Найти n арифметической прогрессии формула. Формула n-го члена арифметической прогрессии

Начальный уровень

Арифметическая прогрессия. Подробная теория с примерами (2019)

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например:
Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность
Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.
Число с номером называется -ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

В нашем случае:

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна.
Например:

и т.д.
Такая числовая последовательность называется арифметической прогрессией.
Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность. Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

a)
b)
c)
d)

Разобрался? Сравним наши ответы:
Является арифметической прогрессией - b, c.
Не является арифметической прогрессией - a, d.

Вернемся к заданной прогрессии () и попробуем найти значение ее -го члена. Существует два способа его нахождения.

1. Способ

Мы можем прибавлять к предыдущему значению числа прогрессии, пока не дойдем до -го члена прогрессии. Хорошо, что суммировать нам осталось немного - всего три значения:

Итак, -ой член описанной арифметической прогрессии равен.

2. Способ

А что если нам нужно было бы найти значение -го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
Разумеется, математики придумали способ, при котором не нужно прибавлять разность арифметической прогрессии к предыдущему значению. Присмотрись внимательно к нарисованному рисунку… Наверняка ты уже заметил некую закономерность, а именно:

Например, посмотрим, из чего складывается значение -го члена данной арифметической прогрессии:


Иными словами:

Попробуй самостоятельно найти таким способом значение члена данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли к предыдущему значению членов арифметической прогрессии.
Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

Уравнение арифметической прогрессии.

Арифметические прогрессии бывают возрастающие, а бывают убывающие.

Возрастающие - прогрессии, в которых каждое последующее значение членов больше предыдущего.
Например:

Убывающие - прогрессии, в которых каждое последующее значение членов меньше предыдущего.
Например:

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
Проверим это на практике.
Нам дана арифметическая прогрессия, состоящая из следующих чисел: Проверим, какое получится -ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:


Так как, то:

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
Попробуй самостоятельно найти -ой и -ый члены этой арифметической прогрессии.

Сравним полученные результаты:

Свойство арифметической прогрессии

Усложним задачу - выведем свойство арифметической прогрессии.
Допустим, нам дано такое условие:
- арифметическая прогрессия, найти значение.
Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

Пусть, а, тогда:

Абсолютно верно. Получается, мы сначала находим, потом прибавляем его к первому числу и получаем искомое. Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа? Согласись, есть вероятность ошибиться в вычислениях.
А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы? Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как, формула его нахождения нам известна - это та самая формула, выведенная нами в начале:
, тогда:

  • предыдущий член прогрессии это:
  • последующий член прогрессии это:

Просуммируем предыдущий и последующий члены прогрессии:

Получается, что сумма предыдущего и последующего членов прогрессии - это удвоенное значение члена прогрессии, находящегося между ними. Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на.

Все верно, мы получили это же число. Закрепим материал. Посчитай значение для прогрессии самостоятельно, ведь это совсем несложно.

Молодец! Ты знаешь о прогрессии почти все! Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» - Карл Гаусс...

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от до (по другим источникам до) включительно». Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
Допустим, у нас есть арифметическая прогрессия, состоящая из -ти членов: Нам необходимо найти сумму данных членов арифметической прогрессии. Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.


Попробовал? Что ты заметил? Правильно! Их суммы равны


А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии? Конечно, ровно половина всех чисел, то есть.
Исходя из того, что сумма двух членов арифметической прогрессии равна, а подобных равных пар, мы получаем, что общая сумма равна:
.
Таким образом, формула для суммы первых членов любой арифметической прогрессии будет такой:

В некоторых задачах нам неизвестен -й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу -го члена.
Что у тебя получилось?

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма чисел, начиная от -го, и сумма чисел начиная от -го.

Сколько у тебя получилось?
У Гаусса получилось, что сумма членов равна, а сумма членов. Так ли ты решал?

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
Например, представь Древний Египет и самую масштабную стройку того времени - строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.


Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется блочных кирпичей. Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом: .
Разность арифметической прогрессии.
Количество членов арифметической прогрессии.
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

Способ 2.

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде. Сошлось? Молодец, ты освоил сумму -ных членов арифметической прогрессии.
Конечно, из блоков в основании пирамиду не построишь, а вот из? Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
Справился?
Верный ответ - блоков:

Тренировка

Задачи:

  1. Маша приходит в форму к лету. Ежедневно она увеличивает количество приседаний на. Сколько раз будет приседать Маша через недели, если на первой тренировке она сделала приседаний.
  2. Какова сумма всех нечетных чисел, содержащихся в.
  3. Лесорубы при хранении бревен укладывают их таким образом, что каждый верхний слой содержит на одно бревно меньше, чем предыдущий. Сколько бревен находится в одной кладке, если основанием кладки служат бревен.

Ответы:

  1. Определим параметры арифметической прогрессии. В данном случае
    (недели = дней).

    Ответ: Через две недели Маша должна приседать раз в день.

  2. Первое нечетное число, последнее число.
    Разность арифметической прогрессии.
    Количество нечетных чисел в - половина, однако, проверим этот факт, используя формулу нахождения -ного члена арифметической прогрессии:

    В числах действительно содержится нечетных чисел.
    Имеющиеся данные подставим в формулу:

    Ответ: Сумма всех нечетных чисел, содержащихся в, равна.

  3. Вспомним задачу про пирамиды. Для нашего случая, a , так как каждый верхний слой уменьшается на одно бревно, то всего в кучке слоев, то есть.
    Подставим данные в формулу:

    Ответ: В кладке находится бревен.

Подведем итоги

  1. - числовая последовательность, в которой разница между соседними числами одинакова и равна. Она бывает возрастающей и убывающей.
  2. Формула нахождения -го члена арифметической прогрессии записывается формулой - , где - количество чисел в прогрессии.
  3. Свойство членов арифметической прогрессии - - где - количество чисел в прогрессии.
  4. Сумму членов арифметической прогрессии можно найти двумя способами:

    , где - количество значений.

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. СРЕДНИЙ УРОВЕНЬ

Числовая последовательность

Давай сядем и начнем писать какие-нибудь числа. Например:

Писать можно любые числа, и их может быть сколько угодно. Но всегда можно сказать, какое из них первое, какое - второе и так далее, то есть, можем их пронумеровать. Это и есть пример числовой последовательности.

Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

Другими словами, каждому числу можно поставить в соответствие некое натуральное число, причем единственное. И этот номер мы не присвоим больше никакому другому числу из данного множества.

Число с номером называется -ым членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

Очень удобно, если -ый член последовательности можно задать какой-нибудь формулой. Например, формула

задает последовательность:

А формула - такую последовательность:

Например, арифметической прогрессией является последовательность (первый член здесь равен, а разность). Или (, разность).

Формула n-го члена

Рекуррентной мы называем такую формулу, в которой чтобы узнать -ый член, нужно знать предыдущий или несколько предыдущих:

Чтобы найти по такой формуле, например, -ый член прогрессии, нам придется вычислить предыдущие девять. Например, пусть. Тогда:

Ну что, ясно теперь какая формула?

В каждой строке мы к прибавляем, умноженное на какое-то число. На какое? Очень просто: это номер текущего члена минус:

Теперь намного удобнее, правда? Проверяем:

Реши сам:

В арифметической прогрессии найти формулу n-го члена и найти сотый член.

Решение:

Первый член равен. А чему равна разность? А вот чему:

(она ведь потому и называется разностью, что равна разности последовательных членов прогрессии).

Итак, формула:

Тогда сотый член равен:

Чему равна сумма всех натуральных чисел от до?

По легенде, великий математик Карл Гаусс, будучи 9-летним мальчиком, посчитал эту сумму за несколько минут. Он заметил, что сумма первого и последнего числа равна, сумма второго и предпоследнего - тоже, сумма третьего и 3-го с конца - тоже, и так далее. Сколько всего наберется таких пар? Правильно, ровно половина количества всех чисел, то есть. Итак,

Общая формула для суммы первых членов любой арифметической прогрессии будет такой:

Пример:
Найдите сумму всех двузначных чисел, кратных.

Решение:

Первое такое число - это. Каждое следующее получается добавлением к предыдущему числа. Таким образом, интересующие нас числа образуют арифметическую прогрессию с первым членом и разностью.

Формула -го члена для этой прогрессии:

Сколько членов в прогрессии, если все они должны быть двузначными?

Очень легко: .

Последний член прогрессии будет равен. Тогда сумма:

Ответ: .

Теперь реши сам:

  1. Ежедневно спортсмен пробегает на м больше, чем в предыдущий день. Сколько всего километров он пробежит за недели, если в первый день он пробежал км м?
  2. Велосипедист проезжает каждый день на км больше, чем в предыдущий. В первый день он проехал км. Сколько дней ему надо ехать, чтобы преодолеть км? Сколько километров он проедет за последний день пути?
  3. Цена холодильника в магазине ежегодно уменьшается на одну и ту же сумму. Определите, на сколько каждый год уменьшалась цена холодильника, если, выставленный на продажу за рублей, через шесть лет был продан за рублей.

Ответы:

  1. Здесь самое главное - распознать арифметическую прогрессию, и определить ее параметры. В данном случае, (недели = дней). Определить нужно сумму первых членов этой прогрессии:
    .
    Ответ:
  2. Здесь дано: , надо найти.
    Очевидно, нужно использовать ту же формулу суммы, что и в предыдущей задаче:
    .
    Подставляем значения:

    Корень, очевидно, не подходит, значит, ответ.
    Посчитаем путь, пройденный за последний день с помощью формулы -го члена:
    (км).
    Ответ:

  3. Дано: . Найти: .
    Проще не бывает:
    (руб).
    Ответ:

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

Это числовая последовательность, в которой разница между соседними числами одинакова и равна.

Арифметическая прогрессия бывает возрастающей () и убывающей ().

Например:

Формула нахождения n-ого члена арифметической прогрессии

записывается формулой, где - количество чисел в прогрессии.

Свойство членов арифметической прогрессии

Оно позволяет легко найти член прогрессии, если известны его соседние члены - где - количество чисел в прогрессии.

Сумма членов арифметической прогрессии

Существует два способа нахождения суммы:

Где - количество значений.

Где - количество значений.

Калькулятор онлайн.
Решение арифметической прогрессии.
Дано: a n , d, n
Найти: a 1

Эта математическая программа находит \(a_1\) арифметической прогрессии, исходя из заданных пользователем чисел \(a_n, d \) и \(n \).
Числа \(a_n\) и \(d \) можно задать не только целые, но и дробные. Причём, дробное число можно ввести в виде десятичной дроби (\(2,5 \)) и в виде обыкновенной дроби (\(-5\frac{2}{7} \)).

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа \(a_n\) и \(d \) можно задать не только целые, но и дробные.
Число \(n \) может быть только целым положительным.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод:
Результат: \(-\frac{2}{3} \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод:
Результат: \(-1\frac{2}{3} \)

Введите числа a n , d, n


Найти a 1

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Числовая последовательность

В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например, дома на каждой улице нумеруются. В библиотеке нумеруются читательские абонементы и затем располагаются в порядке присвоенных номеров в специальных картотеках.

В сберегательном банке по номеру лицевого счёта вкладчика можно легко найти этот счёт и посмотреть, какой вклад на нём лежит. Пусть на счёте № 1 лежит вклад а1 рублей, на счёте № 2 лежит вклад а2 рублей и т. д. Получается числовая последовательность
a 1 , a 2 , a 3 , ..., a N
где N - число всех счетов. Здесь каждому натуральному числу n от 1 до N поставлено в соответствие число a n .

В математике также изучаются бесконечные числовые последовательности:
a 1 , a 2 , a 3 , ..., a n , ... .
Число a 1 называют первым членом последовательности , число a 2 - вторым членом последовательности , число a 3 - третьим членом последовательности и т. д.
Число a n называют n-м (энным) членом последовательности , а натуральное число n - его номером .

Например, в последовательности квадратов натуральных чисел 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 , ... а 1 = 1 - первый член последовательности; а n = n 2 является n-м членом последовательности; a n+1 = (n + 1) 2 является (n + 1)-м (эн плюс первым) членом последовательности. Часто последовательность можно задать формулой её n-го члена. Например, формулой \(a_n=\frac{1}{n}, \; n \in \mathbb{N} \) задана последовательность \(1, \; \frac{1}{2} , \; \frac{1}{3} , \; \frac{1}{4} , \dots,\frac{1}{n} , \dots \)

Арифметическая прогрессия

Продолжительность года приблизительно равна 365 суткам. Более точное значение равно \(365\frac{1}{4} \) суток, поэтому каждые четыре года накапливается погрешность, равная одним суткам.

Для учёта этой погрешности к каждому четвёртому году добавляются сутки, и удлинённый год называют високосным.

Например, в третьем тысячелетии високосными годами являются годы 2004, 2008, 2012, 2016, ... .

В этой последовательности каждый её член, начиная со второго, равен предыдущему, сложенному с одним и тем же числом 4. Такие последовательности называют арифметическими прогрессиями .

Определение.
Числовая последовательность a 1 , a 2 , a 3 , ..., a n , ... называется арифметической прогрессией , если для всех натуральных n выполняется равенство
\(a_{n+1} = a_n+d, \)
где d - некоторое число.

Из этой формулы следует, что a n+1 - a n = d. Число d называют разностью арифметической прогрессии .

По определению арифметической прогрессии имеем:
\(a_{n+1}=a_n+d, \quad a_{n-1}=a_n-d, \)
откуда
\(a_n= \frac{a_{n-1} +a_{n+1}}{2} \), где \(n>1 \)

Таким образом, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Этим объясняется название «арифметическая» прогрессия.

Отметим, что если a 1 и d заданы, то остальные члены арифметической прогрессии можно вычислить по рекуррентной формуле a n+1 = a n + d. Таким способом нетрудно вычислить несколько первых членов прогрессии, однако, например, для a 100 уже потребуется много вычислений. Обычно для этого используется формула n-го члена. По определению арифметической прогрессии
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d \)
и т.д.
Вообще,
\(a_n=a_1+(n-1)d, \)
так как n-й член арифметической прогрессии получается из первого члена прибавлением (n-1) раз числа d.
Эту формулу называют формулой n-го члена арифметической прогрессии .

Сумма n первых членов арифметической прогрессии

Найдём сумму всех натуральных чисел от 1 до 100.
Запишем эту сумму двумя способами:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
Сложим почленно эти равенства:
2S = 101 + 101 + 101 + ... + 101 + 101.
В этой сумме 100 слагаемых
Следовательно, 2S = 101 * 100, откуда S = 101 * 50 = 5050.

Рассмотрим теперь произвольную арифметическую прогрессию
a 1 , a 2 , a 3 , ..., a n , ...
Пусть S n - сумма n первых членов этой прогрессии:
S n = a 1 , a 2 , a 3 , ..., a n
Тогда сумма n первых членов арифметической прогрессии равна
\(S_n = n \cdot \frac{a_1+a_n}{2} \)

Так как \(a_n=a_1+(n-1)d \), то заменив в этой формуле a n получим еще одну формулу для нахождения суммы n первых членов арифметической прогрессии :
\(S_n = n \cdot \frac{2a_1+(n-1)d}{2} \)

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Понятие числовой последовательности подразумевает соответствие каждому натуральному числу некоторого действительного значения. Такой ряд чисел может быть как произвольным, так и обладать определенными свойствами – прогрессия. В последнем случае каждый последующий элемент (член) последовательности можно вычислить с помощью предыдущего.

Арифметическая прогрессия – последовательность числовых значений, в которой ее соседние члены разнятся между собой на одинаковое число (подобным свойством обладают все элементы ряда, начиная со 2-ого). Данное число – разница между предыдущим и последующим членом – постоянно и называется разностью прогрессии.

Разность прогрессии: определение

Рассмотрим последовательность, состоящую из j значений A = a(1), a(2), a(3), a(4) … a(j), j принадлежит множеству натуральных чисел N. Арифметическая прогрессия, согласно своего определения, – последовательность, в которой a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. Величина d – искомая разность данной прогрессии.

d = a(j) – a(j-1).

Выделяют:

  • Возрастающую прогрессию, в таком случае d > 0. Пример: 4, 8, 12, 16, 20, …
  • Убывающую прогрессию, тогда d < 0. Пример: 18, 13, 8, 3, -2, …

Разность прогрессии и ее произвольные элементы

Если известны 2 произвольных члена прогрессии (i-ый, k-ый), то установить разность для данной последовательности можно на базе соотношения:

a(i) = a(k) + (i – k)*d, значит d = (a(i) – a(k))/(i-k).

Разность прогрессии и ее первый член

Данное выражение поможет определить неизвестную величину лишь в случаях, когда известен номер элемента последовательности.

Разность прогрессии и ее сумма

Сумма прогрессии – это сумма ее членов. Для вычисления суммарного значения ее первых j элементов воспользуйтесь соответствующей формулой:

S(j) =((a(1) + a(j))/2)*j, но т.к. a(j) = a(1) + d(j – 1), то S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=((2a(1) + d(– 1))/2)*j.

Кто-то к слову «прогрессия» относится настороженно, как к очень сложному термину из разделов высшей математики. А между тем самая простая арифметическая прогрессия - работа счётчика такси (где они ещё остались). И понять суть (а в математике нет ничего важнее, чем «понять суть») арифметической последовательности не так сложно, разобрав несколько элементарных понятий.

Математическая числовая последовательность

Числовой последовательностью принято именовать какой-либо ряд чисел, каждое из которых имеет свой номер.

а 1 - первый член последовательности;

а 2 - второй член последовательности;

а 7 - седьмой член последовательности;

а n - n-ный член последовательности;

Однако не любой произвольный набор цифр и чисел интересует нас. Наше внимание сосредоточим на числовой последовательности, у которой значение n-ного члена связано с его порядковым номером зависимостью, которую можно чётко сформулировать математически. Иными словами: численное значение n-ного номера является какой-либо функцией от n.

a - значение члена числовой последовательности;

n - его порядковый номер;

f(n) - функция, где порядковый номер в числовой последовательности n является аргументом.

Определение

Арифметической прогрессией принято именовать числовую последовательность, в которой каждый последующий член больше (меньше) предыдущего на одно и то же число. Формула n-ного члена арифметической последовательности выглядит следующим образом:

a n - значение текущего члена арифметической прогрессии;

a n+1 - формула следующего числа;

d - разность (определённое число).

Нетрудно определить, что если разность положительна (d>0), то каждый последующий член рассматриваемого ряда будет больше предыдущего и такая арифметическая прогрессия будет возрастающей.

На представленном ниже графике нетрудно проследить, почему числовая последовательность получила название «возрастающая».

В случаях, когда разность отрицательная (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Значение заданного члена

Иногда бывает необходимо определить значение какого-либо произвольного члена a n арифметической прогрессии. Можно сделать это путём расчёта последовательно значений всех членов арифметической прогрессии, начиная с первого до искомого. Однако такой путь не всегда приемлем, если, например, необходимо отыскать значение пятитысячного или восьмимиллионного члена. Традиционный расчёт сильно затянется по времени. Однако конкретная арифметическая прогрессия может быть исследована с помощью определённых формул. Существует и формула n-ного члена: значение любого члена арифметической прогрессии может быть определено как сумма первого члена прогрессии с разностью прогрессии, умноженной на номер искомого члена, уменьшенный на единицу.

Формула универсальна для возрастающей и убывающей прогрессии.

Пример расчёта значения заданного члена

Решим следующую задачу на нахождение значения n-ного члена арифметической прогрессии.

Условие: имеется арифметическая прогрессия с параметрами:

Первый член последовательности равен 3;

Разность числового ряда равняется 1,2.

Задание: необходимо отыскать значение 214 члена

Решение: для определения значения заданного члена воспользуемся формулой:

а(n) = а1 + d(n-1)

Подставив в выражение данные из условия задачи имеем:

а(214) = а1 + d(n-1)

а(214) = 3 + 1,2 (214-1) = 258,6

Ответ: 214-ый член последовательности раве 258,6.

Преимущества такого способа расчёта очевидны - всё решение занимает не более 2 строчек.

Сумма заданного числа членов

Очень часто в заданном арифметическом ряду требуется определить сумму значений некоторого его отрезка. Для этого также нет необходимости вычислять значения каждого члена и затем суммировать. Такой способ применим, если число членов, сумму которых необходимо найти, невелико. В остальных случаях удобнее воспользоваться следующей формулой.

Сумма членов арифметической прогрессии от 1 до n равна сумме первого и n-ного членов, помноженной на номер члена n и делённой надвое. Если в формуле значение n-ного члена заменить на выражение из предыдущего пункта статьи, получим:

Пример расчёта

Для примера решим задачу со следующими условиями:

Первый член последовательности равен нулю;

Разность равняется 0,5.

В задаче требуется определить сумму членов ряда с 56-го по 101.

Решение. Воспользуемся формулой определения суммы прогрессии:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Вначале определим сумму значений 101 члена прогрессии, подставив в формулу данные их условия нашей задачи:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2 525

Очевидно, для того, чтобы узнать сумму членов прогрессии с 56-го по 101-й, необходимо от S 101 отнять S 55 .

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Таким образом сумма арифметической прогрессии для данного примера:

s 101 - s 55 = 2 525 - 742,5 = 1 782,5

Пример практического применения арифметической прогрессии

В конце статьи вернёмся к примеру арифметической последовательности, приведённому в первом абзаце - таксометр (счётчик автомобиля такси). Рассмотрим такой пример.

Посадка в такси (в которую входит 3 км пробега) стоит 50 рублей. Каждый последующий километр оплачивается из расчёта 22 руб./км. Расстояние поездки 30 км. Рассчитать стоимость поездки.

1. Отбросим первые 3 км, цена которых включена в стоимость посадки.

30 - 3 = 27 км.

2. Дальнейший расчет - не что иное как разбор арифметического числового ряда.

Номер члена - число км пробега (минус первые три).

Значение члена - сумма.

Первый член в данной задаче будет равен a 1 = 50 р.

Разность прогрессии d = 22 р.

интересующее нас число - значение (27+1)-ого члена арифметической прогрессии - показания счётчика в конце 27-го километра - 27,999… = 28 км.

a 28 = 50 + 22 ∙ (28 - 1) = 644

На формулах, описывающих те или иные числовые последовательности, построены расчёты календарных данных на сколь угодно длительный период. В астрономии в геометрической зависимости от расстояния небесного тела до светила находится длина орбиты. Кроме того, различные числовые ряды с успехом применяются в статистике и других прикладных разделах математики.

Другой вид числовой последовательности - геометрическая

Геометрическая прогрессия характеризуется большими, по сравнению с арифметической, темпами изменения. Не случайно в политике, социологии, медицине зачастую, чтобы показать большую скорость распространения того или иного явления, например заболевания при эпидемии, говорят, что процесс развивается в геометрической прогрессии.

N-ный член геометрического числового ряда отличается от предыдущего тем, что он умножается на какое-либо постоянное число - знаменатель, например первый член равен 1, знаменатель соответственно равен 2, тогда:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - значение текущего члена геометрической прогрессии;

b n+1 - формула следующего члена геометрической прогрессии;

q - знаменатель геометрической прогрессии (постоянное число).

Если график арифметической прогрессии представляет собой прямую, то геометрическая рисует несколько иную картину:

Как и в случае с арифметической, геометрическая прогрессия имеет формулу значения произвольного члена. Какой-либо n-ный член геометрической прогрессии равен произведению первого члена на знаменатель прогрессии в степени n уменьшенного на единицу:

Пример. Имеем геометрическую прогрессию с первым членом равным 3 и знаменателем прогрессии, равным 1,5. Найдём 5-й член прогрессии

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Сумма заданного числа членов рассчитывается так же с помощью специальной формулы. Сумма n первых членов геометрической прогрессии равна разности произведения n- ного члена прогрессии на его знаменатель и первого члена прогрессии, делённой на уменьшенный на единицу знаменатель:

Если b n заменить пользуясь рассмотренной выше формулой, значение суммы n первых членов рассматриваемого числового ряда примет вид:

Пример. Геометрическая прогрессия начинается с первого члена, равного 1. Знаменатель задан равным 3. Найдём сумму первых восьми членов.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

Инструкция

Арифметическая прогрессия - это последовательность вида a1, a1+d, a1+2d..., a1+(n-1)d. Число d шагом прогрессии .Очевидно, что общая произвольного n-го члена арифметической прогрессии имеет вид: An = A1+(n-1)d. Тогда зная один из членов прогрессии , член прогрессии и шаг прогрессии , можно , то есть номер члена прогресси. Очевидно, он будет определяться по формуле n = (An-A1+d)/d.

Пусть теперь известен m-ый член прогрессии и -то другой член прогрессии - n-ый, но n , как и в предыдущем случае, но известно, что n и m не совпадают.Шаг прогрессии может быть вычислен по формуле: d = (An-Am)/(n-m). Тогда n = (An-Am+md)/d.

Если известна сумма нескольких элементов арифметической прогрессии , а также ее первый и последний , то количество этих элементов тоже можно определить.Сумма арифметической прогрессии будет равна: S = ((A1+An)/2)n. Тогда n = 2S/(A1+An) - чденов прогрессии . Используя тот факт, что An = A1+(n-1)d, эту формулу можно переписать в виде: n = 2S/(2A1+(n-1)d). Из этой можно выразить n, решая квадратное уравнение.

Арифметической последовательностью называют такой упорядоченный набор чисел, каждый член которого, кроме первого, отличается от предыдущего на одну и ту же величину. Эта постоянная величина называется разностью прогрессии или ее шагом и может быть рассчитана по известным членам арифметической прогрессии.

Инструкция

Если из условий задачи известны значения первого и второго или любой другой пары соседних членов , для вычисления разности (d) просто отнимите от последующего члена предыдущий. Получившаяся величина может быть как положительным, так и отрицательным числом - это зависит от того, является ли прогрессия возрастающей . В общей форме решение для произвольно взятой пары (aᵢ и aᵢ₊₁) соседних членов прогрессии запишите так: d = aᵢ₊₁ - aᵢ.

Для пары членов такой прогрессии, один из которых является первым (a₁), а другой - любым другим произвольно выбранным, тоже можно составить формулу нахождения разности (d). Однако в этом случае обязательно должен быть известен порядковый номер (i) произвольного выбранного члена последовательности. Для вычисления разности сложите оба числа, а полученный результат разделите на уменьшенный на единицу порядковый номер произвольного члена. В общем виде эту формулу запишите так: d = (a₁+ aᵢ)/(i-1).

Если кроме произвольного члена арифметической прогрессии с порядковым номером i известен другой ее член с порядковым номером u, измените формулу из предыдущего шага соответствующим образом. В этом случае разностью (d) прогрессии будет сумма этих двух членов, поделенная на разность их порядковых номеров: d = (aᵢ+aᵥ)/(i-v).

Формула вычисления разности (d) несколько усложнится, если в условиях задачи дано значение первого ее члена (a₁) и сумма (Sᵢ) заданного числа (i) первых членов арифметической последовательности. Для получения искомого значения разделите сумму на количество составивших ее членов, отнимите значение первого числа в последовательности, а результат удвойте. Получившуюся величину разделите на уменьшенное на единицу число членов, составивших сумму. В общем виде формулу вычисления дискриминанта запишите так: d = 2*(Sᵢ/i-a₁)/(i-1).