно.
Процесс поиска информации в полнотекстовых базах данных целесообразно строить как процесс диалогового общения пользователя с информационно-поисковой системой (ИПС), при котором он последовательно просматривает фрагменты текстов (абзацы, параграфы), удовлетворяющие логическим условиям запроса, и отбирает те из них, которые для него представляют интерес. В качестве окончательных результатов поиска могут выдаваться как полные тексты документов, так и любые их фрагменты.
Как видно из предыдущих рассуждений, при автоматическом поиске информации приходится преодолевать языковый барьер, возникающий между пользователем и ИПС в связи с имеющим место в текстах разнообразием форм представления одного и того же смысла. Этот барьер становится еще более значительным, если поиск приходится вести в разноязычных базах данных. Кардинальным решением проблемы здесь может быть машинный перевод текстов документов с одних языков на другие. Это можно делать либо заранее, перед загрузкой документов в поисковую систему, либо в процессе поиска информации. В последнем случае запрос пользователя должен переводиться на язык массива документов, в котором ведется поиск, а результаты поиска – на язык запроса. Такого рода поисковые системы уже работают в системе Internet. В ВИНИТИ РАН была также построена система Cyrillic Browser, которая позволяет производить поиск информации в русскоязычных текстах по запросам на английском языке с выдачей результатов поиска также на языке пользователя.
Важной и перспективной задачей компьютерной лингвистики является построение лингвистических процессоров, обеспечивающих общение пользователей с интеллектуальными автоматизированными информационными системами (в частности с экспертными системами) на естественном языке или на языке, близком к естественному. Поскольку в современных интеллектуальных системах информация хранится в формализованном виде, то лингвистические процессоры, выполняя роль посредников между человеком и ЭВМ, должны решать следующие основные задачи: 1) задачу перехода от текстов входных информационных запросов и сообщений на естественном языке к представлению их смысла на формализованном языке (при вводе информации в ЭВМ); 2) задачу перехода от формализованного представления смысла выходных сообщений к его представлению на естественном языке (при выдаче информации человеку). Первая задача должна решаться путем морфологического, синтаксического и концептуального анализа входных запросов и сообщений, вторая – путем концептуального, синтаксического и морфологического синтеза выходных сообщений.
Концептуальный анализ информационных запросов и сообщений состоит в выявлении их понятийной структуры (границ наименований понятий и отношений между понятиями в тексте) и переводе этой структуры на формализованный язык. Он проводится после морфологического и синтаксического анализа запросов и сообщений. Концептуальный синтез сообщений состоит в переходе от представления элементов их структуры на формализованном языке к вербальному (словесному) представлению. После этого сообщениям дается необходимое синтаксическое и морфологическое оформление.
Для машинного перевода текстов с одних естественных языков на другие необходимо располагать словарями переводных соответствий между наименованиями понятий. Знания о таких переводных соответствиях накапливались многими поколениями людей и оформлялись в виде специальных изданий – двуязычных или многоязычных словарей. Для специалистов, владеющих в той или иной мере иностранными языками, эти словари служили ценными пособиями при переводе текстов.
В традиционных двуязычных и многоязычных словарях общего назначения переводные эквиваленты указывались преимущественно для отдельных слов, для словосочетаний – значительно реже. Указание переводных эквивалентов для словосочетаний было более характерно для специальных терминологических словарей. Поэтому при переводе отрезков текстов, содержащих многозначные слова, у обучаемых часто возникали затруднения.
Ниже приведены переводные соответствия между несколькими парами английских и русских фраз по «школьной» тематике.
1) The bat looks like a mouse with wings – Летучая мышь похожа на мышь с крыльями.
2) Children like to play in the sand on the beach – Дети любят играть в песке на берегу моря.
3) A drop of rain fell on my hand – Капля дождя упала мне на руку.
4) Dry wood burns easily – сухие дрова хорошо горят.
5) He pretended not to hear me – Он делал вид, что не слышит меня.
Здесь английские фразы не являются идиоматическими выражениями. Тем не менее, их перевод на русский язык лишь с некоторой натяжкой можно рассматривать как простой пословный перевод, так как почти все входящие в них слова многозначные. Поэтому здесь обучаемым способны помочь только достижения компьютерной лингвистики.
Введение
Что такое компьютерная лингвистика?
КОМПЬЮТЕРНАЯ ЛИНГВИСТИКА , направление в прикладной лингвистике, ориентированное на использование компьютерных инструментов – программ, компьютерных технологий организации и обработки данных – для моделирования функционирования языка в тех или иных условиях, ситуациях, проблемных сферах и т.д., а также вся сфера применения компьютерных моделей языка в лингвистике и смежных дисциплинах. Собственно, только в последнем случае и идет речь о прикладной лингвистике в строгом смысле, поскольку компьютерное моделирование языка может рассматриваться и как сфера приложения информатики и теории программирования к решению задач науки о языке. На практике, однако, к компьютерной лингвистике относят практически все, что связано с использованием компьютеров в языкознании.
Как особое научное направление компьютерная лингвистика оформилась в 1960-е годы. Русский термин «компьютерная лингвистика» является калькой с английского computational linguistics. Поскольку прилагательное computational по-русски может переводиться и как «вычислительный», в литературе встречается также термин «вычислительная лингвистика», однако в отечественной науке он приобретает более узкое значение, приближающееся к понятию «квантитативной лингвистики». Поток публикаций в этой области очень велик. Кроме тематических сборников, в США ежеквартально выходит журнал «Компьютерная лингвистика». Большую организационную и научную работу проводит Ассоциация по компьютерной лингвистике, которая имеет региональные структуры (в частности, европейское отделение). Каждые два года проходят международные конференции по компьютерной лингвистике – COLING. Соответствующая проблематика обычно бывает широко представлена также на различных конференциях по искусственному интеллекту.
Задачи
Компьютерная лингвистика берет на себя собственно лингвистические проблемы компьютерного моделирования языковой деятельности. Ее задачи – построение более точных и более полных лингвистических моделей и более совершенных алгоритмов анализа и синтеза.
В качестве основных направлений можно выделить:
1) Взаимодействие человека и ЭВМ: управление – языки программирования, передача информации – интерфейс.
2) Работа с текстами: индексирование, анализ и классификация, автоматическое редактирование (исправление ошибок), выявление знаний, машинный перевод.
История
Простое порождение подмножества английского языка для обращения к базам данных было обеспечено одной из ранних американских систем LIFER (Languagе Interface Facility wich Elipsis and Recursion), созданной в 70-е годы. Вслед за ней на компьютерном рынке появились и другие, более гибкие системы, обеспечивающие ограниченный естественно-языковой интерфейс с ЭВМ.
В 80-е годы в США образовался ряд компаний, занимающихся разработкой и продажей естественно-языковых интерфейсов с базами данных, экспертными системами. В 1985г. Корпорация "Семантек" представила такой пакет программ Q&A, компания "Карнеги Группа" предложила аналогичный пакет LanguageCraft.
Ведутся активные работы по созданию систем автоматического перевода. Получила распространение система автоматического перевода SYSTRAN, разработанная под руководством Д. Тома по заказу военно-воздушных сил США. В течение 1974 - 1975 гг. система была использована аэрокосмической ассоциацией NASA для перевода документов по проекту Аполлон-Союз. В наше время она переводит с нескольких языков около 100 000 страниц ежегодно.
В Европе работы по созданию компьютерных систем перевода стимулировались образованием Европейской информационной Сети (EURONET DIANA). В 1982 г. Европейское экономическое сообщество объявило о создании европейской программы EUROTRA, цель которой – разработка системы компьютерного перевода для всех европейских языков. Первоначально проект оценивался в 12 млн долларов, в 1987 г. специалисты определили суммарные расходы по этому проекту более чем в 160 млн долларов.
В Японии исследования по компьютерной лингвистике концентрируются вокруг общенациональной программы создания компьютеров пятого поколения, объявленной в 1981 г.
Существует ряд военных проектов создания человеко-машинных интерфейсов на естественном языке. В США они ведутся в основном в рамках стратегической компьютерной инициативы - десятилетней программы, принятой министерством обороны в 1983 г. Цель ее - создание нового поколения "интеллектуальных" оружия и военных систем с целью обеспечить многолетнее технологическое превосходство США.
Естественно, что специалисты по искусственному интеллекту, прекрасно разбирающиеся в компьютерах и языках программирования, энергично принялись за решение проблемы понимания языка своими методами. Шел поиск алгоритмов естественного языка. Были созданы сложные программы понимания языка для очень узких специальных областей, реализованы программы частичного машинного перевода и ряд других. Но решающего продвижения в решении проблемы понимания языка так и не было. Язык и человек настолько связаны, что ученым пришлось заняться проблемой понимания мира человеком. А это уже область философии.
Базовые понятия лингвистики
КУРСОВАЯ РАБОТА
по дисциплине «Информатика»
по теме: «Компьютерная лингвистика»
ВВЕДЕНИЕ
1. Место и роль компьютерной лингвистики в лингвистических исследованиях
2. Современные интерфейсы компьютерной лингвистики
ЗАКЛЮЧЕНИЕ
ЛИТЕРАТУРА
Введение
В жизни современного общества важную роль играют автоматизированные информационные технологии. С течением времени их значение непрерывно возрастает. Но развитие информационных технологий происходит весьма неравномерно: если современный уровень вычислительной техники и средств связи поражает воображение, то в области смысловой обработки информации успехи значительно скромнее. Эти успехи зависят, прежде всего, от достижений в изучении процессов человеческого мышления, процессов речевого общения между людьми и от умения моделировать эти процессы на ЭВМ.
Когда речь идет о создании перспективных информационных технологий, то проблемы автоматической обработки текстовой информации, представленной на естественных языках, выступают на передний план. Это определяется тем, что мышление человека тесно связано с его языком. Более того, естественный язык является инструментом мышления. Он является также универсальным средством общения между людьми – средством восприятия, накопления, хранения, обработки и передачи информации. Проблемами использования естественного языка в системах автоматической обработки информации занимается наука компьютерная лингвистика. Эта наука возникла сравнительно недавно – на рубеже пятидесятых и шестидесятых годов прошлого столетия. За прошедшие полвека в области компьютерной лингвистики были получены значительные научные и практические результаты: были созданы системы машинного перевода текстов с одних естественных языков на другие, системы автоматизированного поиска информации в текстах, системы автоматического анализа и синтеза устной речи и многие другие. Данная работа посвящена построению оптимального компьютерного интерфейса средствами компьютерной лингвистики при проведении лингвистических исследований.
В современном мире при проведении различных лингвистических исследований все более активно используется компьютерная лингвистика.
Компьютерная лингвистика – это область знаний, связанная c решением задач автоматической обработки информации, представленной на естественном языке. Центральными научными проблемами компьютерной лингвистики являются проблема моделирования процесса понимания смысла текстов (перехода от текста к формализованному представлению его смысла) и проблема синтеза речи (перехода от формализованного представления смысла к текстам на естественном языке). Эти проблемы возникают при решении ряда прикладных задач и, в частности, задач автоматического обнаружения и исправления ошибок при вводе текстов в ЭВМ, автоматического анализа и синтеза устной речи, автоматического перевода текстов с одних языков на другие, общения с ЭВМ на естественном языке, автоматической классификации и индексирования текстовых документов, их автоматического реферирования, поиска документов в полнотекстовых базах данных.
Лингвистические средства, создаваемые и применяемые в компьютерной лингвистике, можно условно разделить на две части: декларативную и процедурную. К декларативной части относятся словари единиц языка и речи, тексты и различного рода грамматические таблицы, к процедурной части – средства манипулирования единицами языка и речи, текстами и грамматическими таблицами. Компьютерный интерфейс относится к процедурной части компьютерной лингвистики.
Успех в решении прикладных задач компьютерной лингвистики зависит, прежде всего, от полноты и точности представления в памяти ЭВМ декларативных средств и от качества процедурных средств. На сегодняшний день необходимый уровень решения этих задач пока еще не достигнут, хотя работы в области компьютерной лингвистики ведутся во всех развитых странах мира (Россия, США, Англия, Франция, Германия, Япония и др.).
Тем не менее, можно отметить серьезные научные и практические достижения в области компьютерной лингвистики. Так в ряде стран(Россия, США, Япония, и др.) построены экспериментальные и промышленные системы машинного перевода текстов с одних языков на другие, построен ряд экспериментальных систем общения с ЭВМ на естественном языке, ведутся работы по созданию терминологических банков данных, тезаурусов, двуязычных и многоязычных машинных словарей (Россия, США, Германия, Франция и др.), строятся системы автоматического анализа и синтеза устной речи (Россия, США, Япония и др.), ведутся исследования в области построения моделей естественных языков.
Важной методологической проблемой прикладной компьютерной лингвистики является правильная оценка необходимого соотношения между декларативной и процедурной компонентами систем автоматической обработки текстовой информации. Чему отдать предпочтение: мощным вычислительным процедурам, опирающимся на относительно небольшие словарные системы с богатой грамматической и семантической информацией, или мощной декларативной компоненте при относительно простых компьютерных интерфейсах? Большинство ученых считают что, второй путь предпочтительнее. Он быстрее приведет к достижению практических целей, так как при этом меньше встретится тупиков и трудно преодолимых препятствий и здесь можно будет в более широких масштабах использовать ЭВМ для автоматизации исследований и разработок.
Необходимость мобилизации усилий, прежде всего, на развитии декларативной компоненты систем автоматической обработки текстовой информации подтверждается полувековым опытом развития компьютерной лингвистики. Ведь здесь, несмотря на бесспорные успехи этой науки, увлечение алгоритмическими процедурами не принесло ожидаемого успеха. Наступило даже некоторое разочарование в возможностях процедурных средств.
В свете вышеизложенного, представляется перспективным такой путь развития компьютерной лингвистики, когда основные усилия будут направлены на создание мощных словарей единиц языка и речи, изучение их семантико-синтаксической структуры и на создание базовых процедур морфологического, семантико-синтаксического и концептуального анализа и синтеза текстов. Это позволит в дальнейшем решать широкий спектр прикладных задач.
Перед компьютерной лингвистикой стоят, прежде всего, задачи лингвистического обеспечения процессов сбора, накопления, обработки и поиска информации. Наиболее важными из них являются:
1. Автоматизация составления и лингвистической обработки машинных словарей;
2. Автоматизация процессов обнаружения и исправления ошибок при вводе текстов в ЭВМ;
3. Автоматическое индексирование документов и информационных запросов;
4. Автоматическая классификация и реферирование документов;
5. Лингвистическое обеспечение процессов поиска информации в одноязычных и многоязычных базах данных;
6. Машинный перевод текстов с одних естественных языков на другие;
7. Построение лингвистических процессоров, обеспечивающих общение пользователей с автоматизированными интеллектуальными информационными системами (в частности, с экспертными системами) на естественном языке, или на языке, близком к естественному;
8. Извлечение фактографической информации из неформализованных текстов.
Подробно остановимся на проблемах, наиболее относящихся к теме исследования.
В практической деятельности информационных центров есть необходимость решения задачи автоматизированного обнаружения и исправления ошибок в текстах при их вводе в ЭВМ. Эта комплексная задача может быть условно расчленена на три задачи – задачи орфографического, синтаксического и семантического контроля текстов. Первая из них может быть решена с помощью процедуры морфологического анализа, использующей достаточно мощный эталонный машинный словарь основ слов. В процессе орфографического контроля слова текста подвергаются морфологическому анализу, и если их основы отождествляются с основами эталонного словаря, то они считаются правильными; если не отождествляются, то они в сопровождении микроконтекста выдаются на просмотр человеку. Человек обнаруживает и исправляет искаженные слова, а соответствующая программная система вносит эти исправления в корректируемый текст.
Задача синтаксического контроля текстов с целью обнаружения в них ошибок существенно сложнее задачи их орфографического контроля. Во-первых, потому, что она включает в свой состав и задачу орфографического контроля как свою обязательную компоненту, а, во-вторых, потому, что проблема синтаксического анализа неформализованных текстов в полном объеме еще не решена. Тем не менее, частичный синтаксический контроль текстов вполне возможен. Здесь можно идти двумя путями: либо составлять достаточно представительные машинные словари эталонных синтаксических структур и сравнивать с ними синтаксические структуры анализируемого текста; либо разрабатывать сложную систему правил проверки грамматической согласованности элементов текста. Первый путь нам представляется более перспективным, хотя он, конечно, не исключает и возможности применения элементов второго пути. Синтаксическая структура текстов должна описываться в терминах грамматических классов слов (точнее – в виде последовательностей наборов грамматической информации к словам).
Задачу семантического контроля текстов с целью обнаружения в них смысловых ошибок следует отнести к классу задач искусственного интеллекта. В полном объеме она может быть решена только на основе моделирования процессов человеческого мышления. При этом, по-видимому, придется создавать мощные энциклопедические базы знаний и программные средства манипулирования знаниями. Тем не менее, для ограниченных предметных областей и для формализованной информации эта задача вполне разрешима. Она должна ставиться и решаться как задача семантико-синтаксического контроля текстов.
На филфаке Высшей школы экономики запускается новая магистерская программа, посвященная компьютерной лингвистике: тут ждут абитуриентов с гуманитарным и математическим базовым образованием и всех, кому интересно решать задачи в одной из самых перспективных отраслей науки. Ее руководитель Анастасия Бонч-Осмоловская рассказала «Теориям и практикам», что такое компьютерная лингвистика, почему роботы не заменят человека и чему будут учить в магистратуре ВШЭ по компьютерной лингвистике.
Эта программа - чуть ли не единственная такого рода в России. А вы где сами учились?
Я училась в МГУ на отделении теоретической и прикладной лингвистики филологического факультета. Попала туда не сразу, сначала поступила на русское отделение, но потом всерьез увлеклась лингвистикой, и меня привлекла атмосфера, которая остается на кафедре сих пор. Самое главное там - хороший контакт между преподавателями и студентами и их взаимная заинтересованность.
Когда у меня родились дети и надо было зарабатывать на жизнь, я пошла в сферу коммерческой лингвистики. В 2005 году было не очень понятно, что представляет из себя эта область деятельности как таковая. Я работала в разных лингвистических фирмах: начинала с небольшой фирмы при сайте Public.ru - это такая библиотека СМИ, там я начала заниматься лингвистическими технологиями. Потом год работала в Роснанотехе, где была идея сделать аналитических портал, чтобы данные на нем автоматически структурировались. Потом я руководила лингвистическим отделом в компании «Авикомп» - это уже серьезное производство в области компьютерной лингвистики и семантических технологий. Параллельно я вела курс по компьютерной лингвистике в МГУ и старалась сделать его более современным.
Два ресурса для лингвиста: - сайт, созданный лингвистами для научных и прикладных исследований, связанных с русским языком. Это модель русского языка, представленная с помощью огромного массива текстов разных жанров и периодов. Тексты снабжены лингвистической разметкой, с помощью которой можно получать информацию о частотности тех или иных языковых явлений. Ворднет - огромная лексическая база английского языка, главная идея Ворднета - связать в одну большую сеть не слова, но их смыслы. Ворднет можно скачивать и использовать для собственных проектов.
А чем занимается компьютерная лингвистика?
Это максимально междисциплинарная область. Тут самое главное понимать, что творится в электронном мире и кто тебе поможет сделать конкретные вещи.
Нас окружает очень большое количество дигитальной информации, существует множество бизнес-проектов, успех которых зависит от обработки информации, эти проекты могут относиться к сфере маркетинга, политики, экономики и чего угодно. И очень важно уметь обращаться с этой информацией эффективно - главное не только быстрота обработки информации, но и легкость, с которой ты можешь, отсеяв шум, достать те данные, которые тебе нужны, и создать из них цельную картину.
Раньше с компьютерной лингвистикой были связаны какие-то глобальные идеи, например: люди думали, что машинный перевод заменит человеческий, вместо людей будут работать роботы. Но сейчас это кажется утопией, и машинный перевод используется в поисковых системах для быстрого поиска на незнакомом языке. То есть сейчас лингвистика редко занимается абстрактными задачами - в основном какими-то маленькими штучками, которые можно вставить в большой продукт и на этом заработать.
Одна из больших задач современной лингвистики - семантический web, когда поиск происходит не просто по совпадению слов, а по смыслу, а все сайты так или иначе размечены по семантике. Это может быть полезно, например, для полицейских или медицинских отчетов, которые пишутся каждый день. Анализ внутренних связей дает много нужной информации, а читать и считать это вручную невероятно долго.
В двух словах, у нас есть тысяча текстов, надо разложить их по кучкам, представить каждый текст в виде структуры и получить таблицу, с которой уже можно работать. Это называется обработка неструктурированной информации. С другой стороны, компьютерная лингвистика занимается, например, созданием искусственных текстов. Есть такая компания, которая придумала механизм генерации текстов на темы, на которые человеку писать скучно: изменение цен на недвижимость, прогноз погоды, отчет о футбольных матчах. Заказывать человеку эти тексты гораздо дороже, притом компьютерные тексты на такие темы написаны связным человеческим языком.
Разработками в области поиска неструктурированной информации в России активно занимается «Яндекс», «Лаборатория Касперского» нанимает исследовательские группы, которые изучают машинное обучение. Кто-то на рынке пытается придумать что-то новое в области компьютерной лингвистики?
**Книги по компьютерной лингвистике:**
Daniel Jurafsky, Speech and Language Processing
Кристофер Маннинг, Прабхакар Рагхаван, Хайнрих Шютце, «Введение в информационный поиск»
Яков Тестелец, «Введение в общий синтаксис»
Большинство лингвистических разработок является собственностью больших компаний, практически ничего нельзя найти в открытом доступе. Это тормозит развитие отрасли, у нас нет свободного лингвистического рынка, коробочных решений.
Кроме того, не хватает полноценных информационных ресурсов. Есть такой проект, как Национальный корпус русского языка . Это один из лучших национальных корпусов в мире, который стремительно развивается и открывает невероятные возможности по научным и прикладным исследованиям. Разница примерно как в биологии - до ДНК-исследований и после.
Но многие ресурсы не существуют на русском языке. Так, нет аналога такому замечательному англоязычному ресурсу, как Framenet - это такая концептуальная сеть, где формально представлены все возможные связи какого-то конкретного слова с другими словами. Например, есть слово «летать» - кто может летать, куда, с каким предлогом употребляется это слово, с какими словами оно сочетается и так далее. Этот ресурс помогает связать язык с реальной жизнью, то есть проследить, как ведет себя конкретное слово на уровне морфологии и синтаксиса. Это очень полезно.
В компании Avicomp сейчас разрабатывается плагин для поиска близких по содержанию статей. То есть если вас заинтересовала какая-то статья, вы можете оперативно посмотреть историю сюжета: когда тема возникла, что писалось и когда был пик интереса к этой проблеме. Например, с помощью этого плагина можно будет, оттолкнувшись от статьи, посвященной событиям в Сирии, очень быстро увидеть, как в течение последнего года развивались там события.
Как будет построен процесс обучения в магистратуре?
Обучение в Вышке организовано по отдельным модулям - как в западных университетах. Студенты будут разделены на маленькие команды, мини-стартапы - то есть на выходе мы должны получить несколько готовых проектов. Мы хотим получить реальные продукты, которые потом откроем людям и оставим в открытом доступе.
Кроме непосредственных руководителей проектов студентов, мы хотим найти им кураторов из числа их потенциальных работодателей - из того же «Яндекса», например, которые тоже будут играть в эту игру и давать студентам какие-то советы.
Я надеюсь, что в магистратуру придут люди из самых разных областей: программисты, лингвисты, социологи, маркетологи. У нас будет несколько адаптационных курсов по лингвистике, математике и программированию. Потом у нас будет два серьезных курса по лингвистике, и они будут связаны с самыми актуальными лингвистическими теориями, мы хотим, чтобы наши выпускники были в состоянии читать и понимать современные лингвистические статьи. То же самое и с математикой. У нас будет курс, который будет называться «Математические основания компьютерной лингвистики», где будут излагаться те разделы математики, на которых зиждется современная компьютерная лингвистика.
Для того чтобы поступить в магистратуру, нужно сдать вступительный экзамен по языку и пройти конкурс портфолио.
Кроме основных курсов будут линейки предметов по выбору Мы запланировали несколько циклов - два из них ориентированы на более глубокое изучение отдельных тем, к которым относятся, например, машинный перевод и корпусная лингвистика, и, а один, наоборот, связан со смежными областями: такими как, социальные сети, машинное обучение или Digital Humanities - курс, который как мы надеемся, будем прочитан на английском языке.
Компью́терная лингви́стика (также: математи́ческая или вычисли́тельная лингви́стика , англ. computational linguistics ) - научное направление в области математического и компьютерного моделирования интеллектуальных процессов у человека и животных при создании систем искусственного интеллекта , которое ставит своей целью использование математических моделей для описания естественных языков .
Компьютерная лингвистика частично пересекается с обработкой естественных языков . Однако в последней акцент делается не на абстрактные модели, а на прикладные методы описания и обработки языка для компьютерных систем.
Полем деятельности компьютерных лингвистов является разработка алгоритмов и прикладных программ для обработки языковой информации.
Истоки
Математическая лингвистика является ветвью науки искусственного интеллекта . Её история началась в Соединённых Штатах Америки в 1950-х годах. С изобретением транзистора и появлением нового поколения компьютеров, а также первых языков программирования, начались эксперименты с машинным переводом , особенно русских научных журналов. В 1960-х годах подобные исследования проводились и в СССР (например, статья о переводе с русского на армянский в сб. «Проблемы кибернетики» за 1964 год). Однако качество машинного перевода до сих пор сильно уступает качеству перевода, произведённого человеком.
С 15 по 21 мая 1958 года в I МГПИИЯ состоялась первая Всесоюзная конференция по машинному переводу. Оргкомитет возглавляли В. Ю. Розенцвейг и ответственный секретарь Оргкомитета Г. В. Чернов . Полностью программа конференции опубликована в сборнике «Машинный перевод и прикладная лингвистика», вып. 1, 1959 г. (он же «Бюллетень Объединения по машинному переводу № 8»). Как вспоминает В. Ю. Розенцвейг , опубликованный сборник тезисов конференции попал в США и произвел там большое впечатление.
В апреле 1959 года в Ленинграде состоялось I Всесоюзное совещание по математической лингвистике, созванное Ленинградским университетом и комитетом прикладной лингвистики. Главным организатором Совещания был Н. Д. Андреев . В Совещании приняли участие ряд видных математиков, в частности, С. Л. Соболев , Л. В. Канторович (впоследствии - Нобелевский лауреат) и А. А. Марков (последние двое выступали в прениях). В. Ю. Розенцвейг выступил в день открытия Совещания с программным докладом «Общая лингвистическая теория перевода и математическая лингвистика».
Направления компьютерной лингвистики
- Обработка естественного языка (англ. natural language processing ; синтаксический, морфологический, семантический анализы текста). Сюда включают также:
- Корпусная лингвистика , создание и использование электронных корпусов текстов
- Создание электронных словарей , тезаурусов , онтологий . Например, Lingvo . Словари используют, например, для автоматического перевода, проверки орфографии.
- Автоматический перевод текстов. Среди русских переводчиков популярным является Промт . Среди бесплатных известен переводчик Google Translate
- Автоматическое извлечение фактов из текста (извлечение информации) (англ. fact extraction, text mining )
- Автореферирование (англ. automatic text summarization ). Эта функция включена, например, в Microsoft Word .
- Построение систем управления знаниями . См. Экспертные системы
- Создание вопросно-ответных систем (англ. question answering systems ).
- Оптическое распознавание символов (англ. OCR ). Например, программа FineReader
- Автоматическое распознавание речи (англ. ASR ). Есть платное и бесплатное ПО
- Автоматический синтез речи
Крупные ассоциации и конференции
Учебные программы в России
См. также
Напишите отзыв о статье "Компьютерная лингвистика"
Примечания
Ссылки
- (реферат)
- - база знаний по лингвистическим ресурсам для русского языка
- - открытые исходники некоторых утилит компьютерной лингвистики
- - онлайн доступ к программам компьютерной лингвистики
Отрывок, характеризующий Компьютерная лингвистика
– Возьми, возьми ребенка, – проговорил Пьер, подавая девочку и повелительно и поспешно обращаясь к бабе. – Ты отдай им, отдай! – закричал он почти на бабу, сажая закричавшую девочку на землю, и опять оглянулся на французов и на армянское семейство. Старик уже сидел босой. Маленький француз снял с него последний сапог и похлопывал сапогами один о другой. Старик, всхлипывая, говорил что то, но Пьер только мельком видел это; все внимание его было обращено на француза в капоте, который в это время, медлительно раскачиваясь, подвинулся к молодой женщине и, вынув руки из карманов, взялся за ее шею.Красавица армянка продолжала сидеть в том же неподвижном положении, с опущенными длинными ресницами, и как будто не видала и не чувствовала того, что делал с нею солдат.
Пока Пьер пробежал те несколько шагов, которые отделяли его от французов, длинный мародер в капоте уж рвал с шеи армянки ожерелье, которое было на ней, и молодая женщина, хватаясь руками за шею, кричала пронзительным голосом.
– Laissez cette femme! [Оставьте эту женщину!] – бешеным голосом прохрипел Пьер, схватывая длинного, сутоловатого солдата за плечи и отбрасывая его. Солдат упал, приподнялся и побежал прочь. Но товарищ его, бросив сапоги, вынул тесак и грозно надвинулся на Пьера.
– Voyons, pas de betises! [Ну, ну! Не дури!] – крикнул он.
Пьер был в том восторге бешенства, в котором он ничего не помнил и в котором силы его удесятерялись. Он бросился на босого француза и, прежде чем тот успел вынуть свой тесак, уже сбил его с ног и молотил по нем кулаками. Послышался одобрительный крик окружавшей толпы, в то же время из за угла показался конный разъезд французских уланов. Уланы рысью подъехали к Пьеру и французу и окружили их. Пьер ничего не помнил из того, что было дальше. Он помнил, что он бил кого то, его били и что под конец он почувствовал, что руки его связаны, что толпа французских солдат стоит вокруг него и обыскивает его платье.
– Il a un poignard, lieutenant, [Поручик, у него кинжал,] – были первые слова, которые понял Пьер.
– Ah, une arme! [А, оружие!] – сказал офицер и обратился к босому солдату, который был взят с Пьером.
– C"est bon, vous direz tout cela au conseil de guerre, [Хорошо, хорошо, на суде все расскажешь,] – сказал офицер. И вслед за тем повернулся к Пьеру: – Parlez vous francais vous? [Говоришь ли по французски?]
Пьер оглядывался вокруг себя налившимися кровью глазами и не отвечал. Вероятно, лицо его показалось очень страшно, потому что офицер что то шепотом сказал, и еще четыре улана отделились от команды и стали по обеим сторонам Пьера.
– Parlez vous francais? – повторил ему вопрос офицер, держась вдали от него. – Faites venir l"interprete. [Позовите переводчика.] – Из за рядов выехал маленький человечек в штатском русском платье. Пьер по одеянию и говору его тотчас же узнал в нем француза одного из московских магазинов.
– Il n"a pas l"air d"un homme du peuple, [Он не похож на простолюдина,] – сказал переводчик, оглядев Пьера.
– Oh, oh! ca m"a bien l"air d"un des incendiaires, – смазал офицер. – Demandez lui ce qu"il est? [О, о! он очень похож на поджигателя. Спросите его, кто он?] – прибавил он.
– Ти кто? – спросил переводчик. – Ти должно отвечать начальство, – сказал он.
– Je ne vous dirai pas qui je suis. Je suis votre prisonnier. Emmenez moi, [Я не скажу вам, кто я. Я ваш пленный. Уводите меня,] – вдруг по французски сказал Пьер.
– Ah, Ah! – проговорил офицер, нахмурившись. – Marchons!
Около улан собралась толпа. Ближе всех к Пьеру стояла рябая баба с девочкою; когда объезд тронулся, она подвинулась вперед.
– Куда же это ведут тебя, голубчик ты мой? – сказала она. – Девочку то, девочку то куда я дену, коли она не ихняя! – говорила баба.
– Qu"est ce qu"elle veut cette femme? [Чего ей нужно?] – спросил офицер.
Пьер был как пьяный. Восторженное состояние его еще усилилось при виде девочки, которую он спас.
– Ce qu"elle dit? – проговорил он. – Elle m"apporte ma fille que je viens de sauver des flammes, – проговорил он. – Adieu! [Чего ей нужно? Она несет дочь мою, которую я спас из огня. Прощай!] – и он, сам не зная, как вырвалась у него эта бесцельная ложь, решительным, торжественным шагом пошел между французами.
Разъезд французов был один из тех, которые были посланы по распоряжению Дюронеля по разным улицам Москвы для пресечения мародерства и в особенности для поимки поджигателей, которые, по общему, в тот день проявившемуся, мнению у французов высших чинов, были причиною пожаров. Объехав несколько улиц, разъезд забрал еще человек пять подозрительных русских, одного лавочника, двух семинаристов, мужика и дворового человека и нескольких мародеров. Но из всех подозрительных людей подозрительнее всех казался Пьер. Когда их всех привели на ночлег в большой дом на Зубовском валу, в котором была учреждена гауптвахта, то Пьера под строгим караулом поместили отдельно.
В Петербурге в это время в высших кругах, с большим жаром чем когда нибудь, шла сложная борьба партий Румянцева, французов, Марии Феодоровны, цесаревича и других, заглушаемая, как всегда, трубением придворных трутней. Но спокойная, роскошная, озабоченная только призраками, отражениями жизни, петербургская жизнь шла по старому; и из за хода этой жизни надо было делать большие усилия, чтобы сознавать опасность и то трудное положение, в котором находился русский народ. Те же были выходы, балы, тот же французский театр, те же интересы дворов, те же интересы службы и интриги. Только в самых высших кругах делались усилия для того, чтобы напоминать трудность настоящего положения. Рассказывалось шепотом о том, как противоположно одна другой поступили, в столь трудных обстоятельствах, обе императрицы. Императрица Мария Феодоровна, озабоченная благосостоянием подведомственных ей богоугодных и воспитательных учреждений, сделала распоряжение об отправке всех институтов в Казань, и вещи этих заведений уже были уложены. Императрица же Елизавета Алексеевна на вопрос о том, какие ей угодно сделать распоряжения, с свойственным ей русским патриотизмом изволила ответить, что о государственных учреждениях она не может делать распоряжений, так как это касается государя; о том же, что лично зависит от нее, она изволила сказать, что она последняя выедет из Петербурга.