Треугольника формуле герона найдем. Площадь треугольника. Примеры задач на использование формулы Герона
Теорема . Площадь треугольника равна половине произведения его стороны на проведённую к ней высоту:
Доказательство проводится очень просто. Данный треугольник АВС (рис. 1.15) достроим до параллелограмма ABDC . Треугольники ABC и DCB равны по трём сторонам, поэтому их площади равны. Значит площадь треугольника АВС равна половине площади параллелограмма ABDC , т. е.
Но здесь возникает следующий вопрос: почему три возможных полупроизведения основания на высоту для всякого треугольника одинаковы? Это, впрочем, легко доказать из подобия прямоугольников с общим острым углом. Рассмотрим треугольник АВС (рис. 1.16):
И, следовательно,
Однако в школьных учебниках так не делается. Наоборот, равенство трёх полупроизведений устанавливается на основе того, что все эти полупроизведения выражают площадь треугольника. Таким образом, неявно используется существование единственной функции. А ведь здесь появляется удобная и поучительная возможность продемонстрировать пример математического моделирования. Действительно, за понятиям площади стоит физическая реальность, но прямая проверка равенства трёх полупроизведений показывает добротность перевода этого понятия на язык математики.
Пользуясь приведённой выше теоремой о площади треугольника очень часто бывает удобно сравнивать площади двух треугольников. Приведём ниже некоторые очевидные, но важные следствия из теоремы.
Следствие 1 . Если вершину треугольника передвигать по прямой, параллельной её основанию, то его площадь при этом не меняется.
На рис. 1.17 треугольники АВС и АВD имеют общее основание АВ и равные высоты, опущенные на это основание, т. к. прямая а , которая содержит вершины С и D параллельна основанию АВ , а поэтому площади этих треугольников равны.
Следствие 1 можно переформулировать следующим образом.
Следствие 1? . Пусть дан отрезок АВ . Множество точек М таких, что площадь треугольника АМВ равна заданной величине S , есть две прямые, параллельные отрезку АВ и находящиеся от него на расстоянии (рис. 1. 18)
Следствие 2 . Если одну из сторон треугольника, прилежащих к данному его углу, увеличить в k раз, то площадь его также увеличится в k раз.
На рис. 1.19 треугольники АВС и ABD имеют общую высоту ВH , поэтому отношение их площадей равно отношению оснований
Из следствия 2 следуют важные частные случаи:
1. Медиана делит треугольник на две рановеликие части.
2. Биссектриса угла треугольника, заключённая между его сторонами а и b , делит его на два треугольника, площади которых относятся как a : b .
Следствие 3 . Если два треугольника имеют общий угол, то их площади относятся как произведения сторон, заключающих этот угол.
Это следует из того, что (рис. 1.19)
В частности, имеет место следующее утверждение:
Если два треугольника подобны и сторона одного из них в k раз больше соответствующих сторон другого, то его площадь в k 2 раз больше площади второго.
Выведем формулу Герона для площади треугольника следующими двумя способами. В первом используем теорему косинусов:
где a, b, c - длины сторон треугольника, г - угол, противолежащий стороне с.
Из (1.3) находим.
Замечая, что
где - полупериметр треугольника, получаем.
Эта формула позволяет вычислить площадь треугольника по его сторонам а, b и с:
S=√(р(р-а)(р-b)(р-с),
где р - полупериметр треугольника, т.е. р = (а + b + с)/2.
Формула названа в честь древнегреческого математика Герона Александрийского (около I в.). Герон рассматривал треугольники с целочисленными сторонами, площади которых также являются целыми числами. Такие треугольники называют героновыми. Например, это треугольники со сторонами 13, 14, 15 или 51, 52, 53.
Существуют аналоги формулы Герона для четырехугольников. В связи с тем, что задача на построение четырехугольника по его сторонам а, Ь, с и d имеет не единственное решение, для вычисления в общем случае площади четырехугольника недостаточно только знания длин сторон. Приходится вводить дополнительные параметры или накладывать ограничения. Например, площадь вписанного четырехугольника находится по формуле: S=√(р-а)(р-b)(р-с)(p-d)
Если же четырехугольник и вписанный, и описанный одновременно, его площадь находится
по более простой формуле: S=√(abcd)
.
Герон Александрийский - греческий математик и механик.
Он первым изобрёл автоматические двери, автоматический театр кукол, автомат для продаж, скорострельный самозаряжающийся арбалет, паровую турбину, автоматические декорации, прибор для измерения протяжённости дорог (древний одометр) и др. Первым начал создавать программируемые устройства (вал со штырьками с намотанной на него верёвкой).
Занимался геометрией, механикой, гидростатикой, оптикой. Основные произведения: Метрика, Пневматика, Автоматопоэтика, Механика (произведение сохранилось целиком в арабском переводе), Катоптрика (наука о зеркалах; сохранилась только в латинском переводе) и др. В 1814 году было найдено сочинение Герона «О диоптре», в котором изложены правила земельной съёмки, фактически основанные на использовании прямоугольных координат. Герон использовал достижения своих предшественников: Евклида, Архимеда, Стратона из Лампсака. Многие из его книг безвозвратно утеряны (свитки содержались в Александрийской библиотеке).
В трактате «Механика» Герон описал пять типов простейших машин: рычаг, ворот, клин, винт и блок.
В трактате «Пневматика» Герон описал различные сифоны, хитроумно устроенные сосуды, автоматы, приводимые в движение сжатым воздухом или паром. Это эолипил, представлявший собой первую паровую турбину - шар, вращаемый силой струй водяного пара; автомат для открывания дверей, автомат для продажи «святой» воды, пожарный насос, водяной орган, механический театр марионеток.
В книге «О диоптре» описан диоптр - простейший прибор, применявшийся для геодезических работ. Герон излагает в своём трактате правила земельной съёмки, основанные на использовании прямоугольных координат.
В «Катоптрике» Герон обосновывает прямолинейность световых лучей бесконечно большой скоростью их распространения. Герон рассматривает различные типы зеркал, особое внимание уделяя цилиндрическим зеркалам.
«Метрика» Герона и извлечённые из неё «Геометрика» и «Стереометрика» представляют собой справочники по прикладной математике. Среди содержащихся в «Метрике» сведений:
Формулы для площадей правильных многоугольников.
Объёмы правильных многогранников, пирамиды, конуса, усечённого конуса, тора, шарового сегмента.
Формула Герона для расчёта площади треугольника по длинам его сторон (открытая Архимедом).
Правила численного решения квадратных уравнений.
Алгоритмы извлечения квадратных и кубических корней.
Книга Герона «Определения» представляет собой обширный свод геометрических определений, по большей части совпадающих с определениями «Начал» Евклида.
Конспект урока
Тема: «Формула Герона и другие формулы для площади треугольника».
Тип урока : урок открытия новых знаний.
Класс: 10.
Цели урока: обеспечить в ходе урока сознательное повторение формул для вычисления площади треугольника, которые изучаются в школьной программе. Показать необходимость знания II формулы Герона, формулы площади треугольника, заданного в прямоугольной системе координат. Обеспечить сознательное усвоение и применение этих формул при решении задач.
Задачи:
Развивающие: развитие логического мышления, способности самостоятельно решать учебные задачи; развитие любознательность учащихся, познавательного интереса к предмету; развитие творческого мышления, математической речи учащихся;
Воспитательные: воспитание интереса к математике; создание условий для формирования коммуникативных навыков и волевых качеств личности.
Образовательные: углубление знани й модуля действительного числа; обучить умению решать типовые задачи.
Универсальные учебные действия:
Личностные: уважение к личности и ее достоинству; устойчивый познавательный интерес; умение вести диалог на основе равноправных отношений и взаимного уважения.
Регулятивные: ставить цели деятельности на уроке; планировать пути достижения цели; принимать решения в проблемной ситуации на основе переговоров.
Познавательные: в ладеть общими приемами решения задач, выполнения заданий и вычислений; выполнять задания на основе использования свойств модуля действительного числа.
Коммуникативные: а декватно использовать речь для планирования и регуляции своей деятельности; формулировать собственное мнение.
Техническое обеспечение : компьютер, проектор, интерактивная доска.
Структура урока
Мотивационный этап – 2мин.
Домашняя работа – 1 мин.
Этап актуализации знаний по предложенной теме и осуществление первого пробного действия – 10 мин.
Выявление затруднения: в чем сложность нового материала, что именно создает проблему, поиск противоречия - 4 мин.
Разработка проекта, плана по выходу их создавшегося затруднения, рассмотрения множества вариантов, поиск оптимального решения – 2 мин.
Реализация выбранного плана по разрешению затруднения- 5 мин.
Первичное закрепление нового знания - 10 мин.
Самостоятельная работа и проверка по эталону – 5 мин.
Рефлексия, включающая в себя и рефлексию учебной деятельности, и самоанализ, и рефлексию чувств и эмоций – 1мин.
Ход урока.
Мотивационный этап.
Здравствуйте ребята, присаживайтесь. Сегодня наш урок пройдёт по следующему плану: в ходе урока мы изучим новую тему: « Формула Герона и другие формулы для площади треугольника »; повторим те формулы, которые вы знаете; научимся применим эти формулы при решении задач. Итак, приступаем к работе.
Этап актуализации знаний по предложенной теме и осуществление первого пробного действия.
Слайд 1.
Запишите тему урока. Прежде чем приступить непосредственно к формулам, давайте вспомним какие же формулы для вычисления площади треугольника вы знаете?
Слайд 2.
Напишите эти формулы.
Какие же формулы для вычисления площади треугольника вы знаете? (учащиеся вспоминает все изученные ими формулы)
Слайд 3.
Площадь прямоугольного треугольника. S= ab. Запишите формулу
Слайд 4.
Площадь любого треугольника. S= а . a = , = Запишите формулу.
Слайд 5. Площадь треугольника по двум сторонам и углу между ними.
S=½·ab·sinα. Запишите формулу.
А теперь мы изучим новые формулы для нахождения площади.
Слайд 6.
Площадь треугольника через радиус вписанной окружности. S = Р r. Запишите формулу.
Слайд 7.
Площадь треугольника через R-радиус описанной окружности.
Запишите формулу.
Слайд 8.
Формула Герона.
Прежде чем приступим к доказательству вспомним две теоремы геометрии - это теорема синусов и теорема косинусов.
1. , a=2R; b=2R; c=2R
2., cos γ = .
Слайд 9- 10
Доказательство формулы Герона. Запишите формулу.
Слайд 11.
Формула площади треугольника по трём сторонам была открыта Архимедом в III в до н.э. Однако соответствующая работа до наших дней не дошла. Эта формула содержится в «Метрике» Герона Александрийского (I в н. э.) и названа в его честь. Герон интересовался треугольниками с целочисленными сторонами, площади которых также являются целыми. Такие треугольники носят название Героновых треугольников. Простейшим Героновым треугольником является египетский треугольник
Выявление затруднения: в чем сложность нового материала, что именно создает проблему, поиск противоречия.
Слайд 12.
Найдите площадь треугольника с данными сторонами: 4,6,8. Хватает ли сведений для решения задачи? Через какую формулу можно решить данное задание?
Разработка проекта, плана по выходу их создавшегося затруднения, рассмотрения множества вариантов, поиск оптимального решения.
Данную задачу можно решить с помощью формулы Герона. Для начало необходимо найти полупериметр треугольника, а затем полученные значения подставить в формулу.
Реализация выбранного плана по разрешению затруднения.
Нахождение р
p =(13+14+15)/2=21
p - a =21-13=8
p-b=21-14=7
p-c=21-15=6
S = 21*8*7*6=84
Ответ :84
Задача №2
Найдите стороны треугольника ABC , если площадь треугольников ABO , BCO , ACO ,где О-центр вписанной окружности, равны 17,65,80 дц 2 .
Решение:
S =17+65+80=162 –складываем площади треугольников. По формуле
S ABO =1/2 AB * r , следовательно 17=1/2 AB * r ; 65=1/2ВС* r ; 80=1/2 AC * r
34/r=AB; 130/r=BC; 160/r=AC
Находим р
p = (34+130+160)/2=162/ r
(р-а)=162-34=128 (р- c )=162-160=2
(р- b )=162-130=32
По формуле Герона S = 128/ r *2/ r *32/ r *162/ r =256*5184/ r 4 =1152/ r 2
Т.к S =162, следовательно r = 1152/162=3128/18
Ответ: AB=34 /3128/18, ВС=130/3128/18, АС=160/3128/18.
Первичное закрепление нового знания.
№10(1)
Найдите площадь треугольника с данными сторонами:
№12
Самостоятельная работа и проверка по эталону.
№10.(2)
Домашнее задание . П.83, №10(3), №15
Рефлексия, включающая в себя и рефлексию учебной деятельности, и самоанализ, и рефлексию чувств и эмоций.
Какие формулы вы сегодня повторили?
Какие формулы вы узнали только сегодня?
Можно найти, зная основание и высоту . Вся простота схемы заключается в том, что высота делит основание a на две части a 1 и a 2 , а сам треугольник – на два прямоугольных треугольника , площадь которых получается и . Тогда площадь всего треугольника будет суммой двух указанных площадей, и если мы вынесем одну вторую высоты за скобку, то в сумме мы получим обратно основание:
Более сложный для расчетов способ – это формула Герона, для которой необходимо знать все три стороны. Для этой формулы нужно вычислить сначала полупериметр треугольника : Сама формула Герона подразумевает квадратный корень из полупериметра, умноженного поочередно на разность его с каждой из сторон.
Следующий способ, также актуальный для любого треугольника, позволяет найти площадь треугольника через две стороны и угол между ними. Доказательство этому проистекает из формулы с высотой – проводим высоту на любую из известных сторон и через синус угла α получаем, что h=a⋅sinα . Для вычисления площади умножим половину высоты на вторую сторону.
Другой способ – найти площадь треугольника, зная 2 угла и сторону между ними. Доказательство этой формулы достаточно простое, и наглядно видно из схемы.
Опускаем из вершины третьего угла высоту на известную сторону и называем полученные отрезки x соответственно. Из прямоугольных треугольников видно, что первый отрезок x равен произведению
Герона формула Геро́на фо́рмула
выражает площадь s треугольника через длины трёх его сторон а , b и с и полупериметр р = (а + b + с )/2: . Названа по имени Герона Александрийского.
ГЕРОНА ФОРМУЛАГЕРО́НА ФО́РМУЛА, выражает площадь S
треугольника через длины трех его сторон a
, b
и c
и полупериметр P
= (a
+ b
+ c
)/2
Названа по имени Герона Александрийского.
Энциклопедический словарь . 2009 .
Смотреть что такое "Герона формула" в других словарях:
Выражает площадь S треугольника через длины трех его сторон a, b и c и полупериметр P = (a + b + c)/2Названа по имени Герона Александрийского … Большой Энциклопедический словарь
Формула выражающая площадь треугольника через три его стороны. Именно, если а, b, с длины сторон треугольника, a S его площадь, то Г. ф. имеет вид: где через р обозначен полупериметр треугольника Г. ф.… …
Формула, выражающая площадь треугольника через его стороны a, b, с: где Названа по имени Герона (ок. 1 в. Н. Э.), А. Б. Иванов … Математическая энциклопедия
Выражает площадь 5 треугольника через длины трёх его сторон а, b и с и полупериметр р = (а + b + с)/2: s = кв. корень p(p a)(p b)(p c). Названа по имени Герона Александрийского … Естествознание. Энциклопедический словарь
- … Википедия
Позволяет вычислить площадь треугольника (S) по его сторонам a, b, c: где p полупериметр треугольника: . Доказательство, где угол треугольн … Википедия
Выражает площадь вписанного в окружность четырёхугольника как функцию длин его сторон. Если вписанный четырёхугольник имеет длины сторон и полупериметр, то его площадь равна … Википедия
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия
- (Heronus Alexandrinus)(гг. рождения и смерти неизвестны, вероятно, 1 в.), древнегреческий учёный, работавший в Александрии. Автор работ, в которых систематически изложил основные достижения античного мира в области прикладной механики, В… … Большая советская энциклопедия
Александрийский (Heronus Alexandrinus)(гг. рождения и смерти неизвестны, вероятно, 1 в.), древнегреческий учёный, работавший в Александрии. Автор работ, в которых систематически изложил основные достижения античного мира в области… … Большая советская энциклопедия