П.4 Определение и свойства осевой симметрии плоскости. Что такое ось симметрии
Сегодня мы с вами поговорим о явлении, с которым каждому из нас приходится постоянно встречаемся в жизни: о симметрии. Что такое симметрия?
Приблизительно мы все понимаем значение этого термина. Словарь гласит: симметрия – это соразмерность и полное соответствие расположения частей чего-нибудь относительно прямой или точки. Симметрия бывает двух видов: осевая и лучевая. Сначала рассмотрим осевую. Это, скажем так,«зеркальная» симметрия, когда одна половина предмета полностью тождественна второй, но повторяет ее как отражение. Поглядите на половинки листа. Они зеркально симметричны. Симметричны и половины человеческого тела (анфас) – одинаковые руки и ноги, одинаковые глаза. Но не станем заблуждаться, на самом деле в органическом (живом) мире абсолютной симметрии не встретить! Половинки листа копируют друг друга далеко не в совершенстве, то же относится к человеческому телу (присмотритесь сами); так же обстоит дело и с другими организмами! Кстати, стоит добавить, что любое симметричное тело симметрично относительно зрителя только в одном положении. Стоит, скажем, повернуть лист, или поднять одну руку и что же? – сами видите.
Подлинной симметрии люди добиваются в произведениях своего труда (вещах) - одежде, машинах… В природе же она свойственна неорганическим образованиям, например, кристаллам.
Но перейдем к практике. Начинать со сложных объектов вроде людей и животных не стоит, попробуем в качестве первого упражнения на новом поприще дорисовать зеркальную половинку листа.
Рисуем симметричный предмет - урок 1
Следим, чтобы получилось как можно более похоже. Для этого будем буквально строить нашу половинку. Не подумайте, что так легко, тем более с первого раза, одним росчерком провести зеркально-соответствующую линию!
Разметим несколько опорных точек для будущей симметричной линии. Действуем так: проводим карандашом без нажима несколько перпендикуляров к оси симметрии - средней жилке листа. Четыре-пять пока хватит. И на этих перпендикулярах отмеряем вправо такое же расстояние, какое на левой половине до линии края листика. Советую пользоваться линейкой, не очень-то надейтесь на глазок. Нам, как правило, свойственно уменьшать рисунок - на опыте замечено. Отмерять расстояния пальцами не порекомендуем: слишком большая погрешность.
Полученные точки соединим карандашной линией:
Теперь придирчиво смотрим - действительно ли половины одинаковы. Если всё правильно - обведём фломастером, уточним нашу линию:
Лист тополя дорисовали, теперь можно замахнуться и на дубовый.
Нарисуем симметричную фигуру - урок 2
В этом случае сложность заключается в том,что обозначены жилки и они не перпендикулярны оси симметрии и придётся не только размеры но ещё и угол наклона точно соблюдать. Ну что ж - тренируем глазомер:
Вот и симметричный лист дуба нарисовался, вернее, мы его построили по всем правилам:
Как нарисовать симметричный предмет - урок 3
И закрепим тему - дорисуем симметричный лист сирени.
У него тоже интересная форма - сердцевидная и с ушками у основания придётся попыхтеть:
Вот и начертили:
Поглядите на получившуюся работу издали и оцените насколько точно нам удалось передать требуемое сходство. Вот вам совет: поглядите на ваше изображение в зеркале, и оно вам укажет, есть ли ошибки. Другой способ: перегните изображение точно по оси (правильно перегибать мы с вами уже научились) и вырежьте листик по изначальной линии. Посмотрите на саму фигуру и на отрезанную бумагу.
«Симметрия » в переводе с греческого означает «соразмерность» (повторяемость). Симметричные тела и предметы состоят из равнозначных, правильно повторяющихся в пространстве частей. Особенно разнообразна симметрия кристаллов. Различные кристаллы отличаются большей или меньшей симметричностью. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.
По более точному определению симметрия – это закономерная повторяемость элементов (или частей) фигуры или какого-либо тела, при которой фигура совмещается сама с собой при некоторых преобразованиях (вращение вокруг оси, отражение в плоскости). Подавляющее большинство кристаллов обладает симметрией.
Понятие симметрии включает в себя составные части – элементы симметрии. Сюда относятся плоскость симметрии , ось симметрии , центр симметрии , или центр инверсии .
Плоскость симметрии делит кристалл на две зеркально равные части. Обозначается она буквой Р. Части, на которые плоскость симметрии рассекает многогранник, относятся одна к другой, как предмет к своему изображению в зеркале разные кристаллы имеют различное количество плоскостей симметрии, которое ставится перед буквой Р. Наибольшее количество таких плоскостей у природных кристаллов – девять 9Р. В кристалле серы насчитывается 3Р, а у гипса только одна. Значит, в одном кристалле может быть несколько плоскостей симметрии. В некоторых кристаллах плоскость симметрии отсутствует.
Относительно элементов ограничения плоскость симметрии может занимать следующее положение:
- проходит через ребра;
- лежать перпендикулярно к ребрам в их серединах;
- проходить через грань перпендикулярно к ней;
- пересекать гранные углы в их вершинах.
В кристаллах возможны следующие количества плоскостей симметрии: 9Р, 7Р, 6Р, 5Р, 4Р, 3Р, 2Р, Р, отсутствие плоскости симметрии.
Ось симметрии
Ось симметрии – воображаемая ось, при повороте вокруг которой на некоторый угол фигура совмещается сама с собой в пространстве. Она обозначается буквой L. У кристаллов при вращении вокруг оси симметрии на полный оборот одинаковые элементы ограничения (грани, ребра, углы) могут повторяться только 2, 3, 4, 6 раз. Соответственно этому оси будут называться осями симметрии второго, третьего, четвертого и шестого порядка и обозначаться: L2, L3, L4 и L6.Порядок оси определяется числом совмещений при повороте на 360⁰С.
Ось симметрии первого порядка не принимается во внимание, так как ею обладают вообще не фигуры, в том числе и несимметричные. Количество осей одного и того же порядка пишут перед буквой L: 6L6, 3L4 и т.п.
Центр симметрии
Центр симметрии – это точка внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие одинаковые элементы ограничения кристалла (грани, ребра, углы). Обозначается она буквой С. Практически присутствие центра симметрии будет сказываться в том, что каждое ребро многогранника имеет параллельное себе ребро, каждая грань – такую же параллельную себе зеркально-обратную грань. Если же в многограннике присутствуют грани, не имеющие себе параллельных, то такой многогранник не обладает центром симметрии.
Достаточно поставить многогранник гранью на стол, чтобы заметить, имеется ли сверху такая же параллельная ей зеркально-обратная грань. Конечно, на параллельность нужно проверить все типы граней.
Существует ряд простых закономерностей, по которым сочетаются друг с другом элементы симметрии. Значение этих правил облегчает их нахождение.
- Линия пересечения двух или нескольких плоскостей является осью симметрии. Порядок такой оси равен числу пересекающихся в ней плоскостей.
- L6 может присутствовать в кристалле только в единственном числе.
- С L6 не могут комбинироваться ни L4, ни L3, но может сочетаться L2 причем L6 и L2 должны быть перпендикулярны; в таком случае присутствует 6L2.
- L4 может встречаться в единственном числе или трех взаимно перпендикулярных осей.
- L3 может встречаться в единственном числе или с 4L3.
Степенью симметрии называется совокупность всех элементов симметрии, которыми обладает данный кристалл.
Кристалл, имеющий форму куба, обладает высокой степенью симметрии. В нем присутствуют три оси симметрии четвертого порядка (3L4), проходящие через середины граней куба, четыре оси симметрии третьего порядка (4L3), проходящие через вершины трехгранных углов, и шесть осей второго порядка (6L2), проходящих через середины ребер. В точке пересечения осей симметрии располагается центр симметрии куба (С). Кроме того, в кубе можно провести девять плоскостей симметрии (9Р). Элементы симметрии кристалла можно изобразить кристаллографической формулой.
Для куба формула имеет вид: 9P, 3L4, 4L3, 6L2, C.
Русский ученый А.В. Гадолин в 1869 г. показал, что у кристаллов возможны 32 различных сочетания элементов симметрии, составляющих классы (виды) симметрии. Таким образом, класс объединяет группу кристаллов с одинаковой степенью симметрии.
Фридрих В.А. 1
Дементьева В.В. 1
1 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 6», г. Александровск, Пермский край
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Введение
«Стоя перед черной доской и рисуя на ней
мелом разные фигуры,
я вдруг был поражен мыслью:
почему симметрия приятна глазу?
Что такое симметрия?
Это врожденное чувство, отвечал я сам себе»
Л.Н. Толстой
В учебнике математика 6 класс, автор Никольский С. М., на страницах 132 - 133 раздел Дополнительные задачи к главе № 3, имеются задания для исследования фигур на плоскости, симметричных относительно прямой. Меня заинтересовала данная тема, я решила выполнить задания и более подробно изучить данную тему.
Объект исследования - симметрия.
Предмет исследования - симметрия как основополагающий закон вселенной.
Какую гипотезу я буду проверять:
Я считаю, что осевая симметрия является не только математическим и геометрическим понятием, и применяется только для решения соответствующих задач, но и является основой гармонии, красоты, равновесия и устойчивости. Принцип симметрии используется практически во всех науках, в нашей повседневной жизни и является одним из «краеугольных» законов, на котором базируется мироздание в целом.
Актуальность темы
Понятие симметрия проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков его развития. В наше время, наверное, трудно найти человека, который не имел бы какого-либо представления о симметрии. Мир, в котором мы живём, наполнен симметрией домов, улиц, творениями природы и человека. С симметрией мы встречаемся буквально на каждом шагу: в технике, искусстве, науке.
Поэтому, знание и понимание о симметрии в окружающем нас мире, является обязательным и необходимым, которое пригодится в дальнейшем для изучения других научных дисциплин. В этом и заключается актуальность избранной мной темы.
Цель и задачи
Цель работы: выяснить, какую роль играет симметрия в повседневной жизни человека, в природе, архитектуре, в быту, музыке и других науках.
Для достижения поставленной цели, мне необходимо выполнить следующие задачи:
1. Найти необходимую информацию, литературу и фотографии. Установить наибольшее количество данных, необходимых для моей работы, с помощью доступных для меня источников: учебники, энциклопедии или другие носители информации, соответствующих заданной теме.
2. Дать общие понятие о симметрии, видах симметрии и истории происхождения термина.
3. Для подтверждения своей гипотезы, создать поделки и провести эксперимент с данными фигурами, имеющими симметрию и не несимметричными.
4. Продемонстрировать и представить результаты наблюдений в своём исследовании.
Для практической части исследовательской работы мне необходимо сделать следующее, для чего я составила план работы:
1. Создать своими руками поделки с заданными свойствами - симметричные и не симметричные модели, композицию, используя цветную бумагу, картон, ножницы, фломастеры, клей и т.д.;
2. Провести эксперимент с моими поделками, с двумя вариантами симметрии.
3. Исследовать, проанализировать и систематизировать полученные результаты, составив таблицу.
4. Для наглядного и интересного закрепления полученных знаний, с помощью приложения «Paint 3 D» создать рисунки для наглядности, а так же нарисовать картинки, с заданиями - дорисовать симметричную половинку (начиная с простых рисунков и заканчивая сложными) и объединить их, создав электронную книгу.
Методы исследования:
1. Анализ статей и всей информации о симметрии.
2. Компьютерное моделирование (обработка фотографий средствами графического редактора).
3. Обобщение и систематизация полученных данных.
Основная часть.
Осевая симметрия и понятие совершенства
С древних времен человек выработал представления о красоте и пытался постигнуть смысл совершенства. Красивы все творения природы. По-своему прекрасны люди, восхитительны животные и растения. Радует взор зрелище драгоценного камня или кристалла соли, сложно не любоваться снежинкой или бабочкой. Но почему так происходит? Нам кажется правильным и завершенным вид объектов, правая и левая половина которых выглядит одинаково.
Видимо, первыми о сути красоты задумывались люди искусства.
Впервые обосновали это понятие художники, философы и математики Древней Греции. Древние скульпторы, изучавшие строение человеческого тела, еще в V веке до н.э. стали применять понятие «симметрия». Это слово имеет греческое происхождение и означает гармоничность, пропорциональность и похожесть расположения составляющих частей. Древнегреческий мыслитель и философ Платон утверждал, что прекрасным может быть лишь то, что симметрично и соразмерно.
И действительно, «радуют глаз» те явления и формы, которые имеют пропорциональность и завершенность. Их мы называем правильными.
Виды симметрии
В геометрии и математике рассматриваются три вида симметрии: осевая симметрия (относительно прямой), центральная (относительно точки) и зеркальная (относительно плоскости).
Осевая симметрия как математическое понятие
Точки симметричны относительно некой прямой (оси симметрии), если они лежат на прямой, перпендикулярной данной прямой, и на одинаковом расстоянии от оси симметрии.
Фигура считается симметричной относительно прямой, если для каждой точки рассматриваемой фигуры, симметричная для неё точка относительно данной прямой также находится на этой фигуре. Прямая является в этом случае осью симметрии фигуры.
Фигуры, симметричные относительно прямой равны. Если геометрической фигуре свойственна осевая симметрия, определение зеркальных точек можно наглядно представить, просто перегнув ее по оси и сложив равные половинки «лицом к лицу». Искомые точки при этом соприкоснутся.
Примеры оси симметрии: биссектриса неразвернутого угла равнобедренного треугольника, любая прямая, проведенная через центр окружности, и т.д. Если геометрической фигуре свойственна осевая симметрия, определение зеркальных точек можно наглядно представить, просто перегнув ее по оси и сложив равные половинки «лицом к лицу». Искомые точки при этом соприкоснутся.
Фигуры могут иметь несколько осей симметрии:
· осью симметрии угла является прямая, на которой лежит его биссектриса;
· осью симметрии окружности и круга является любая прямая, проходящая через их диаметр;
· равнобедренный треугольник имеет одну ось симметрии, равносторонний треугольник - три оси симметрии;
· прямоугольник имеет 2 оси симметрии, квадрат - 4, ромб - 2 оси симметрии.
Ось симметрии - это воображаемая линия разделяющая объект на симметричные части. На моём рисунке она изображена для наглядности.
Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относится параллелограмм, отличный от прямоугольника и ромба, разносторонний треугольник.
Осевая симметрия в природе
Природа мудра и рациональна, поэтому почти все ее творения имеют гармоничное строение. Это относится и к живым существам, и к неодушевленным объектам.
Внимательное наблюдение показывает, что основу красоты многих форм, созданных природой, составляет симметрия. Ярко выраженной симметрией обладают листья, цветы, плоды. Их зеркальная, радиальная, центральная, осевая симметрия - очевидны. В значительной степени она обусловлена явлением гравитации.
Геометрические формы кристаллов с их плоскими поверхностями представляют собой удивительное явление природы. Однако подлинная физическая симметрия кристалла проявляется не столько в его внешнем виде, сколько во внутреннем строении кристаллического вещества.
Осевая симметрия в животном мире
Симметрия в мире живых существ, проявляется в закономерном расположении одинаковых частей тела относительно центра или оси. Чаще в природе встречается осевая симметрия. Она обуславливает не только общее строение организма, но и возможности его последующего развития. Каждому виду животных присущ характерный окрас. Если в расцветке фигурирует рисунок, то, как правило, он дублируется с обеих сторон.
Осевая симметрия и человек
Если взглянуть на любое живое существо, сразу бросается в глаза симметричность устройства организма. Человек: две руки, две ноги, два глаза, два уха и так далее.
Это означает, что существует некая линия, по которой животные и люди могут быть визуально «поделены» на две идентичные половинки, то есть в основе их геометрического устройства лежит осевая симметрия.
Как видно из приведённых примеров, любой живой организм природа создает не хаотично и бессмысленно, а согласно общим законам мироустройства, ведь во Вселенной ничто не имеет чисто эстетического, декоративного назначения. Это обусловлено закономерной необходимостью.
Конечно, природе редко присуща математическая точность, но похожесть элементов организма все равно поразительна.
Симметрия в архитектуре
С древнейших времен архитекторы хорошо знали математическую пропорцию и симметрию, и использовали их при строительстве архитектурных сооружений. Например, архитектура русских православных храмов и соборов Руси: Кремль, собор Христа Спасителя г. Москва, Казанский и Исаакиевский соборы г. Санкт-Петербург и др.
А также другие всемирно известные достопримечательности, многие из которых во всех странах мира, мы можем видеть и сейчас: Египетские пирамиды, Лувр, Тадж-Махал, Кёльнский собор и т.д. Все они, как мы видим, имеют симметрию.
Симметрия в музыке
Я учусь в музыкальной школе, для меня было интересно найти примеры симметрии в данной области. Не только музыкальные инструменты обладают явной симметрией, но и части музыкальных произведений звучат в определённом порядке, в соответствии с партитурой и замыслом композитора.
Например, реприза - (франц. reprise, от reprendre -возобновлять). Повторение темы или группы тем после этапа её (их) развития или изложения нового тематического материала.
Также в одномерном повторении во времени через равные интервалы состоит музыкальный принцип ритма.
Симметрия в технике
Мы живем в стремительно - меняющемся высокотехнологическом, информационном обществе, и не задумываемся, почему некоторые окружающие нас предметы и явления пробуждают чувство прекрасного, а другие нет. Мы их не замечаем, даже не задумываемся, об их свойствах.
Но кроме этого, данные технические и механические устройства, детали, механизмы, агрегаты не смогут правильно работать и вообще функционировать, если при этом не будет соблюдена симметрия, а вернее, некая ось, в механике это - центр тяжести.
Сбалансированность по центру, в данном случае, является обязательным техническим требованием, соблюдение которого строго регламентируется ГОСТ или ТУ и должно соблюдаться.
Симметрия и космические объекты
Но, пожалуй, самыми загадочными, волновавшими умы многих, ещё с древнейших времён, являются космические объекты. Которые также имеют симметрию - солнце, луна, планеты.
Эту цепочку можно продолжать, но мы сейчас говорим о чем-то едином: о том, что осевая симметрия является основополагающим законом вселенной, является основой красоты, гармонии и пропорциональности, и во взаимосвязи этого с математикой.
Практическая часть
Найдя необходимую информацию, изучив литературу, я убедилась в правоте своей гипотезы и сделала вывод о том, что в глазах человека несимметричность чаще всего ассоциируется с неправильностью или ущербностью. Поэтому в большинстве творений людских рук прослеживается симметричность и гармония, как необходимое и обязательное требование.
Это хорошо видно на моём рисунке, где изображён поросёнок, с непропорциональными частями тела, что сразу бросается в глаза!
И только после того, как подольше приглядишься к нему, посчитаешь его милым?
Несмотря на то, что данная тема известна, хорошо изучена, но все эти данные рассмотрены отдельно в каждой дисциплине. Обобщённых данных о том, что принцип симметрии используется, и именно на нём базируются многие другие науки, и их взаимосвязи с математикой я не встретила.
Поэтому я решила доказать своё утверждение с помощью самого простого и доступного для меня способа. Таким решением, я считаю, будет проведение эксперимента с испытаниями.
Для наглядного доказательства того, что асимметричные модели не устойчивы, не обладают необходимыми требованиями и жизненно необходимыми навыками, и подтверждения своей гипотезы мне необходимо создать поделки, рисунки и композицию:
1 вариант - симметричны относительно оси;
2 вариант - с явным нарушением симметрии.
Поскольку я считаю, что такой дисбаланс будет хорошо виден на следующих примерах, для чего я создала поделки-оригами (самолёт и лягушонок) из цветной бумаги. Для чистоты эксперимента они сделаны из одинаковой цветной бумаги и тестировались в одинаковых условиях. И композицию «Маяк», где маяк сделан из пустой пластиковой бутылки, обклеен цветной бумагой. Для украшения композиции использованы игрушечные фигуры человека, модели парусника и лодки, декоративные камни, а для имитации света я использовала светящийся от батарейки элемент.
Я провела испытания с данными поделками, все показатели зафиксировала и занесла в таблицу (все показатели можно посмотреть в приложении № 1 стр. 18 - 21).
Все поделки делались с соблюдением техники безопасности (приложение № 2 стр. 21)
Все полученные данные я проанализировала, вот что у меня получилось.
Анализ полученных данных
Эксперимент № 1
Испытание - прыжок лягушек в длину, замер этого расстояния.
Лягушонок Зелёный (симметричный) прыгает ровно, на большее расстояние, а Красный (не симметричный) ни разу не прыгнул ровно, всегда с поворотом или переворотом в сторону, на расстояние в 2 - 3 раза меньше.
Таким образом, можно сделать вывод, что такое животное не сможет быстро охотиться или наоборот убегать, эффективно добывать пищу, что уменьшает шансы на выживание, это доказывает, что в природе всё сбалансировано, пропорционально, правильно - симметрично.
Эксперимент № 2
Вид испытания - запуск самолётов в полёт и измерение расстояния длины полёта.
Самолётик № 1 «Розовый» (симметричный) летит из 10 раз, 8 раз ровно и прямо, на максимальную длину, (т.е. на всю длину моей комнаты), а траектория полёта самолётика № 2 «Оранжевый» (не симметричный) из 10 раз - ни разу не летел ровно, всегда с поворотом или переворотом, на меньшее расстояние. То есть, если бы это был настоящий самолёт, то он не смог бы лететь ровно, в правильном направлении. Такой полёт был бы очень неудобен или даже опасен для человека (также как и для птиц), а машины и другие транспортные средства передвижения, не смогли бы ехать, плыть и т.д. в необходимую сторону.
Эксперимент № 3
Вид испытания - проверка устойчивости здания «Маяка», при уменьшении угла наклона сооружения, относительно поверхности.
1. Создав композицию «Маяка», я установила его прямо, т.е. перпендикулярно (под углом 90 0) относительно стен сооружения к поверхности. Данная конструкция стоит ровно, выдерживает установленный световой элемент и фигурку человека.
2. Для дальнейшего проведения эксперимента мне было необходимо расчертить основание башни на углы, равные 10 0 .
После чего я отрезала от основания угол равный 10 0 .
Под углом в 80 0 здание стоит криво, шатается, но дополнительную нагрузку выдерживает.
3. Отрезав ещё 10 0 , получился угол наклона в 70 0 , при котором вся моя конструкция рушится.
Данный опыт доказывает, что исторически сложившиеся традиция строительства под прямым углом и соблюдение при этом симметрии самого здания, является необходимым условием для устойчивого, надёжного возведения и эксплуатации архитектурных зданий и сооружений.
Для наглядного примера осевой симметрии и доказательства утверждения о том, что человек воспринимает любые окружающие его предметы, образы животных и т.д. только симметрично, то есть, когда обе стороны, «половинки» одинаковы, равны, я создала электронную раскраску, которую можно распечатать, составив детскую книжку-раскраску. Данное пособие поможет всем желающим лучше усвоить тему, интересно и с удовольствием провести свободное время (Титульный лист изображён на этом рисунке, остальные рисунки расположены в приложении № 3 стр. 21 -24).
Проведённые мною эксперименты доказывают, что симметрия является не только математическим и геометрическим понятием, а является сферой, средой нашего проживания, неким техническим требованием, так же необходимым условием для выживания в целом, как для людей, так и для животных. Симметрия объединяет всё это воедино, и уходит далеко за пределы обычной науки!
Заключение
Выводы:
Я выяснила, что симметрия является одной из главных составляющих в повседневной жизни человека, в предметах быта, в архитектуре, технике, в природе, музыке, науке и т. д.
Результат:
Я нашла необходимую информацию, доказала свою гипотезу, проверила и подтвердила её опытным путём. Я создала поделки, композицию, рисунки и электронную раскраску для наглядного проведения эксперимента.
Я выяснила, что все законы природы - биологические, химические, генетические, астрономические связаны с симметрией. Практически, всё то, что нас окружает, что создано человеком - подчинено общим для нас всех принципам симметрии, поскольку имеют завидную системность. Таким образом, сбалансированность, тождественность как принцип имеет всеобщий масштаб.
Можно сказать, что симметрия является основополагающим законом, на котором базируются основные законы науки? Наверное, да.
Эту тайну пытались осмыслить великие мыслители человечества. Сегодня в разгадку этой тайны погрузились и мы.
Один из известных математиков Герман Вейль писал, что "симметрия - является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство".
Может мы нашли секрет создания красоты, совершенства или даже создания основных законов вселенной? Может это симметрия?
Приложения
Приложение № 1 Таблица испытаний:
Эксперимент № 1 |
|||
Попытка № |
Вид испытания |
«Зелёная лягушка» (симметричная) |
Результат и характеристика испытания «Красная лягушка» (не симметричная) |
Прыжок лягушки в длину (измерение в см.) |
6,0 в левую сторону |
||
14,4 с небольшим поворотом вправо |
9,0 переворот назад |
||
10,5 почти ровно |
2,0 переворот |
||
9,5 с небольшим поворотом вправо |
5,0 переворот в левую сторону |
||
10,6 с небольшим поворотом вправо |
3,0 в левую сторону |
||
9,0 переворот |
9,0 поворот влево |
||
13,5 почти ровно |
1,5 назад, с поворотом влево |
||
9,5 влево с переворотом |
|||
21,2 почти ровно |
4,5 влево с переворотом |
||
Эксперимент № 2 |
|||
Самолёт «Розовый» (Симметричный) |
Самолёт «Оранжевый» (Не симметричный) |
||
Запуск самолётика в длину Максимальная (5,1 метра) |
5,1 с 2 переворотами |
3,04 с переворотами вправо |
|
2,78 с переворотами вправо |
|||
5,1 с наклоном вправо |
3, 65 с переворотами вправо |
||
5,1 с наклоном вправо |
1,51 почти ровно |
||
5,1 почти ровно |
4,73 с переворотами вправо |
||
5,1 с наклоном в левую сторону |
3,82 поворот вправо |
||
5,1 почти ровно |
3,41 с переворотами |
||
5,1 почти ровно |
3,37 поворот влево |
||
5,1 с переворотом |
3,51 с переворотами влево |
||
5,1 почти ровно |
3,19 с переворотами вправо |
Эксперимент № 3 |
|||
Попытка № |
Характеристика свойств объекта |
Вид и характеристика испытания |
Результат |
Сооружение стоит перпендикулярно поверхности (т.е. под углом в 90 0) |
Установка дополнительной нагрузки: светящийся элемент и игрушечная фигура человека |
Маяк стоит ровно, надёжно |
|
Под углом 80 0 |
От основания маяка я наметала и отрезала угол в 10 0 |
Маяк выдерживает нагрузку, но стоит ненадёжно, шатается |
|
Под углом 70 0 |
От основания маяка я ещё раз отрезала 10 0 |
Сооружение падает и рушится |
Приложение № 2
При изготовлении моих поделок соблюдалась техника безопасности, а именно:
Ножницы или нож должны быть хорошо заточены и отрегулированы.
Хранить необходимо в определенном и безопасном месте или коробке.
При пользовании ножниц (ножа), нельзя отвлекаться, нужно быть максимально внимательными, дисциплинированными.
Передавая ножницы (нож), держать их за сомкнутые лезвия (остриё).
Ножницы (нож) класть справа сомкнутыми лезвиями (остриём) направленными от себя.
При резании узкое лезвие ножниц (остриё ножа) должно быть внизу.
После использования клея вымыть руки.
Приложение № 3
Электронная книга-раскраска
Симметрия-
Это означает то, что одна часть предмета похожа на другую.
Осевая симметрия- это симметрия относительно прямой (линии).
Ось симметрии - это воображаемая линия разделяющая объект на симметричные части. На рисунках она изображена для наглядности.
В этой книге нужно закончить рисунки, соединяя точки.
Затемможнораскрашиватьто, чтополучилось.
Попробуй закончить эти рисунки:
Сердечко
Треугольник Домик
Звёздочка Листочек
Мышка Ёлочка
Собачка Замок
К роме осевой симметрии есть и симметрия относительно точки.
Этот шар симметричен
И ёщё один вид симметрии - зеркальная симметрия.
Зеркальная симметрия-
это симметрия относительно плоскости. Например, относительно зеркала.
Симметрия это-
Используемая литература
2. Герман Вейль «Симметрия» (Издательство «Наука» главная редакция физико-математической литературы, Москва 1968 г.)
4. Мои рисунки и фотографии.
5. Справочник машиностроителя, том 1, (Государственное научно - техническое издательство машиностроительной литературы, Москвы 1960 г.)
6. Фотографии и рисунки из сети «Интернет».
Точки М и М1 называются симметричными относительно заданной прямой L , если эта прямая является серединным перпендикуляром к отрезку МM1 (рис 1). Каждая точка прямой L симметрична сама себе. Преобразование плоскости, при котором каждая точка отображается на симметричную ей точку относительно данной прямой L , называется осевой симметрией с осью L и обозначается SL : SL (M) = M1 .
Точки М и М1 взаимно симметричны относительно L , поэтому SL (M1 )=M . Следовательно, преобразование, обратное осевой симметрии, есть та же осевая симметрия: SL -1 = SL , SL ° SL = E . Иначе говоря, осевая симметрия плоскости является инволютивным преобразованием.
Образ данной точки при осевой симметрии можно просто построить, пользуясь только одним циркулем. Пусть L - ось симметрии, A и B - произвольные точки этой оси (рис 2). Если и SL (M) = M1 , то по свойству точек серединного перпендикуляра к отрезку имеем: AM = AM1 и BM = BM1 . Значит, точка M1 принадлежит двум окружностям: окружности с центром A радиуса AM и окружности с центром B радиуса BM (M - данная точка). Фигура F и её образ F1 при осевой симметрии называются симметричными фигурами относительно прямой L (рис 3).
Теорема. Осевая симметрия плоскости есть движение.
Если А и В - любые точки плоскости и SL (A) = A1 , SL (B) = B1 , то надо доказать, что A1 B1 = AB . Для этого введем прямоугольную систему координат OXY так, чтобы ось OX совпала с осью симметрии. Точки А и В имеют координаты А(x1 ,-y1 ) и B(x1 ,-y2 ) .Точки А1 и В1 имеют координаты A1 (x1 ,y1 ) и B1 (x1 ,y2 ) (рис 4 - 8). По формуле расстояния между двумя точками находим:
Из этих соотношений ясно, что АВ=А1 В1 , что и требовалось доказать.
Из сравнения ориентаций треугольника и его образа получаем, что осевая симметрия плоскости есть движение второго рода .
Осевая симметрия отображает каждую прямую на прямую. В частности, каждая из прямых, перпендикулярных оси симметрии, отображается этой симметрией на себя.
Теорема. Прямая, отличная от перпендикуляра к оси симметрии, и её образ при этой симметрии пересекаются на оси симметрии или ей параллельны.
Доказательство. Пусть дана прямая, не перпендикулярная оси L симметрии. Если m ? L= P и SL (m)=m1 , то m1 ?m и SL (P)=P , поэтому Pm1 (рис 9). Если же m || L , то m1 || L , так как в противном случае прямые m и m1 пересекались бы в точке прямой L , что противоречит условию m ||L (рис 10).
В силу определения равных фигур, прямые, симметричные относительно прямой L , образуют с прямой L равные углы (рис 9).
Прямая L называется осью симметрии фигуры F , если при симметрии с осью L фигура F отображается на себя: SL (F) =F . Говорят, что фигура F симметрична относительно прямой L .
Например, всякая прямая, содержащая центр окружности, является осью симметрии этой окружности. Действительно, пусть М - произвольная точка окружности щ с центром О , ОL , SL (M)= M1 . Тогда SL (O) = O и OM1 =OM , т. е. M1 є щ . Итак, образ любой точки окружности принадлежит этой окружности. Следовательно, SL (щ)=щ .
Осями симметрии пары непараллельных прямых служат две перпендикулярные прямые, содержащие биссектрисы углов между данными прямыми. Осью симметрии отрезка является содержащая его прямая, а также серединный перпендикуляр к этому отрезку.
Свойства осевой симметрии
- 1. При осевой симметрии образом прямой является прямая, образом параллельных прямых являются параллельные прямые
- 3. Осевая симметрия сохраняет простое отношение трех точек.
- 3. При осевой симметрии отрезок переходит в отрезок, луч - в луч, полуплоскость - в полуплоскость.
- 4. При осевой симметрии угол переходит в равный ему угол.
- 5. При осевой симметрии с осью d всякая прямая, перпендикулярная оси d остается на месте.
- 6. При осевой симметрии ортонормированный репер переходит в ортонормированный репер. При этом точка М с координатами х и у относительно репера R переходит в точку M` с теми же самыми координатами х и у, но относительно репера R`.
- 7. Осевая симметрия плоскости переводит правый ортонормированный репер в левый и, наоборот, левый ортонормированный репер - в правый.
- 8. Композиция двух осевых симметрий плоскости с параллельными осями есть параллельный перенос на вектор, перпендикулярный данным прямым, длина которого в два раза больше расстояния между данными прямыми
I . Симметрия в математике :
Основные понятия и определения.
Осевая симметрия (определения, план построения, примеры)
Центральная симметрия (определения, план построения, при меры)
Обобщающая таблица (все свойства, особенности)
II . Применения симметрии:
1) в математике
2) в химии
3) в биологии, ботанике и зоологии
4) в искусстве, литературе и архитектуре
/dict/bse/article/00071/07200.htm
/html/simmetr/index.html
/sim/sim.ht
/index.html
1. Основные понятия симметрии и ее виды.
Понятие симметрии пр оходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого организма, а именно человека. И употреблялось скульпторами ещё в 5 веке до н. э. Слово “симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”. Его широко используют все без исключения направления современной науки. Об этой закономерности задумывались многие великие люди. Например, Л. Н. Толстой говорил: “Стоя перед черной доской и рисуя на ней мелом разные фигуры, я вдруг был поражен мыслью: почему симметрия понятна глазу? Что такое симметрия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?”. Действительно симметричность приятна глазу. Кто не любовался симметричностью творений природы: листьями, цветами, птицами, животными; или творениями человека: зданиями, техникой, – всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии. Герман Вейль сказал: “Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Герман Вейль – это немецкий математик. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким образом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века. Оно достаточно сложное. Мы же обратимся и еще раз вспомним те определения, которые даны нам в учебнике.
2. Осевая симметрия.
2.1 Основные определения
Определение. Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему. Каждая точка прямой а считается симметричной самой себе.
Определение. Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.
2.2 План построения
И так, для построения симметричной фигуры относительно прямой от каждой точки проводим перпендикуляр к данной прямой и продлеваем его на такое же расстояние, отмечаем полученную точку. Так поступаем с каждой точкой, получаем симметричные вершины новой фигуры. Затем последовательно их соединяем и получаем симметричную фигуру данной относительной оси.
2.3 Примеры фигур, обладающих осевой симметрией.
3. Центральная симметрия
3.1 Основные определения
Определение . Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 . Точка О считается симметричной самой себе.
Определение. Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.
3.2 План построения
Построение треугольника симметричного данному относительно центра О.
Чтобы построить точку, симметричную точке А относительно точки О , достаточно провести прямую ОА (рис. 46) и по другую сторону от точки О отложить отрезок, равный отрезку ОА . Иными словами, точки А и ; В и ; С и симметричны относительно некоторой точки О. На рис. 46 построен треугольник, симметричный треугольнику ABC относительно точки О. Эти треугольники равны.
Построение симметричных точек относительно центра.
На рисунке точки М и М 1 , N и N 1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки.
Вообще фигуры, симметричные относительно некоторой точки, равны.
3.3 Примеры
Приведём примеры фигур, обладающие центральной симметрией. Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм.
Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диагоналей.
Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рисунке) у прямой их бесконечно много - любая точка прямой является её центром симметрии.
На рисунках показан угол симметричный относительно вершины, отрезок симметричный другому отрезку относительно центра А и четырехугольник симметричный относительно своей вершины М.
Примером фигуры, не имеющей центра симметрии, является треугольник.
4. Итог урока
Обобщим полученные знания. Сегодня на уроке мы познакомились с двумя основными видами симметрии: центральная и осевая. Посмотрим на экран и систематизируем полученные знания.
Обобщающая таблица
Осевая симметрия |
Центральная симметрия |
|
Особенность |
Все точки фигуры должны быть симметричны относительно какой-нибудь прямой. |
Все точки фигуры должны, симметричны относительно точки, выбранной в качестве центра симметрии. |
Свойства |
1. Симметричные точки лежат на перпендикулярах к прямой. 3. Прямые переходят в прямые, углы в равные углы. 4. Сохраняются размеры и формы фигур. |
1. Симметричные точки лежат на прямой, проходящей через центр и данную точку фигуры. 2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки. 3. Сохраняются размеры и формы фигур. |
II. Применение симметрии
Математика |
На уроках алгебры мы изучили графики функций y=x и y=x На рисунках представлены различные картинки, изображенные с помощью ветвей парабол. (а) Октаэдр, (б) ромбический додекаэдр, (в) гексагональной октаэдр. |
|
Русский язык |
Печатные буквы русского алфавита тоже обладают различными видами симметрий. В русском языке есть «симметричные» слова - палиндромы , которые можно читать одинаково в двух направлениях. |
А Д Л М П Т Ф Ш – вертикальная ось В Е З К С Э Ю - горизонтальная ось Ж Н О Х - и вертикальная и горизонтальная Б Г И Й Р У Ц Ч Щ Я – ни какой оси Радар шалаш Алла Анна |
Литература |
Могут быть палиндромичес- кими и предложения. Брюсов написал стихотворение "Голос луны", в котором каждая строка - палиндром. Посмотрите на четверости -шие А.С.Пушкина «Медный всадник». Если провести линию после второй строчки мы можем заметить элементы осевой симметрии |
А роза упала на лапу Азора. Я иду с мечем судия. (Державин) «Искать такси» «Аргентина манит негра», «Ценит негра аргентинец», «Леша на полке клопа нашел». В гранит оделася Нева; Мосты повисли над водами; Темно-зелеными садами Ее покрылись острова… |
Биология |
Тело человека построено по принципу двусторонней симметрии. Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону. |
Ботаника |
Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная - для двудольных Характерной чертой строения растений и их развития является спиральность. Обратите внимание на побеги листорасположения – это тоже своеобразный вид спирали – винтовая. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения наблюдаются при росте корней и побегов. |
Характерной чертой строения растений и их развития является спиральность. Посмотрите на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21. |
Зоология |
Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звёзды. При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. |
Осевая симметрия |
Различные виды симметрии физических явлений: симметрия электрического и магнитного полей (рис. 1) Во взаимно перпендикулярных плоскостях симметрично распространение электромагнитных волн (рис. 2) |
рис.1 рис.2 |
|
Искусство |
В произведениях искусства часто можно наблюдать зеркальную симметрию. Зеркальная" симметрия широко встречается в произведениях искусства примитивных цивилизаций и в древней живописи. Средневековые религиозные картины также характеризуются этим видом симметрии. Одно из лучших ранних произведений Рафаэля – «Обручение Марии» - создано в 1504 году. Под солнечным голубым небом раскинулась долина, увенчанная белокаменным храмом. На первом плане – обряд обручения. Первосвященник сближает руки Марии и Иосифа. За Марией – группа девушек, за Иосифом – юношей. Обе части симметричной композиции скреплены встречным движением персонажей. На современный вкус композиция такой картины скучна, поскольку симметрия слишком очевидна. |
|
Химия |
Молекула воды имеет плоскость симметрии (прямая вертикальная линия).Исключительно важную роль в мире живой природы играют молекулы ДНК (дезоксирибонуклеиновая кислота). Это двуцепочечный высокомолекулярный полимер, мономером которого являются нуклеотиды. Молекулы ДНК имеют структуру двойной спирали, построенной по принципу комплементарности. |
|
Архите ктура |
Издавна человек использовал симметрию в архитектуре. Особенно блистательно использовали симметрию в архитектурных сооружениях древние зодчие. Причем древнегреческие архитекторы были убеждены, что в своих произведениях они руководствуются законами, которые управляют природой. Выбирая симметричные формы, художник тем самым выражал свое понимание природной гармонии как устойчивости и равновесия. В городе Осло, столице Норвегии, есть выразительный ансамбль природы и художественных произведений. Это Фрогнер – парк – комплекс садово-парковой скульптуры, который создавался в течение 40 лет. |
Дом Пашкова Лувр (Париж) |
© Сухачева Елена Владимировна, 2008-2009гг.