Рассчитать площадь треугольника онлайн по двум сторонам. Как можно найти площадь треугольника

Площадь треугольника - формулы и примеры решения задач

Ниже приведены формулы нахождения площади произвольного треугольника которые подойдут для нахождения площади любого треугольника, независимо от его свойств, углов или размеров. Формулы представлены в виде картинки, здесь же приведены пояснения по применению или обоснованию их правильности. Также на отдельном рисунке указаны соответствия буквенных обозначений в формулах и графических обозначений на чертеже.

Примечание . Если же треугольник обладает особыми свойствами (равнобедренный, прямоугольный, равносторонний), можно использовать формулы, приведенные ниже, а также дополнительно специальные, верные только для треугольников с данными свойствами, формулы:

  • "Формулы площади равностороннего треугольника"

Формулы площади треугольника

Пояснения к формулам :
a, b, c - длины сторон треугольника, площадь которого мы хотим найти
r - радиус вписанной в треугольник окружности
R - радиус описанной вокруг треугольника окружности
h - высота треугольника, опущенная на сторону
p - полупериметр треугольника, 1/2 суммы его сторон (периметра)
α - угол, противолежащий стороне a треугольника
β - угол, противолежащий стороне b треугольника
γ - угол, противолежащий стороне c треугольника
h a , h b , h c - высота треугольника, опущенная на сторону a , b , c

Обратите внимание, что приведенные обозначения соответствуют рисунку, который находится выше, чтобы при решении реальной задачи по геометрии Вам визуально было легче подставить в нужные места формулы правильные значения.

  • Площадь треугольника равна половине произведения высоты треугольника на длину стороны на которую эта высота опущена (Формула 1). Правильность этой формулы можно понять логически. Высота, опущенная на основание, разобьет произвольный треугольник на два прямоугольных. Если достроить каждый из них до прямоугольника с размерами b и h, то, очевидно, площадь данных треугольников будет равна ровно половине площади прямоугольника (Sпр = bh)
  • Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (Формула 2) (см. пример решения задачи с использованием этой формулы ниже). Несмотря на то, что она кажется непохожей на предыдущую, она легко может быть в нее преобразована. Если из угла B опустить высоту на сторону b, окажется, что произведение стороны a на синус угла γ по свойствам синуса в прямоугольном треугольнике равно проведенной нами высоте треугольника, что и даст нам предыдущую формулу
  • Площадь произвольного треугольника может быть найдена через произведение половины радиуса вписанной в него окружности на сумму длин всех его сторон (Формула 3), проще говоря, нужно полупериметр треугольника умножить на радиус вписанной окружности (так легче запомнить)
  • Площадь произвольного треугольника можно найти, разделив произведение всех его сторон на 4 радиуса описанной вокруг него окружности (Формула 4)
  • Формула 5 представляет собой нахождение площади треугольника через длины его сторон и его полупериметр (половину суммы всех его сторон)
  • Формула Герона (6) - это представление той же самой формулы без использования понятия полупериметра, только через длины сторон
  • Площадь произвольного треугольника равна произведению квадрата стороны треугольника на синусы прилежащих к этой стороне углов деленного на двойной синус противолежащего этой стороне угла (Формула 7)
  • Площадь произвольного треугольника можно найти как произведение двух квадратов описанной вокруг него окружности на синусы каждого из его углов. (Формула 8)
  • Если известна длина одной стороны и величины двух прилежащих к ней углов, то площадь треугольника может быть найдена как квадрат этой стороны, деленный на двойную сумму котангенсов этих углов (Формула 9)
  • Если известна только длина каждой из высот треугольника (Формула 10), то площадь такого треугольника обратно пропорциональна длинам этих высот, как по Формуле Герона
  • Формула 11 позволяет вычислить площадь треугольника по координатам его вершин , которые заданы в виде значений (x;y) для каждой из вершин. Обратите внимание, что получившееся значение необходимо взять по модулю, так как координаты отдельных (или даже всех) вершин могут находиться в области отрицательных значений

Примечание . Далее приведены примеры решения задач по геометрии на нахождение площади треугольника. Если Вам необходимо решить задачу по геометрии, похожей на которую здесь нет - пишите об этом в форуме. В решениях вместо символа "квадратный корень" может применяться функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение . Иногда для простых подкоренных выражений может использоваться символ

Задача. Найти площадь по двум сторонам и углу между ними

Стороны треугольника равны 5 и 6 см. Угол между ними составляет 60 градусов. Найдите площадь треугольника .

Решение .

Для решения этой задачи используем формулу номер два из теоретической части урока.
Площадь треугольника может быть найдена через длины двух сторон и синус угла межу ними и будет равна
S=1/2 ab sin γ

Поскольку все необходимые данные для решения (согласно формуле) у нас имеются, нам остается только подставить значения из условия задачи в формулу:
S = 1/2 * 5 * 6 * sin 60

В таблице значений тригонометрических функций найдем и подставим в выражение значение синуса 60 градусов . Он будет равен корню из трех на два.
S = 15 √3 / 2

Ответ : 7,5 √3 (в зависимости от требований преподавателя, вероятно, можно оставить и 15 √3/2)

Задача. Найти площадь равностороннего треугольника

Найти площадь равностороннего треугольника со стороной 3см.

Решение .

Площадь треугольника можно найти по формуле Герона:

S = 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))

Поскольку a = b = c формула площади равностороннего треугольника примет вид:

S = √3 / 4 * a 2

S = √3 / 4 * 3 2

Ответ : 9 √3 / 4.

Задача. Изменение площади при изменении длины сторон

Во сколько раз увеличится площадь треугольника, если стороны увеличить в 4 раза?

Решение .

Поскольку размеры сторон треугольника нам неизвестны, то для решения задачи будем считать, что длины сторон соответственно равны произвольным числам a, b, c. Тогда для того, чтобы ответить на вопрос задачи, найдем площадь данного треугольника, а потом найдем площадь треугольника, стороны которого в четыре раза больше. Соотношение площадей этих треугольников и даст нам ответ на задачу.

Далее приведем текстовое пояснение решения задачи по шагам. Однако, в самом конце, это же самое решение приведено в более удобном для восприятия графическом виде. Желающие могут сразу опуститься вниз решения.

Для решения используем формулу Герона (см. выше в теоретической части урока). Выглядит она следующим образом:

S = 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
(см. первую строку рисунка внизу)

Длины сторон произвольного треугольника заданы переменными a, b, c.
Если стороны увеличить в 4 раза, то площадь нового треугольника с составит:

S 2 = 1/4 sqrt((4a + 4b + 4c)(4b + 4c - 4a)(4a + 4c - 4b)(4a + 4b -4c))
(см. вторую строку на рисунке внизу)

Как видно, 4 - общий множитель, который можно вынести за скобки из всех четырех выражений по общим правилам математики.
Тогда

S 2 = 1/4 sqrt(4 * 4 * 4 * 4 (a + b + c)(b + c - a)(a + c - b)(a + b -c)) - на третьей строке рисунка
S 2 = 1/4 sqrt(256 (a + b + c)(b + c - a)(a + c - b)(a + b -c)) - четвертая строка

Из числа 256 прекрасно извлекается квадратный корень, поэтому вынесем его из-под корня
S 2 = 16 * 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
S 2 = 4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
(см. пятую строку рисунка внизу)

Чтобы ответить на вопрос, заданный в задаче, нам достаточно разделить площадь получившегося треугольника, на площадь первоначального.
Определим соотношения площадей, разделив выражения друг на друга и сократив получившуюся дробь.

Понятие площади

Понятие площади любой геометрической фигуры, в частности треугольника, будем связывать с такой фигурой, как квадрат. За единицу площади любой геометрической фигуры будем принимать площадь квадрата, сторона которого равняется единице. Для полноты, вспомним два основных свойства для понятия площадей геометрических фигур.

Свойство 1: Если геометрические фигуры равны, то значения их площадей также равны.

Свойство 2: Любая фигура может быть разбита на несколько фигур. Причем площадь первоначальной фигуры равняется сумме значений площадей всех составляющих её фигур.

Рассмотрим пример.

Пример 1

Очевидно, что одна из сторон треугольника является диагональю прямоугольника , у которого одна сторона имеет длину $5$ (так как $5$ клеток), а вторая $6$ (так как $6$ клеток). Следовательно, площадь этого треугольника будет равняться половине такого прямоугольника. Площадь прямоугольника равняется

Тогда площадь треугольника равняется

Ответ: $15$.

Далее рассмотрим несколько методов для нахождения площадей треугольников, а именно с помощью высоты и основания, с помощью формулы Герона и площадь равностороннего треугольника.

Как найти площадь треугольника через высоту и основание

Теорема 1

Площадь треугольника можно найти как половину произведения длины стороны, на высоту, проведенную к этой стороне.

Математически это выглядит следующим образом

$S=\frac{1}{2}αh$

где $a$ - длина стороны, $h$ - высота, проведенная к ней.

Доказательство.

Рассмотрим треугольник $ABC$, в котором $AC=α$. К этой стороне проведена высота $BH$, которая равняется $h$. Достроим его до квадрата $AXYC$ как на рисунке 2.

Площадь прямоугольника $AXBH$ равняется $h\cdot AH$, а прямоугольника $HBYC$ равняется $h\cdot HC$. Тогда

$S_ABH=\frac{1}{2}h\cdot AH$, $S_CBH=\frac{1}{2}h\cdot HC$

Следовательно, искомая площадь треугольника, по свойству 2, равняется

$S=S_ABH+S_CBH=\frac{1}{2}h\cdot AH+\frac{1}{2}h\cdot HC=\frac{1}{2}h\cdot (AH+HC)=\frac{1}{2}αh$

Теорема доказана.

Пример 2

Найти площадь треугольника на рисунке ниже, если клетка имеет площадь, равную единице

Основание этого треугольника равняется $9$ (так как $9$ составляет $9$ клеток). Высота также равняется $9$. Тогда, по теореме 1, получим

$S=\frac{1}{2}\cdot 9\cdot 9=40,5$

Ответ: $40,5$.

Формула Герона

Теорема 2

Если нам даны три стороны треугольника $α$, $β$ и $γ$, то его площадь можно найти следующим образом

$S=\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

здесь $ρ$ означает полупериметр этого треугольника.

Доказательство.

Рассмотрим следующий рисунок:

По теореме Пифагора из треугольника $ABH$ получим

Из треугольника $CBH$, по теореме Пифагора, имеем

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

Из этих двух соотношений получаем равенство

$γ^2-x^2=α^2-β^2+2βx-x^2$

$x=\frac{γ^2-α^2+β^2}{2β}$

$h^2=γ^2-(\frac{γ^2-α^2+β^2}{2β})^2$

$h^2=\frac{(α^2-(γ-β)^2)((γ+β)^2-α^2)}{4β^2}$

$h^2=\frac{(α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α)}{4β^2}$

Так как $ρ=\frac{α+β+γ}{2}$, то $α+β+γ=2ρ$, значит

$h^2=\frac{2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α)}{4β^2}$

$h^2=\frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2 }$

$h=\sqrt{\frac{4ρ(ρ-α)(ρ-β)(ρ-γ)}{β^2}}$

$h=\frac{2}{β}\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

По теореме 1, получим

$S=\frac{1}{2} βh=\frac{β}{2}\cdot \frac{2}{β} \sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}=\sqrt{ρ(ρ-α)(ρ-β)(ρ-γ)}$

Треугольник - это одна из самых распространенных геометрических фигур, с которой мы знакомимся уже в начальной школе. С вопросом, как найти площадь треугольника, сталкивается каждый школьник на уроках геометрии. Так, какие же особенности нахождения площади данной фигуры можно выделить? В данной статье мы рассмотрим основные формулы, необходимые для выполнения такого задания, а также разберем виды треугольников.

Виды треугольников

Найти площадь треугольника можно абсолютно разными способами, потому что в геометрии выделяется не один вид фигур, содержащих три угла. К таким видам относятся:

  • Тупоугольный.
  • Равносторонний (правильный).
  • Прямоугольный треугольник.
  • Равнобедренный.

Рассмотрим подробнее каждый из существующих типов треугольников.

Такая геометрическая фигура считается наиболее распространенной при решении геометрических задач. Когда возникает необходимость начертить произвольный треугольник, на помощь приходит именно этот вариант.

В остроугольном треугольнике, как понятно по названию, все углы острые и в сумме составляют 180°.

Такой треугольник также очень распространен, однако встречается несколько реже остроугольного. Например, при решении треугольников (т. е. известно несколько его сторон и углов и нужно найти оставшиеся элементы) иногда требуется определить, является угол тупым или нет. Косинус - это отрицательное число.

В величина одного из углов превышает 90°, поэтому оставшиеся два угла могут принимать маленькие значения (например, 15° или вовсе 3°).

Чтобы найти площадь треугольника данного типа, необходимо знать некоторые нюансы, о которых мы поговорим дальше.

Правильный и равнобедренный треугольники

Правильным многоугольником называется фигура, включающаяся в себя n углов, у которой все стороны и углы равны. Таким и является правильный треугольник. Так как сумма всех углов треугольника составляет 180°, то каждый из трех углов равен 60°.

Правильный треугольник, благодаря его свойству, также называют равносторонней фигурой.

Стоит также отметить, что в правильный треугольник можно вписать только одну окружность и около него можно описать только одну окружность, причем их центры расположены в одной точке.

Помимо равностороннего типа, можно также выделить равнобедренный треугольник, несильно от него отличающийся. В таком треугольнике две стороны и два угла равны между собой, а третья сторона (к которой прилегают равные углы) является основанием.

На рисунке показан равнобедренный треугольник DEF, углы D и F которого равны, а DF является основанием.

Прямоугольный треугольник

Прямоугольный треугольник назван так потому, что один из его углов прямой, то есть равен 90°. Другие же два угла в сумме составляют 90°.

Самая большая сторона такого треугольника, лежащая против угла в 90° является гипотенузой, остальные же две его стороны - это катеты. Для данного типа треугольников применима теорема Пифагора:

Сумма квадратов длин катетов равна квадрату длины гипотенузы.

На рисунке изображен прямоугольный треугольник BAC с гипотенузой AC и катетами AB и BC.

Чтобы найти площадь треугольника с прямым углом, нужно знать числовые значения его катетов.

Перейдем к формулам нахождения площади данной фигуры.

Основные формулы нахождения площади

В геометрии можно выделить две формулы, которые подходят для нахождения площади большинства видов треугольников, а именно для остроугольного, тупоугольного, правильного и равнобедренного треугольников. Разберем каждую из них.

По стороне и высоте

Данная формула является универсальной для нахождения площади, рассматриваемой нами фигуры. Для этого достаточно знать длину стороны и длину проведенной к ней высоты. Сама формула (половина произведения основания на высоту) выглядит следующим образом:

где A - сторона данного треугольника, а H - высота треугольника.

Например, чтобы найти площадь остроугольного треугольника ACB, нужно умножить его сторону AB на высоту CD и разделить получившееся значение на два.

Однако не всегда бывает легко найти площадь треугольника таким способом. Например, чтобы воспользоваться этой формулой для тупоугольного треугольника, необходимо продолжить одну из его сторон и только после этого провести к ней высоту.

На практике данная формула применяется чаще остальных.

По двум сторонам и углу

Данная формула, как и предыдущая подходит для большинства треугольников и по своему смыслу является следствием формулы нахождения площади по стороне и высоте треугольника. То есть рассматриваемую формулу можно легко вывести из предыдущей. Ее формулировка выглядит так:

S = ½*sinO*A*B,

где A и B - это стороны треугольника, а O - угол между сторонами A и B.

Напомним, что синус угла можно посмотреть в специальной таблице, названной в честь выдающегося советского математика В. М. Брадиса.

А теперь перейдем к другим формулам, подходящим только для исключительных видов треугольников.

Площадь прямоугольного треугольника

Помимо универсальной формулы, включающей в себя необходимость проводить высоту в треугольнике, площадь треугольника, содержащего прямой угол, можно найти по его катетам.

Так, площадь треугольника, содержащего прямой угол, - это половина произведения его катетов, или:

где a и b - катеты прямоугольного треугольника.

Правильный треугольник

Данный вид геометрических фигур отличается тем, что его площадь можно найти при указанной величине лишь одной его стороны (так как все стороны правильного треугольника равны). Итак, встретившись с задачей «найти площадь треугольника, когда стороны равны», нужно воспользоваться следующей формулой:

S = A 2 *√3 / 4,

где A - это сторона равностороннего треугольника.

Формула Герона

Последний вариант для нахождения площади треугольника - это формула Герона. Для того чтобы ею воспользоваться, необходимо знать длины трех сторон фигуры. Формула Герона выглядит так:

S = √p·(p - a)·(p - b)·(p - c),

где a, b и c - это стороны данного треугольника.

Иногда в задаче дано: «площадь правильного треугольника - найти длину его стороны». В данном случае нужно воспользоваться уже известной нам формулой нахождения площади правильного треугольника и вывести из нее значение стороны (или ее квадрата):

A 2 = 4S / √3.

Экзаменационные задачи

В задачах ГИА по математике встречаются множество формул. Помимо этого, достаточно часто необходимо найти площадь треугольника на клетчатой бумаге.

В данном случае удобнее всего провести высоту к одной из сторон фигуры, определить по клеткам ее длину и воспользоваться универсальной формулой для нахождения площади:

Итак, после изучения представленных в статье формул, у вас не возникнут проблемы при нахождении площади треугольника любого вида.

Инструкция

Стороны и углы считаются основными элементами а . Треугольник полностью определяется любой из следующих своих основных элементов: либо тремя сторонами, либо одной стороной и двумя углами, либо двумя сторонами и углом между ними. Для существования треугольника , задаваемого тремя сторонами a, b, c, необходимо и достаточно выполнение неравенств, называемых неравенствами треугольника :
a+b > c,
a+c > b,
b+c > a.

Для построения треугольника по трем сторонам a, b, c, необходимо из точки С отрезка СВ=a как из провести циркулем окружность радиусом b. Затем аналогичным образом провести из точки B окружность радиусом равным стороне c. Точка их пересечения A – третья вершина искомого треугольника ABC, где АВ=c, CB=a, CA=b - стороны треугольника . Задача имеет , если стороны a, b, c, удовлетворяют неравенствам треугольника указанным в шаге 1.

Площадь S, построенного таким образом треугольника ABC с известными сторонами a, b, c, вычисляется по формуле Герона:
S=v(p(p-a)(p-b)(p-c)),
где a, b, c – стороны треугольника , p – полупериметр.
p = (a+b+c)/2

Если треугольник является равносторонним, то есть все его стороны равны (a=b=c).Площадь треугольника вычисляется по формуле:
S=(a^2 v3)/4

Если треугольник является прямоугольным, то есть один из его углов равен 90°, а стороны, его образующие, катетами, третья сторона гипотенузой. В данном случае площадь равняется произведению катетов, деленному на два.
S=ab/2

Чтобы найти площадь треугольника , можно воспользоваться одной из многочисленных формул. Формулу выбирайте в зависимости от того, какие данные уже известны.

Вам понадобится

  • знание формул для нахождения площади треугольника

Инструкция

Если вы знаете величину одной из сторон и величину высоты, опущенной на эту сторону из противолежащего ей угла, то можно найти площадь по следующей : S = a*h/2, где S - площадь треугольника, a - одна из сторон треугольника, а h - высота, к стороне a.

Существует известная для определения площади треугольника, если известны три его стороны. Она формулой Герона. Для упрощения ее записи вводят промежуточную величину - полупериметр: p = (a+b+c)/2, где a, b, c - . Тогда формула Герона следующим образом: S = (p(p-a)(p-b)(p-c))^½, ^ возведение в степень.

Предположим, что вам известна одна из сторон треугольника и три угла. Тогда легко найти площадь треугольника: S = a²sinα sinγ / (2sinβ), где β - угол, противолежащий стороне a, а α и γ - прилежащие к стороне углы.

Видео по теме

Обратите внимание

Самая общая формула, которая подходит для всех случаев - это формула Герона.

Источники:

Совет 3: Как найти по трем сторонам площадь треугольника

Поиск площади треугольника - одна из самых распространенных задач школьной планиметрии. Знания трех сторон треугольника достаточно для определения площади любого треугольника. В частных случаях и равностороннего треугольников достаточно знать длины двух и одной стороны соответственно.

Вам понадобится

  • длины сторон треугольников, формула Герона, теорема косинусов

Инструкция

Формула Герона для площади треугольника следующим образом: S = sqrt(p(p-a)(p-b)(p-c)). Если расписать полупериметр p, то получится: S = sqrt(((a+b+c)/2)((b+c-a)/2)((a+c-b)/2)((a+b-c)/2)) = (sqrt((a+b+c)(a+b-c)(a+c-b)(b+c-a)))/4.

Можно вывести формулу для площади треугольника и из соображений, например, применив теорему косинусов.

По теореме косинусов AC^2 = (AB^2)+(BC^2)-2*AB*BC*cos(ABC). Используя введенные обозначения, эти можно также в виде: b^2 = (a^2)+(c^2)-2a*c*cos(ABC). Отсюда, cos(ABC) = ((a^2)+(c^2)-(b^2))/(2*a*c)

Площадь треугольника находится также по формуле S = a*c*sin(ABC)/2 через две стороны и угол между ними. Синус угла ABC можно выразить через его с помощью основного тригонометрического тождества: sin(ABC) = sqrt(1-((cos(ABC))^2). Подставляя синус в формулу для площади и расписывая его, можно прийти к формуле для площади треугольника ABC.

Видео по теме

Для проведения ремонтных работ бывает необходимо измерить площадь стен. Так проще рассчитать необходимое количество краски или обоев. Для измерений лучше всего воспользоваться рулеткой или сантиметровой лентой. Замеры следует проводить уже после того, как стены были выровнены.

Вам понадобится

  • -рулетка;
  • -стремянка.

Инструкция

Чтобы посчитать площадь стен, вам необходимо знать точную высоту потолков, а также произвести замеры длины по полу. Делается это следующим образом: возьмите сантиметр, проложите его над плинтусом. Обычно сантиметра для всей длины не хватает, поэтому закрепите его в углу, затем размотайте на максимальную длину. В этой точке поставьте отметку карандашом, запишите полученный результат и дальнейшее измерение проводите тем же образом, начиная с последней точки замера.

Стандартная потолков в типовых - 2 метра 80 сантиметров, 3 метра и 3 метра 20 сантиметров, в зависимости от дома. Если дом был построен до 50-х годов, то, скорее всего, реальная высота несколько ниже указанной. Если вы вычисляете площадь для ремонтных работ, то небольшой запас не повредит - считайте, исходя из стандарта. Если все же необходимо знать реальную высоту - проведите замеры . Принцип аналогичен измерению длины, но потребуется стремянка.

Перемножьте полученные показатели - это и есть площадь вашей стены . Правда, при покрасочных работах или для необходимо вычесть площадь дверных и оконных проемов. Для этого проложите сантиметр вдоль проема. Если речь идет о двери, которую вы впоследствии собираетесь менять, то проводите со снятой дверной коробкой, учитывая только площадь непосредственно самого проема. Площадь окна высчитывается по периметру его рамы. После того, как площадь окна и дверного проема высчитана, вычтите результат из общей полученной площади комнаты.

Учтите, что замеры длины и ширины комнаты проводить вдвоем, так легче зафиксировать сантиметр или рулетку и, соответственно, получить более точный результат. Проводите один и тот же замер несколько раз, чтобы убедиться в точности полученных цифр.

Видео по теме

Нахождение объема треугольника действительно нетривиальная задача. Дело в том, что треугольник - двухмерная фигура, т.е. он целиком лежит в одной плоскости, а это значит, что у него попросту нет объема. Разумеется нельзя найти то, чего не существует. Но не будем опускать руки! Можно принять следующее допущение - объем двухмерной фигуры, это ее площадь. Площадь треугольника мы и будем искать.

Вам понадобится

  • лист бумаги, карандаш, линейка, калькулятор

Инструкция

Начертите на листе бумаги при помощи линейки и карандаша. Внимательно рассмотрев треугольник, вы сможете убедиться, что у него действительно нет , так как он нарисован на плоскости. Подпишите стороны треугольника: пусть одна сторона будет стороной "а", другая - стороной "b", и третья - стороной "c". Подпишите вершины треугольника буквами "А", "B" и "C".

Измерьте линейкой любую сторону треугольника и запишите получившийся результат. После этого восстановите перпендикуляр к измеренной стороне из противоположной ей вершины, такой перпендикуляр будет высотой треугольника. В случае, представленном на рисунке, перпендикуляр "h" восстановлен к стороне "c" из вершины "A". Измерьте получившуюся высоту линейкой и запишите результат измерения.

Может случиться, что вам будет сложно восстановить точный перпендикуляр. В этом случае вам следует воспользоваться другой формулой. Измерьте все стороны треугольника линейкой. После этого подсчитайте полупериметр треугольника "p", сложив получившиеся длины сторон и разделив их сумму пополам. Имея в своем распоряжении значение полупериметра, вы можете по формуле Герона. Для этого необходимо извлечь квадратный корень из следующего : p(p-a)(p-b)(p-c).

Вы получили искомую величину площади треугольника. Задача нахождения объема треугольника не решена, но как говорилось выше, объема не . Вы можете найти объем , которая по сути треугольником в трехмерном мире. Если представить, что наш первоначальный треугольник стал трехмерной пирамидой, то объем такой пирамиды будет произведению длины ее основания на полученную нами площадь треугольника.

Обратите внимание

Подсчеты будут тем точнее, чем тщательнее вы будете производить измерения

Источники:

  • Калькулятор “Все во все” - портал по справочным величинам
  • объем треугольника в 2019

Три точки, однозначно определяющие треугольник в Декартовой системе координат - это его вершины. Зная их положение относительно каждой из координатных осей можно вычислить любые параметры этой плоской фигуры, включая и ограничиваемую ее периметром площадь . Это можно сделать несколькими способами.

Инструкция

Используйте формулу Герона для расчета площади треугольника . В ней задействованы размеры трех сторон фигуры, поэтому вычисления начините с . Длина каждой стороны должна быть равна корню из суммы квадратов длин ее проекций на координатные оси. Если обозначить координаты A(X₁,Y₁,Z₁), B(X₂,Y₂,Z₂) и C(X₃,Y₃,Z₃), длины их сторон можно выразить так: AB = √((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²), BC = √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²), AC = √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Для упрощения расчетов введите вспомогательную переменную - полупериметр (Р). Из , что это половина суммы длин всех сторон: Р = ½*(AB+BC+AC) = ½*(√((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²) + √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²) + √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²).

Чтобы определить площадь треугольника, можно пользоваться разными формулами. Из всех способов самый легкий и часто применяемый - это умножение высоты на длину основания с последующим делением полученного результата на два. Однако данный метод далеко не единственный. Ниже вы сможете прочесть, как найти площадь треугольника, используя разные формулы.

Отдельно мы рассмотрим способы вычисления площади специфических видов треугольника - прямоугольного, равнобедренного и равностороннего. Каждую формулу мы сопровождаем коротким пояснением, которое поможет вам понять ее суть.

Универсальные способы нахождения площади треугольника

В приведенных ниже формулах используются специальные обозначения. Мы расшифруем каждое из них:

  • a, b, c – длины трех сторон рассматриваемой нами фигуры;
  • r – радиус окружности, которая может быть вписана в наш треугольник;
  • R – радиус той окружности, которая может быть описана вокруг него;
  • α - величина угла, образованного сторонами b и с;
  • β - величина угла между a и c;
  • γ - величина угла, образованного сторонами а и b;
  • h – высота нашего треугольника, опущенная из угла α на сторону а;
  • p – половина суммы сторон a, b и с.

Логически понятно, почему можно находить площадь треугольника этим способом. Треугольник легко достраивается до параллелограмма, в котором одна сторона треугольника будет выполнять роль диагонали. Площадь параллелограмма находится умножением длины одной из его сторон на значение высоты, проведенной к ней. Диагональ разделяет этот условный параллелограмм на 2 одинаковых треугольника. Следовательно, совершенно очевидно, что площадь нашего исходного треугольника должна равняться половине площади этого вспомогательного параллелограмма.

S=½ a · b·sin γ

Согласно этой формуле, площадь треугольника находится умножением длин двух его сторон, то есть а и b, на синус образованного ими угла. Эта формула логически выводится из предыдущей. Если опустить высоту из угла β на сторону b, то, согласно свойствам прямоугольного треугольника, при умножении длины стороны a на синус угла γ получаем высоту треугольника, то есть h.

Площадь рассматриваемой фигуры находим путем умножения половины радиуса окружности, которую в него можно вписать, на его периметр. Иными словами, находим произведение полупериметра на радиус упомянутой окружности.

S= a · b · с/4R

Согласно данной формуле, необходимую нам величину можно найти путем деления произведения сторон фигуры на 4 радиуса окружности, вокруг нее описанной.

Эти формулы универсальны, так как дают возможность определить площадь любого треугольника (разностороннего, равнобедренного, равностороннего, прямоугольного). Можно это сделать и при помощи более сложных вычислений, на которых мы подробно останавливаться не станем.

Площади треугольников со специфическими свойствами

Как найти площадь прямоугольного треугольника? Особенностью этой фигуры является то, что две ее стороны одновременно являются ее высотами. Если а и b являются катетами, а с становится гипотенузой, то площадь находим так:

Как найти площадь равнобедренного треугольника? В нем две стороны с длиной а и одна сторона с длиной b. Следовательно, его площадь определить можно путем деления на 2 произведения квадрата стороны а на синус угла γ.

Как найти площадь равностороннего треугольника? В нем длина всех сторон равняется а, а величина всех углов - α. Его высота равна половине произведения длины стороны а на корень квадратный из 3. Чтобы найти площадь правильного треугольника, нужно квадрат стороны а умножить на корень квадратный из 3 и разделить на 4.