Как посчитать пропорцию в процентах пример онлайн. Составление системы уравнений
Составить пропорцию. В этой статье хочу поговорить с вами о пропорции. Понимать, что такое пропорция, уметь составлять её – это очень важно, она действительно спасает. Это вроде бы маленькая и незначительная «буковка» в большом алфавите математики, но без неё математика обречена быть хромой и неполноценной. Для начала напомню, что такое пропорция. Это равенство вида:
что тоже самое (это разная форма записи).
Пример:
Говорят – один относится к двум также, как четыре относится к восьми. То есть это равенство двух отношений (в данном примере отношения числовые).
Основное правило пропорции:
a:b=c:d
произведение крайних членов равно произведению средних
то есть
a∙d=b∙c
*Если какая-либо величина в пропорции неизвестна, ее всегда можно найти.
Если рассматривать форму записи вида:
то можно использовать следующее правило, его называют «правило креста»: записывается равенство произведений элементов (чисел или выражений) стоящих по диагонали
a∙d=b∙c
Как видите результат тот же.
Если три элемента пропорции известны, то мы всегда можем найти четвёртый.
Именно в этом суть пользы и необходимость пропорции при решении задач.
Давайте рассмотрим все варианты, где неизвестная величина х находится в «любом месте» пропорции, где a, b, c – числа:
Величина стоящая по диагонали от х записывается в знаменатель дроби, а известные величины стоящие по диагонали записываются в числитель, как произведение. Его запоминать не обязательно, вы и так всё верно вычислите, если усвоили основное правило пропорции.
Теперь главный вопрос, связанный с названием статьи. Когда пропорция спасает и где используется? Например:
1. Прежде всего это задачи на проценты. Мы рассматривали их в статьях " " и " ".
2. Многие формулы заданы в виде пропорций:
> теорема синусов
> отношение элементов в треугольнике
> теорема тангенсов
> теорема Фалеса и другие.
3. В задачах по геометрии в условии часто задаётся отношение сторон (других элементов) или площадей, например 1:2, 2:3 и прочие.
4. Перевод единиц измерения, причём пропорция используется для перевода единиц как в одной мере, так и для перевода из одной меры в другую:
— часы в минуты (и наоборот).
— единицы объёма, площади.
— длины, например мили в километры (и наоборот).
— градусы в радианы (и наоборот).
здесь без составления пропорции не обойтись.
Ключевой момент в том, что нужно правильно установить соответствие, рассмотрим простые примеры:
Необходимо определить число, которое составляет 35% от 700.
В задачах на проценты за 100% принимается та величина, с которой сравниваем. Неизвестное число обозначим как х. Установим соответствие:
Можно сказать, что семисот тридцати пяти соответствует 100 процентов.
Иксу соответствует 35 процентов. Значит,
700 – 100%
х – 35 %
Решаем
Ответ: 245
Переведём 50 минут в часы.
Мы знаем, что одному часу соответствует 60 минут. Обозначим соответсвие - x часов это 50 минут. Значит
1 – 60
х – 50
Решаем:
То есть 50 минут это пять шестых часа.
Ответ: 5/6
Николай Петрович проехал 3 километра. Сколько это будет в милях (учесть, что 1 миля это 1,6 км)?
Известно, что 1 миля это 1,6 километра. Число миль, которые проехал Николай Петрович примем за х. Можем установить соответствие:
Одной миле соответствует 1,6 километра.
Икс миль это три километра.
1 – 1,6
х – 3
Ответ: 1,875 миль
Вы знаете, что для перевода градусов в радианы (и обратно) существуют формулы. Я их не записываю, так как запоминать их считаю излишним, и так вам в памяти приходится держать много информации. Вы всегда сможете перевести градусы в радианы (и обратно), если воспользуетесь пропорцией.
Переведём 65 градусов в радианную меру.
Главное это запомнить, что 180 градусов это Пи радиан.
Обозначим искомую величину как х. Устанавливаем соответствие.
Ста восьмидесяти градусам соответствует Пи радиан.
Шестидесяти пяти градусам соответствует х радиан. изучить статью по этой теме на блоге. Материал в ней изложен несколько по иному, но принцип тот же. На этом закончу. Обязательно будет ещё что-нибудь интересненькое, не пропустите!
Если вспомнить само определение математики, то в нём есть такие слова: математика изучает количественные ОТНОШЕНИЯ (ОТНОШЕНИЯ - здесь ключевое слово). Как видите в самом определении математики заложена пропорция. Вообщем, математика без пропорции это не математика!!!
Всего доброго!
С уважением, Александр
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
Для решения большинства задач в математике средней школы необходимо знание по составлению пропорций. Это несложное умение поможет не только выполнять сложные упражнения из учебника, но и углубиться в саму суть математической науки. Как составить пропорцию? Сейчас разберем.
Самым простым примером является задача, где известны три параметра, а четвертый необходимо найти. Пропорции бывают, конечно, разные, но часто требуется найти по процентам какое-нибудь число. Например, всего у мальчика было десять яблок. Четвертую часть он подарил своей маме. Сколько осталось яблок у мальчика? Это самый простой пример, который позволит составить пропорцию. Главное это сделать. Изначально было десять яблок. Пусть это 100%. Это мы обозначили все его яблоки. Он отдал одну четвертую часть. 1/4=25/100. Значит, у него осталось: 100% (было изначально) - 25% (он отдал) = 75%. Эта цифра показывает процентное отношение количества оставшихся фруктов к количеству имевшихся сначала. Теперь у нас есть три числа, по которым уже можно решить пропорцию. 10 яблок - 100%, х яблок - 75%, где х - искомое количество фруктов. Как составить пропорцию? Необходимо понимать, что это такое. Математически это выглядит так. Знак равно поставлен для вашего понимания.
10 яблок = 100%;
x яблок = 75%.
Оказывается, что 10/x = 100%/75. Это и есть основное свойство пропорций. Ведь чем больше x, тем больше процентов составляет это число от исходного. Решаем эту пропорцию и получаем, что x=7,5 яблок. Почему мальчик решил отдать нецелое количество, нам неизвестно. Теперь вы знаете, как составить пропорцию. Главное, найти два соотношения, в одном из которых есть искомое неизвестное.
Решение пропорции часто сводится к простому умножению, а потом к делению. В школах детям не объясняют, почему это именно так. Хотя важно понимать, что пропорциональные отношения есть математическая классика, сама суть науки. Для решения пропорций необходимо уметь обращаться с дробями. Например, часто приходится переводить проценты в обыкновенные дроби. То есть запись 95% не подойдет. А если сразу написать 95/100, то можно провести солидные сокращения, не начиная основного подсчета. Сразу стоит сказать, что если ваша пропорция получилась с двумя неизвестными, то ее не решить. Никакой профессор вам здесь не поможет. А ваша задача, скорее всего, имеет более сложный алгоритм правильных действий.
Рассмотрим еще один пример, где нет процентов. Автомобилист купил 5 литров бензина за 150 рублей. Он подумал о том, сколько он бы заплатил за 30 литров топлива. Для решения этой задачи обозначим за x искомое количество денег. Можете самостоятельно решить эту задачу и потом проверить ответ. Если вы еще не поняли, как составить пропорцию, то смотрите. 5 литров бензина - это 150 рублей. Как и в первом примере, запишем 5л - 150р. Теперь найдем третье число. Конечно, это 30 литров. Согласитесь, что пара 30 л - х рублей уместна в данной ситуации. Перейдем на математический язык.
5 литров - 150 рублей;
30 литров - х рублей;
Решаем эту пропорцию:
x = 900 рублей.
Вот и решили. В своей задаче не забудьте проверить на адекватность ответ. Бывает, что при неправильном решении автомобили достигают нереальных скоростей в 5000 километров в час и так далее. Теперь вы знаете, как составить пропорцию. Также вы сможете ее решить. Как видите, в этом нет ничего сложного.
Но не все так сложо и непонятно, как кажется на первый взгляд. Для чего вообще все это нужно? Вот самый распространенный пример.
Допустим, у нас на сайте есть загрузка изображений, и мы хотим, чтобы после загрузки у нас создавалась миниатюрная копия, превьюшка какртинки. Часто это надо для анонса новостей, например. А скрипт требует, чтобы вы задали хотя бы примерные размеры миниатюрного изображения - его ширину и высоту.
Допустим также, что вы уже наметили его ширину, но как быть с высотой? Как высчитать ее та, чтобы картинка казалась более-менее пропорциональной по отношению к исходной.
Формула расчета
Все делается в два этапа:
- 1 - Делим исходную ширину на требуемую ширину;
- 2 - Получаем требуемую высоту, поделив исходную высоту на результат деления двух ширин (п.1).
Пример. Возьмем уже всем известные размеры изображений: 1024x768 и 800x600 . Представим, что мы не знаем высоту второй картинки. По формуле получается следующее: 768/(1024/800) = 600 . Это и есть требуемая нам высота.
Если же мы знаем высоту, а нам нужно получить ширину, то необходимо проделать все, как в первой формуле, только наоборот.
Чтобы получить требуемую ширину, нужно:
- 1 - Делим исходную высоту на требуемую высоту;
- 2 - Получаем требуемую ширину, поделив исходную ширину на результат деления двух высот (п.1).
То есть, 1024/(768/600) = 800 .
Задача 1 . Толщина 300 листов бумаги для принтера составляет 3, 3 см. Какую толщину будет иметь пачка из 500 листов такой же бумаги?
Решение. Пусть х см — толщина пачки бумаги из 500 листов. Двумя способами найдем толщину одного листа бумаги:
3,3: 300 или х: 500.
Так как листы бумаги одинаковые, то эти два отношения равны между собой. Получаем пропорцию (напоминание: пропорция — это равенство двух отношений ):
х=(3,3· 500): 300;
х=5,5. Ответ: пачка 500 листов бумаги имеет толщину 5,5 см .
Это классическое рассуждение и оформление решения задачи. Такие задачи часто включают в тестовые задания для выпускников, которые обычно записывают решение в таком виде:
или решают устно, рассуждая так: если 300 листов имеют толщину 3,3 см, то 100 листов имеют толщину в 3 раза меньшую. Делим 3,3 на 3, получаем 1,1 см. Это толщина 100 листовой пачки бумаги. Следовательно, 500 листов будут иметь толщину в 5 раз большую, поэтому, 1,1 см умножаем на 5 и получаем ответ: 5,5 см.
Разумеется, это оправдано, так как время тестирования выпускников и абитуриентов ограничено. Однако, на этом занятии мы будем рассуждать и записывать решение так, как положено это делать в 6 классе.
Задача 2. Сколько воды содержится в 5 кг арбуза, если известно, что арбуз состоит на 98% из воды?
Решение.
Вся масса арбуза (5 кг) составляет 100%. Вода составит х кг или 98%. Двумя способами можно найти, сколько кг приходится на 1% массы.
5: 100 или х: 98. Получаем пропорцию:
5: 100 = х: 98.
х=(5· 98): 100;
х=4,9 Ответ: в 5кг арбуза содержится 4,9 кг воды .
Масса 21 литра нефти составляет 16,8 кг. Какова масса 35 литров нефти?
Решение.
Пусть масса 35 литров нефти составляет х кг. Тогда двумя способами можно найти массу 1 литра нефти:
16,8: 21 или х: 35. Получаем пропорцию:
16,8: 21=х: 35.
Находим средний член пропорции. Для этого перемножаем крайние члены пропорции (16,8 и 35 ) и делим на известный средний член (21 ). Сократим дробь на 7 .
Умножаем числитель и знаменатель дроби на 10 , чтобы в числителе и знаменателе были только натуральные числа. Сокращаем дробь на 5 (5 и 10) и на 3 (168 и 3).
Ответ: 35 литров нефти имеют массу 28 кг.
После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?
Решение.
Пусть площадь всего поля х га, что составляет 100%. Осталось вспахать 9 га, что составляет 100% — 82% = 18% всего поля. Двумя способами выразим 1% площади поля. Это:
х: 100 или 9: 18. Составляем пропорцию:
х: 100 = 9: 18.
Находим неизвестный крайний член пропорции. Для этого перемножаем средние члены пропорции (100 и 9 ) и делим на известный крайний член (18 ). Сокращаем дробь.
Ответ : площадь всего поля 50 га.
Страница 1 из 1 1
Вычисление процентов - несложная математическая операция, которая довольно часто встречается в повседневной жизни. Например, нужно посчитать, сколько человек экономит, используя дисконтную карту магазина или покупая товар на распродаже со скидкой, под какой процент берет кредит. Проценты можно посчитать при помощи калькулятора или пропорции, пригодится формула вычисления процентов и знание элементарных известных соотношений.
Что такое процент от числа
Вычисление процентов в школьной программе изучается классе в 5-м, если не раньше. Согласно определению, процент - это одна сотая часть числа. Термин появился в Древнем Риме и буквально переводится как «со ста». Первоначально идея вычислять проценты зародилась еще в Вавилоне. Параллельно в Древней Индии научились считать проценты при помощи пропорции.
Для того чтобы найти процент от числа, необходимо данное число поделить на 100. Очевидно, что 1 % от 100 равняется единице.
Вычисление процентов по формулам
Формула, позволяющая найти процент от числа, элементарна. Необходимо число поделить на 100, после чего умножить на нужный процент.
Если принять за Х исходное число, а за Y - искомый процент, то формула записывается в виде X/100*Y=...
Расчеты при помощи пропорции
Вычисление процентов можно производить, имея понимание метода пропорции. Пусть А - основное число, принятое за 100 %, В - число, соотношение которого с А в процентном соотношении необходимо высчитать, а Х - число искомых процентов. Тогда:
А - 100 %,
В - Х %.
Умножение крест-накрест даст равенство: А*Х=В*100. Следовательно, Х=В*100/А.
Например, необходимо узнать, сколько процентов от 300 составляет число 75. Получается: 75*100/300=25 %.
Альтернативный метод вычислений
Представим один процент не десятичной, а простой дробью - 1/100. Аналогично можно записать любое количество процентов. Так, 10 % - это 0,1 или 1/10, 25 % - 0,25 или 25/100=1/4 и так далее. Следовательно, найти 10 % от числа довольно просто - нужно разделить исходное число на 10. Таким способом удобно вычислять 20, 25 и 50 процентов:
- 20 % - это 1/5, значит, нужно делить на 5 исходное число.
- 25 % - 1/4, нужно делить на 4.
- 50 % - это 1/2, просто делить на два.
Но не всякий процент удобно рассчитать таким методом. К примеру, 33 % - это 33/100, что при записи десятичной дробью дает 0,3333 с бесконечным количеством троек после запятой.
Если возникают сомнения в правильности проводимых расчетов, всегда можно проверить себя на калькуляторе, который сейчас есть в любом мобильном устройстве и на любом компьютере.