Из чего состоит боковая поверхность призмы. Все, что нужно знать о призме (2019)

Стереометрия - раздел геометрии, изучающий фигуры, которые не лежат в одной плоскости. Одним из объектов изучения стереометрии являются призмы. В статье дадим определение призме с геометрической точки зрения, а также кратко перечислим свойства, которые для нее характерны.

Геометрическая фигура

Определение призмы в геометрии звучит следующим образом: это пространственная фигура, состоящая из двух одинаковых n-угольников, расположенных в параллельных плоскостях, соединенных друг с другом своими вершинами.

Получить призму не представляет никакого труда. Представим, что есть два одинаковых n-угольника, где n - это число сторон или вершин. Поместим их так, чтобы они были друг другу параллельны. После этого вершины одного многоугольника следует соединить с соответствующими вершинами другого. Образованная фигура будет состоять из двух n-угольных сторон, которые называются основаниями, и n четырехугольных сторон, представляющих собой в общем случае параллелограммы. Совокупность параллелограммов образует боковую поверхность фигуры.

Существует еще один способ геометрического получения рассматриваемой фигуры. Так, если взять n-угольник и совершить его перенос в другую плоскость при помощи параллельных отрезков равной длины, то в новой плоскости мы получим исходный многоугольник. Оба многоугольника и все параллельные отрезки, проведенные из их вершин, образуют призму.

Рисунок выше демонстрирует Так она называется потому, что ее основания представляют собой треугольники.

Элементы, из которых состоит фигура

Выше было дано определение призмы, из которого понятно, что главными элементами фигуры являются ее грани или стороны, ограничивающие все внутренние точки призмы от внешнего пространства. Любая грань рассматриваемой фигуры принадлежит к одному из двух типов:

  • боковая;
  • основания.

Боковых n штук, и они являются параллелограммами или их частными видами (прямоугольниками, квадратами). В общем случае боковые грани отличаются друг от друга. Граней основания всего две, они представляют собой n-угольники и друг другу равны. Таким образом, всякая призма имеет n+2 стороны.

Помимо сторон, фигура характеризуется своими вершинами. Они представляют собой точки, где соприкасаются одновременно три грани. Причем две из трех граней всегда принадлежат боковой поверхности, а одна - основанию. Таким образом, в призме нет специально выделенной одной вершины, как, например, в пирамиде, все они являются равноправными. Число вершин фигуры равно 2*n (по n штук для каждого основания).

Наконец, третьим важным элементом призмы являются ее ребра. Это отрезки определенной длины, которые образуются в результате пересечения сторон фигуры. Как и грани, ребра также имеют два разных типа:

  • либо образованы только боковыми сторонами;
  • либо возникают на стыке параллелограмма и стороны n-угольного основания.

Число ребер, таким образом, равно 3*n, причем 2*n из них относятся ко второму из названных типов.

Виды призм

Выделяют несколько способов классификации призм. Однако все они основаны на двух особенностях фигуры:

  • на типе n-угольного основания;
  • на типе боковой стороны.

Для начала обратимся ко второй особенности и дадим определение и прямой. Если хотя бы одна боковая сторона является параллелограммом общего типа, то фигура называется наклонной, или косоугольной. Если же все параллелограммы представляют собой прямоугольники или квадраты, то призма будет прямой.

Дать определение можно также несколько иначе: прямая фигура - это та призма, у которой боковые ребра и грани перпендикулярны ее основаниям. На рисунке показаны две четырехугольные фигуры. Левая является прямой, правая - наклонной.

Теперь перейдем к классификации согласно типу n-угольника, лежащего в основаниях. Он может иметь одинаковые стороны и углы или разные. В первом случае многоугольник называется правильным. Если рассматриваемая фигура содержит в основании многоугольник с равными сторонами и углами и является прямой, то она называется правильной. Согласно этому определению, правильная призма в основании может иметь равносторонний треугольник, квадрат, правильный пятиугольник или шестиугольник и так далее. Перечисленные правильные фигуры представлены на рисунке.

Линейные параметры призм

Для описания размеров рассматриваемых фигур используют следующие параметры:

  • высота;
  • стороны основания;
  • длины боковых ребер;
  • объемные диагонали;
  • диагонали боковых сторон и оснований.

Для правильных призм все названные величины связаны друг с другом. Например, длины боковых ребер одинаковы и равны высоте. Для конкретной n-угольной правильной фигуры существуют формулы, позволяющие по двум любым линейным параметрам определить все остальные.

Поверхность фигуры

Если обратиться к данному выше определению призмы, то понять, что представляет поверхность фигуры, будет несложно. Поверхность - это площадь всех граней. Для прямой призмы она вычисляется по формуле:

S = 2*S o + P o *h

где S o - площадь основания, P o - периметр n-угольника в основании, h - высота (расстояние между основаниями).

Объем фигуры

Наряду с поверхностью для практики важно знать объем призмы. Определить его можно по следующей формуле:

Это выражение справедливо для абсолютно любого вида призм, включая те, которые являются наклонными и образованы неправильными многоугольниками.

Для правильных является функцией длины стороны основания и высоты фигуры. Для соответствующей n-угольной призмы формула для V имеет конкретный вид.

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела - многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры - прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело . К ним принято относить:

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение - это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить - 2), проходящее через 2 ребра и диагонали основания.

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

V = Sосн·h

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

V = a²·h

Если речь идёт о кубе - правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

Sбок = Pосн·h

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Sбок = 4a·h

Для куба:

Sбок = 4a²

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Sполн = 4a·h + 2a²

Для площади поверхности куба:

Sполн = 6a²

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h);
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
  • площадь основания: Sосн = V / h;
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Sдиаг = ah√2

Для вычисления диагонали призмы используется формула:

dприз = √(2a² + h²)

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

Задание 1.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a . В таком случае для первой коробки объём вещества составит:

V₁ = ha² = 10a²

Для второй коробки длина основания составляет 2a , но неизвестна высота уровня песка:

V₂ = h (2a)² = 4ha²

Поскольку V₁ = V₂ , можно приравнять выражения:

10a² = 4ha²

После сокращения обеих частей уравнения на a² получается:

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

Задание 2.

ABCDA₁B₁C₁D₁ — правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения - длина, ширина и высота - равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216


Задание 3.

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м² .

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба















Многогранники

Основным объектом изучения стереометрии являются пространственные тела. Тело представляет собой часть пространства, ограниченную некоторой поверхностью.

Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности многогранника называется гранью . Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называется ребрами многогранника , а вершины – вершинами многогранника .

Например, куб состоит из шести квадратов, являющихся его гранями. Он содержит 12 ребер (стороны квадратов) и 8 вершин (вершины квадратов).

Простейшими многогранниками являются призмы и пирамиды, изучением которых и займемся далее.

Призма

Определение и свойства призмы

Призмой называется многогранник, состоящий из двух плоских многоугольников, лежащих в параллельных плоскостях совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники называются основаниями призмы , а отрезки, соединяющие соответствующие вершины многоугольников, – боковыми ребрами призмы .

Высотой призмы называется расстояние между плоскостями ее оснований (). Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы (). Призма называется n-угольной , если в ее основании лежит n-угольник.

Любая призма обладает следующими свойствами, следующими из того факта, что основания призмы совмещаются параллельным переносом:

1. Основания призмы равны.

2. Боковые ребра призмы параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности . Боковая поверхность призмы состоит из параллелограммов (это следует из свойств призмы). Площадью боковой поверхности призмы называется сумма площадей боковых граней.

Прямая призма

Призма называется прямой , если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной .

Гранями прямой призмы являются прямоугольники. Высота прямой призмы равна ее боковым граням.

Полной поверхностью призмы называется сумма площади боковой поверхности и площадей оснований.

Правильной призмой называется прямая призма с правильным многоугольником в основании.

Теорема 13.1 . Площадь боковой поверхности прямой призмы равна произведению периметра на высоту призмы (или, что то же самое, на боковое ребро).

Доказательство. Боковые грани прямой призмы есть прямоугольники, основания которых являются сторонами многоугольников в основаниях призмы, а высоты являются боковыми ребрами призмы. Тогда по определению площадь боковой поверхности:

,

где – периметр основания прямой призмы.

Параллелепипед

Если в основаниях призмы лежат параллелограммы, то она называется параллелепипедом . У параллелепипеда все грани – параллелограммы. При этом противолежащие грани параллелепипеда параллельны и равны.

Теорема 13.2 . Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Доказательство. Рассмотрим две произвольные диагонали, например, и . Т.к. гранями параллелепипеда являются параллелограммы, то и , а значит по Т о двух прямых параллельных третьей . Кроме того это означает, что прямые и лежат в одной плоскости (плоскости ). Эта плоскость пересекает параллельные плоскости и по параллельным прямым и . Таким образом, четырехугольник – параллелограмм, а по свойству параллелограмма его диагонали и пересекаются и точкой пересечения делятся пополам, что и требовалось доказать.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом . У прямоугольного параллелепипеда все грани – прямоугольники. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). Таких размеров три (ширина, высота, длина).

Теорема 13.3 . В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений (доказывается с помощью двукратного применения Т Пифагора).

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом .

Задачи

13.1Сколько диагоналей имеет n -угольная призма

13.2В наклонной треугольной призме расстояния между боковыми ребрами равны 37, 13 и 40. Найти расстояние между большей боковой гранью и противолежащим боковым ребром.

13.3Через сторону нижнего основания правильной треугольной призмы проведена плоскость, пересекающая боковые грани по отрезкам, угол между которыми . Найти угол наклона этой плоскости к основанию призмы.

Определение 1. Призматическая поверхность
Теорема 1. О параллельных сечениях призматической поверхности
Определение 2. Перпендикулярное сечение призматической поверхности
Определение 3. Призма
Определение 4. Высота призмы
Определение 5. Прямая призма
Теорема 2. Площадь боковой поверхности призмы

Параллелепипед :
Определение 6. Параллелепипед
Теорема 3. О пересечении диагоналях параллелепипеда
Определение 7. Прямой параллелепипед
Определение 8. Прямоугольный параллелепипед
Определение 9. Измерения параллелепипеда
Определение 10. Куб
Определение 11. Ромбоэдр
Теорема 4. О диагоналях прямоугольного параллелепипеда
Теорема 5. Объем призмы
Теорема 6. Объем прямой призмы
Теорема 7. Объем прямоугольного параллелепипеда

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а ребра, не лежащие в этих гранях, параллельны между собой.
Грани, отличные от оснований, называются боковыми .
Стороны боковых граней и оснований называются ребрами призмы , концы ребер называются вершинами призмы. Боковыми ребрами называются ребра, не принадлежащие основаниям. Объединение боковых граней называется боковой поверхностью призмы , а объединение всех граней называется полной поверхностью призмы. Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего основания или длина этого перпендикуляра. Прямой призмой называется призма, у которой боковые ребра перпендикулярны плоскостям оснований. Правильной называется прямая призма (Рис.3), в основании которой лежит правильный многоугольник.

Обозначения:
l - боковое ребро;
P - периметр основания;
S o - площадь основания;
H - высота;
P ^ - периметр перпендикулярного сечения;
S б - площадь боковой поверхности;
V - объем;
S п - площадь полной поверхности призмы.

V = SH
S п = S б + 2S о
S б = P ^ l

Определение 1 . Призматической поверхностью называется фигура, образованная частями нескольких плоскостей, параллельных одной прямой ограниченными теми прямыми, по которым эти плоскости последовательно пересекаются одна с другой*; эти прямые параллельны между собой и называются рёбрами призматической поверхности .
*При этом предполагается, что каждые две последовательные плоскости пересекаются и что последняя плоскость пересекает первую

Теорема 1 . Сечения призматической поверхности плоскостями, параллельными между собой (но не параллельными её рёбрам), представляют собой равные многоугольники.
Пусть ABCDE и A"B"C"D"E" - сечения призматической поверхности двумя параллельными плоскостями. Чтобы убедиться, что эти два многоугольника равны, достаточно показать, что треугольники ABC и А"В"С" равны и имеют одинаковое направление вращения и что то же имеет место и для треугольников ABD и A"B"D", ABE и А"В"Е". Но соответственные стороны этих треугольников параллельны (например АС параллельно А"С") как линии пересечения некоторой плоскости с двумя параллельными плоскостями; отсюда следует, что эти стороны равны (например АС равно А"С") как противоположные стороны параллелограмма и что углы, образованные этими сторонами, равны и имеют одинаковое направление.

Определение 2 . Перпендикулярным сечением призматической поверхности называется сечение этой поверхности плоскостью, перпендикулярной к её рёбрам. На основании предыдущей теоремы все перпендикулярные сечения одной и той же призматической поверхности будут равными многоугольниками.

Определение 3 . Призмой называется многогранник, ограниченный призматической поверхностью и двумя плоскостями, параллельными между собой (но непараллельными рёбрам призматической поверхности)
Грани, лежащие в этих последних плоскостях, называются основаниями призмы ; грани, принадлежащие призматической поверхности, - боковыми гранями ; рёбра призматической поверхности - боковыми рёбрами призмы . В силу предыдущей теоремы, основания призмы - равные многоугольники . Все боковые грани призмы - параллелограммы ; все боковые рёбра равны между собой.
Очевидно, что если дано основание призмы ABCDE и одно из рёбер АА" по величине и по направлению, то можно построить призму, проводя рёбра ВВ", СС", .., равные и параллельные ребру АА".

Определение 4 . Высотой призмы называется расстояние между плоскостями её оснований (НH").

Определение 5 . Призма называется прямой, если её основаниями служат перпендикулярные сечения призматической поверхности. В этом случае высотой призмы служит, конечно, её боковое ребро ; боковые грани будут прямоугольниками .
Призмы можно классифицировать по числу боковых граней, равному числу сторон многоугольника, служащего её основанием. Таким образом, призмы могут быть треугольные, четырёхугольные, пятиугольные и т.д.

Теорема 2 . Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Пусть ABCDEA"B"C"D"E" - данная призма и abcde - её перпендикулярное сечение, так что отрезки ab, bc, .. перпендикулярны к её боковым ребрам. Грань АВА"В" является параллелограммом; его площадь равна произведению основания АА" на высоту, которая совпадает с аb; площадь грани ВСВ"С" равна произведению основания ВВ" на высоту bc и т. д. Следовательно, боковая поверхность (т. е. сумма площадей боковых граней) равна произведению бокового ребра, иначе говоря, общей длины отрезков АА", ВВ", .., на сумму ab+bc+cd+de+еа.

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .