В чем измеряется радиус земли. Какова форма и размеры Земли: точные данные

История [ | ]

Современные представления [ | ]

В нулевом приближении можно считать, что Земля имеет форму шара со средним радиусом 6371,3 км. Такое представление нашей планеты хорошо подходит для задач, точность вычислений в которых не превышает 0,5 %. В действительности Земля не является идеальным шаром. Из-за суточного вращения она сплюснута с полюсов; высоты материков различны; форму поверхности искажают и приливные деформации.

Если бы Земля была целиком покрыта океаном и не подвергалась приливному воздействию других небесных тел и прочим подобным возмущениям, она имела бы форму геоида . В действительности в различных местах поверхность Земли может значительно отличаться от геоида. Для лучшей аппроксимации поверхности вводят понятие референц-эллипсоида , который хорошо совпадает с геоидом только на каком-то участке поверхности. Геометрические параметры референц-эллипсоидов отличаются от параметров среднего земного эллипсоида , который описывает земную поверхность в целом.

На практике используется несколько различных средних земных эллипсоидов и связанных с ними систем земных координат.

Название a, км 1/f GM ⊕ ×10 14 м³c −2 J 2 ×10 −3 Ω×10 −5 рад/с
WGS84 6378,137 298,257223563 3,986004418 1,08263 7,292115

Древние египтяне заметили, что во время летнего солнцестояния солнце освещает дно глубоких колодцев в сиене (ныне Асуан), а в Александрии - нет. У Эратосфена Киренского (276 год до н. э. -194 год до н. э.) появилась гениальная идея - использовать этот факт для измерения окружности и радиуса земли. В день летнего солнцестояния в Александрии он использовал скафис - чашу с длинной иглой, при помощи которого можно было определить под каким углом солнце находится на небе.

Итак, после измерения угол оказался 7 градусов 12 минут, то есть 1/50 окружности. Стало быть сиена отстоит от александрии на 1/50 окружности земли. Расстояние между городами считалось равным 5, 000 стадиям, следовательно окружность земли равнялась 250, 000 стадиям, а радиус тогда 39, 790 стадиев.

Неизвестно каким стадием пользовался Эратосфен. Лишь в том случае, если греческим (178 метров), то его радиус земли равнялся 7, 082 км, если египетским, то 6, 287 км. Современные измерения дают для усреднённого радиуса земли величину 6, 371 км. В любом случае, точность для тех времён потрясающая.

Радиус земли в м. Какой радиус Земли?

Полярный радиус Земли - малая полуось эллипсоида Красовского, равная 6 356 863 м.

Экваториальный радиус Земли - большая полуось эллипсоида Красовского, равная 6 378 245 м.

Средний радиус Земли - 6 371 302 м.

История измерения радиуса Земли

Эраторсфен. Еще древние египтяне заметили, что во время летнего солнцестояния Солнце освещает дно глубоких колодцев в Сиене (ныне Асуан), а в Александрии - нет. У Эратосфена Киренского (276 год до н. э.-194 год до н. э.) появилась гениальная идея - использовать этот факт для измерения окружности и радиуса Земли. В день летнего солнцестояния в Александрии он использовал скафис - чашу с длинной иглой, при помощи которого можно было определить под каким углом Солнце находится на небе.
Итак, после измерения угол оказался 7 градусов 12 минут, то есть 1/50 окружности. Стало быть Сиена отстоит от Александрии на 1/50 окружности Земли. Расстояние между городами считалось равным 5 тыс. стадиев, следовательно окружность Земли равнялась 250 тыс. стадиев, а радиус тогда 39,8 тыс. стадиев.
Неизвестно каким стадием пользовался Эратосфен. Если греческим (178 метров), то его радиус Земли получался 7,08 тыс. км, если египетским, то 6,3 тыс. км. Современные измерения дают для усреднённого радиуса Земли величину 6,371 км. В любом случае, точность для тех времён потрясающая.

определяются не одной числовой характеристикой. Ученые обозначают его размер несколькими параметрами. Первый параметр – радиус. Его величина составляет 3 389,5 километров. Второй – окружность, которая численно равна 21 344 километра. Далее следует объем – 6,083·1010 км³. Последним параметром является масса Марса, которая равна 3,33022·1023 кг.

Для сравнения, диаметрсоставляет 53% от диаметра Земли. На первый взгляд это немного, но его величина сравнима с общей площадью суши на. Объем Марса составляет 15% от объема Земли, а масса – 11%. Из приведенных данных видно, что Марс небольшая планета, он в 2 раза меньше Земли и по величине – 7 планета в.

Сравнение размеров Земли, Марса и Луны

Несмотря на свой небольшой размер и отсутствие на нем жизни, у Марса много интересных особенностей. Самая высокая гора Солнечной системы –– находится на Красной планете. Марсианская– самая глубокая. Сотни тысяч кратеров покрывают поверхность Красной планеты. Северный полярный бассейн – крупнейшая из известных равнин, а равнина Эллада, размер которой 2100 км – глубочайшая на планете и третья по величине в Солнечной системе.

Экстремальные топографические особенности Красной планеты дополняют не менее экстремальные погодные условия. Марс – холодная планета. Средняя температура поверхности составляет 470С ниже нуля. Летом в районе экватора температура днем может подняться до +200С, а ночью упасть до -900С. Такие перепады температуры в 1100С вызывают сильнейшие ураганы, достигающие скорости торнадо. Они поднимают с поверхности Марса пыль, и тогда начинается пыльная буря. Астрономы наблюдали на Марсе бури, которые охватывали всю планету всего за несколько дней.

По мнению ученых, Марс в начале развития Солнечной системы был гораздо больших размеров. Размеры планеты уменьшились в результате внешнего воздействия, например столкновения с каким-то космическим телом, которое вызвало образование Северного полярного бассейна. Куски поверхности, разрушенной взрывом, преодолев гравитационное поле Марса, были выброшены в комическое пространство.

Итак, не только размеры Марса могут представлять интерес. О Красной планете можно узнать еще много интересного, все зависит от нашего с вами желания. Много интересного можно узнать и о других планетах –и

Как Эратосфен измерил радиус земли. Греческий астроном Эратосфен первым вычислил радиус Земли: любопытные факты

Точность измерения Эратосфена для тех времён была просто удивительная

Эратосфен Киренский (276 год до н.э. - 194 год до н.э.) - греческий математик, астроном, географ и поэт.

19 июня 240 года до н.э. Эратосфен использовал скафис (чашу с длинной иглой), с помощью которой можно было определить под каким углом Солнце находится на небе. Это был день летнего солнцестояния в Александрии.

Неудовлетворенный познаниями, приобретёнными в Александрии, Эратосфен отправился в Афины, где так тесно сблизился со школой Платона, что обыкновенно называл себя платоником.

Результатом изучения наук в этих обоих центрах древнегреческого просвещения была очень разносторонняя, почти энциклопедическая эрудиция Эратосфена; он писал, кроме сочинений по математике, астрономии, геодезии, географии и хронологии, ещё трактаты «о добре и зле», о комедии и др.

Царь Птолемей III Эвергет тотчас же после смерти Каллимаха вызвал Эратосфена из Афин и поручил ему заведование великой Александрийской библиотекой. Эрастофен - автор многих трудов по математике, астрономии, геодезии, географии. Один из интересных фактов жизни Эратосфена – вычисление радиуса Земли.

Древние египтяне заметили, что во время летнего солнцестояния Солнце освещает дно глубоких колодцев в Сиене (ныне Асуан), а в Александрии - нет. Эратосфен использовал этот факт для измерения окружности и радиуса Земли.

После измерения угол оказался 7 градусов 12 минут, то есть 1/50 окружности. Поэтому Сиена отстает от Александрии на 1/50 окружности Земли. Расстояние между городами равнялось 5,000 стадиям, следовательно окружность Земли равнялась 250,000 стадий, а радиус тогда был 39,790 стадий.

Неизвестно какими стадиями пользовался Эратосфен. Если греческими (178 метров), то его радиус земли - 7,082 км, а если египетскими - 6,287 км.

Современные измерения дают для средний радиус Земли - 6,371 км.

В любом случае, точность измерения для тех времён просто удивительная!

Эратосфен прожил удивительную, насыщенную и долгую жизнь. На протяжении нескольких десятилетий оставался бессменным архивариусом Александрийской библиотеки. Он до последнего боготворил и больше всего на свете любил книги, источник знаний и ярчайших открытий. В старости, отстраненный от должности, ослепший и немощный, довел себя до крайней нищеты и уморил себя голодом в 194 г. до н.э.

Как сообщал портал «Знай.uа», астрономы открыли систему, в которой находятся сразу три землеподобные планеты. Более того, ученые обнаружили систему с двумя суперземлями.

Астрономам уже известно около 500 землеподобных планет. Проблема в том, что большинство из них либо слишком горячие, либо, наоборот, холодные, поэтому ученые продолжают поиск планет, похожих на Землю.

Как измерили радиус земли сообщение 7 класс. Как древний грек измерил радиус Земли (3 фото)

Древние греки, наблюдая за лунными затмениями, обнаружили, что Земля отбрасывает круглую тень на Луну. Таким образом они поняли, что наша планета круглая. В те же времена египтяне провели такое наблюдение, которое заключалось в том, что во время летнего солнцестояния, Солнце освещает дно даже самых глубоких колодцев.

В те времена (240 лет до нашей эры) жил известный греческий математик, астроном, географ и поэт - Эратосфен Киренский. Он получал свое образование в Александрии, но неудовлетворенный тем образованием, отправился в Афины, где учился в платоновской школе, и впоследствии стал называть себя платоником.
После получения образования, имея почти энциклопедические познания, Эратосфен начал свою научную деятельность, впоследствии став известным, благодаря своим работам. Так, в один прекрасный момент, царь Птолемей III пригласил Эратосфена из Афин в Александрию заведовать великой Александрийской библиотекой.

Одно из самых величайших открытий Эратосфена - вычисление радиуса Земли. Посчитал он радиус благодаря колодцам и знанию о том, что Земля круглая. Во время солнцестояния в Александрии Эратосфен замерил при помощи чаши с длинной иглой под каким углом находится Солнце по отношению к Земле в Сиене. После измерения угол оказался 7 градусов 12 минут, то есть 1/50 окружности. Стало быть Сиена отстоит от Александрии на 1/50 окружности Земли, то есть - в 5000 стадиях, следовательно окружность Земли равнялась 250000 стадиям, а радиус тогда 39790 стадиев.
Согласно подсчетам Эратосфен получил значение 6287 км, которое отличается от истинного значения всего на менее чем на 100 км.

Видео Опровержение вычислений радиуса Земли Эратосфеном

Каждый из нас изучал в школе много предметов: физику, химию, биологию, математику и другие. В этот список зачастую включалась и астрономия. Это интересная наука, рассказывающая нам про разные космические величины (расстояние от нашей планеты до Солнца, диаметр Земли, массу луны и иные), вселенские явления (черные дыры, звездопады, затмения и т. д.).

Согласитесь, что все это – очень важная и познавательная информация о том, что нас окружает. Но если кто-нибудь спросит нас о том, каков диаметр планеты Земля, мы вряд ли сможем правильно ответить. К сожалению, все, что мы учили в школе, имеет свойство постепенно забываться, если знания не поддерживать. Эта статья поможет возобновить некоторую «космическую» информацию.

Диаметр Земли

Считается, что этот показатель нашей планеты начал изучаться еще до Нашей эры. Знаменитый античный ученый-астроном Эратосфен, используя расстояние между городами и угол падения солнечных лучей, смог вычислить длину окружности нашей планеты, а потом – радиус и диаметр Земли. Так, средний показатель данной величины составляет примерно 12 756 километров. Согласитесь, что это достаточно много. Слово «средний» здесь употребляется, потому что Земля не имеет форму шара (но это и не эллипс, о котором в свое время так много говорили).

Это своеобразная вытянутая к полюсам форма, которую в настоящее время имеют обыкновение называть геоидом. Из-за такой «деформации» диаметр Земли по экватору отличается от соответствующего показателя по нулевому меридиану (вторая величина немного больше).

Другие важные параметры голубой планеты

Земля имеет очень большую и богатую историю, большую часть которой она хранит в себе и о которой, к сожалению, нам вряд ли доведется узнать. Нашей планете уже более четырех с половиной миллиардов лет. За это время она претерпела большое количество изменений. Земля является частью Солнечной системы и вращается по орбите вокруг ее центра – нашего светила. Расстояние до него от третьей планеты – примерно сто пятьдесят миллионов километров. Земля имеет всего один естественный спутник – всем известную Луну, которая оказывает значительное влияние на приливы на голубой планете. Длина экватора составляет примерно 40 076 километров, что почти на 44 километра больше длины меридиана (именно поэтому в зависимости от места измерения и меняется диаметр Земли).

Живая планета

Действительно, Земля в настоящее время является единственным изученным (местными учеными) местом во Вселенной, где есть живые организмы, которые появились здесь почти четыре миллиарда лет назад. Они обитают как на суше, так и в воде. А вода на нашей планете занимает более семидесяти процентов. Кроме наличия организмов, Земля также имеет свою жизнь. Она проявляется в движении тектонических плит: происходят извержения вулканов, сильные и слабые землетрясения. Это подтверждает тот факт, что наша Земля не останавливается в своем развитии и теперь. Никто не знает о том, какие еще сюрпризы подготовил нам дом людей – живая голубая планета.

Расстояние от Земли до Луны

Луна стала первым небесным телом, до которого удалось рассчитать расстояние от Земли. Считается, что первыми это сделали астрономы в Древней Греции.

Измерить расстояние до Луны пытались с незапамятных времен – первым это попытался сделать Аристарх Самосский. Он оценил угол между Луной и Солнцем в 87 градусов, поэтому вышло, что Луна ближе Солнца в 20 раз (косинус угла равного 87 градуса равен 1/20). Ошибка измерений угла привела к 20-кратной ошибке, сегодня известно, что это отношение на самом деле равно 1 к 400 (угол равен примерно 89.8 градусов). Большая ошибка была вызвана трудностью оценок точного углового расстояния между Солнцем и Луной с помощью примитивных астрономических инструментов Древнего мира. Регулярные солнечные затмения к этому времени уже позволили древнегреческим астрономам сделать вывод о том, что угловые диаметры Луны и Солнца примерно одинаковы. В связи с этим Аристарх сделал вывод, что Луна меньше Солнца в 20 раз (на самом деле примерно в 400 раз).

Для вычисления размеров Солнца и Луны относительно Земли Аристарх использовал другой метод. Речь идет о наблюдениях лунных затмений. К этому времени древние астрономы уже догадались о причинах этих явлений: Луна затмевается тенью Земли.


На схеме выше хорошо видно, что разность расстояний с Земли до Солнца и до Луны пропорциональна разнице между радиусами Земли и Солнца и радиусами Земли и её тени на расстояние Луны. Во времена Аристарха уже удалось оценить, что радиус Луны равен примерно 15 угловым минутам, а радиус земной тени составляет 40 угловых минут. То есть размер Луны получался примерно в 3 раза меньше размера Земли. Отсюда зная угловой радиус Луны можно было легко оценить, что Луна находится от Земли примерно в 40 диаметрах Земли. Древние греки могли лишь приблизительно оценить размеры Земли. Так Эратосфен Киренский (276 – 195 годы до нашей эры) на основе различий в максимальной высоте Солнца над горизонтом в Асуане и Александрии во время летнего солнцестояния определил, что радиус Земли близок к 6287 км (современное значение 6371 км). Если подставить это значение в оценку Аристарха насчет расстояния до Луны, то оно будет соответствовать примерно 502 тысяч км (современное значение среднего расстояния от Земли до Луны составляет 384 тысяч км).

Солнце - это колоссальный раскалённый шар, в центре которого происходит освобождение энергии из водорода. Водород трансформируется в гелий, а излучаемая энергия выделяется в космическое пространство. Люди в древности не зря обожествляли светило. Именно его энергия обеспечивает существование жизни на Земле.

Размеры Солнца

Диаметр

Солнце (Гелиос) - это ближайшая к нашей планете звезда. Она относится к категории «Жёлтых карликов». Подобно другим светилам, Гелиос не имеет прочной поверхности. Его первичным слоем принято считать фотосферу, излучающую энергию. А потому диаметр Солнца - ни что иное, как диаметр его фотосферы.

Измерить масштабы светила можно простым доступным способом. Для эксперимента необходимо тёмное помещение, куда солнечный луч проникает через маленькое отверстие. Плотную белую бумагу достаточно поставить напротив луча, и на поверхности листа появится крошечное изображение Солнца. Чем дальше будет бумага от отверстия, тем больше будет пятно. На расстоянии 107 см его диаметр составит 1 см. При удалении на 214 см возрастёт до 2 см. То есть диаметр настоящего светила в 107 раз меньше расстояния до Земли и составляет 1400000 км.

Учёные смогли определить точный диаметр Солнца в километрах, базируясь на эффекте под названием «Чётки Бейли». Чётками называют красные точки по окружности солнечного диска, которые становятся видимыми во время затмения. С их помощью астрономы точно выделили положение светила и смогли измерить его размеры.

Анализ исторических данных, дополненный регулярным современным мониторингом, показал, что диаметр Солнца подвержен изменениям. Так, в XVII веке светило было на 2 тыс.километров шире нынешнего. Астрономы установили, что звезда расширяется и сжимается в течение 160 минут. За этот же период меняется количество выбрасываемой энергии.

Радиус

Измерения длительности солнечных затмений и наблюдения за перемещением Меркурия и Венеры на фоне солнечного диска позволили учёным вычислить примерный радиус звезды. Он равен 695990 км.

Приборы на борту космических станций дали возможность уточнить расчёты. Исследования проводились методами гелиосейсмологии. При этом рассматривалось движение так называемых f-волн на поверхности Солнца. Этот способ вычислений дал несколько иной результат - на 300 км меньше (695700 км). Выявленная погрешность может иметь серьёзные последствия для изучения Солнца, его состава и активности.

Радиус будет иметь одинаковое значение во всех направлениях, поскольку Гелиос имеет правильную шарообразную форму.

Сравнение размеров небесных тел

Величину солнечного радиуса в астрономии применяют в качестве меры измерения габаритов других космических объектов:

  • Полярная Звезда имеет 30 солнечных радиусов. Следовательно, она в 30 раз превышает параметры Солнца.
  • Наша планета выглядит небольшой точкой на фоне главной звезды. Она в 109 раз уступает светилу по размеру.
  • Зато крупнейшая планета Солнечной системы – Юпитер всего в 9,7 раза меньше Солнца.

Во Вселенной можно обнаружить звезды – гиганты, превосходящие во много раз наше светило. Крупнейшая звезда VY Canis Majoris, по мнению учёных, имеет 2100 диаметров Гелиоса.

Масса Солнца, её измерение и сравнение

Солнце - крупнейшее небесное тело в нашей звёздной системе (99,86% общей массы). На формирование массы солнца потребовалось почти 5 миллиардов лет.

Для измерения массы небесных тел разработаны три научных метода:

  1. Гравиметрический. В этом способе применяют параметры измерений силы тяжести, которая характеризует поверхность измеряемого тела.
  2. Третий закон Кеплера. Практикуется в том случае, если планета обладает, как минимум, одним спутником. Вычисления проводятся с учётом расстояния между планетой и её спутником, а также периода его обращения по орбите. Таким образом выясняется соотношение масс планеты и звезды.
  3. Анализ заметных воздействий, вызываемых движением одних небесных тел относительно движения других.

В первую очередь с помощью геодезического метода выяснили массу нашей планеты. Она, по оценкам, составила 6*1024кг. Затем на основании Третьего закона Кеплера вычислили массу Луны – 73477*1022 кг. И в завершение узнали, чему равна масса Солнца - 19891*1030кг.

Солнечная масса стала абстрактной метрической единицей. Астрономы употребляют её для описания различных космических объектов. Самая гигантская известная звезда, Eta Carinae, оценивается в 150 масс Гелиоса.

Учёные составили прогноз солнечной активности на будущее. Опираясь на наблюдения за другими звёздами, они пришли к выводу, что звезда постепенно израсходует энергию фотосферы. Её размеры небывало расширятся. Ближайшие планеты - Меркурий и Венера будут поглощены. Возможно, что та же участь постигнет и Землю. Солнце преобразуется в Красного гиганта. Вслед за периодом роста последует катастрофическое сжатие. Светило сожмётся примерно до нынешних параметров Земли и будет именоваться Белым карликом.

Люди давным-давно догадывались, что Земля, на которой они обитают, похожа на шар. Одним из первых высказал мысль о шарообразности Земли древнегреческий математик и философ Пифагор (ок. 570—500 до н. э.). Величайший мыслитель древности Аристотель, наблюдая лунные затмения, подметил, что край земной тени, падающей на Луну, всегда имеет круглую форму. Это и позволило ему с уверенностью судить о том, что наша Земля шарообразна. Теперь же, благодаря достижениям космической техники, все мы (и не раз) имели возможность любоваться красотой земного шара по снимкам, сделанным из космоса.

Уменьшенным подобием Земли, ее миниатюрной моделью является глобус. Чтобы узнать длину окружности глобуса, достаточно обернуть его питью, а затем определить длину этой нити. По огромную Землю с мерной лептой по меридиану или экватору не обойдешь. Да и в каком бы направлении мы ни стали ее измерять, па пути обязательно появятся непреодолимые препятствия — высокие горы, непроходимые болота, глубокие моря и океаны...

А можно ли узнать размеры Земли, не измеряя всей ее окружности? Конечно, можно.

Известно, что в окружности 360 градусов. Поэтому, чтобы узнать длину окружности, в принципе достаточно измерить точно длину одного градуса и результат измерения умножить на 360.

Первое измерение Земли таким способом произвел древнегреческий ученый Эратосфен (ок. 276—194 до и. э.), живший в египетском городе Александрии, па берегу Средиземного моря.

С юга в Александрию приходили караваны верблюдов. От сопровождавших их людей Эратосфен узнал, что в городе Сиене (нынешнем Асуане) в день летнего солнцестояния Солнце в иол-день находится над головой. Предметы в это время не дают никакой тени, а солнечные лучи проникают даже в самые глубокие колодцы. Стало быть, Солнце достигает зенита.

Путем астрономических наблюдений Эратосфен установил, что в этот же самый день в Александрии Солнце отстоит от зенита на 7,2 градуса, что составляет ровно 1/50 часть окружности. (В самом деле: 360: 7,2 = 50.) Теперь, чтобы узнать, чему равна окружность Земли, оставалось измерить расстояние между городами и умножить его па 50. Но измерить это расстояние, пролегающее по пустыне, Эратосфену было не под силу. Не могли измерить его и проводники торговых караванов. Они лишь знали, сколько времени тратят их верблюды на один переход, и считали, что от Сиены до Александрии 5000 египетских стадий. Значит, вся окружность Земли: 5000 x 50 = 250 000 стадий.

К сожалению, мы не знаем точно длину египетской стадии. По некоторым данным, она равна 174,5 м, что дает для земной окружности 43 625 км. Известно, что радиус в 6,28 раза меньше длины окружности. Получалось, что радиус Земли, но Эратосфену,— 6943 км. Вот так более двадцати двух веков тому назад впервые были определены размеры земного шара.

По современным данным, средний радиус Земли составляет 6371 км. По почему средний? Ведь если Земля — шар, то идее земные радиусы должны быть одинаковыми. Об этом мы расскажем дальше.

Способ точного измерения больших расстояний впервые предложил голландский географ и математик Вилдеброрд Сиеллиус (1580-1626).

Представим себе, что необходимо измерить расстояние между точками А и Б, удаленными одна от другой на сотни километров. Решение этой задачи следует начать с построения на местности так называемой опорной геодезической сети. В простейшем варианте она создается в виде цепочки треугольников. Вершины их выбираются на возвышенных местах, где сооружаются так называемые геодезические знаки в виде специальных пирамид, и обязательно так, чтобы из каждого пункта были видны направления на все соседние пункты. А еще эти пирамиды должны быть удобны для работы: для установки угломерного инструмента — теодолита — и измерения всех углов в треугольниках этой сети. Кроме того, в одном из треугольников измеряется одна сторона, которая пролегает по ровной и открытой местности, удобной для линейных измерений. В результате получается сеть треугольников с известными углами и исходной стороной — базисом. Затем следуют вычисления.

Решение наминается с треугольника, содержащего базис. По стороне и углам вычисляются две другие стороны первого треугольника. Но одна из его сторон является одновременно стороной смежного с ним треугольника. Она служит исходной для вычисления сторон второго треугольника и так далее. В конце концов находятся стороны последнего треугольника и вычисляется искомое расстояние — дуга меридиана АБ.

Геодезическая сеть обязательно опирается на астрономические пункты А и Б. Методом астрономических наблюдений звезд определяются их географические координаты (широты и долготы) и азимуты (направления на местные предметы).

Теперь, когда известна протяженность дуги меридиана АБ, а также ее выражение в градусной мере (как разность широт астропунктов А и Б), не составит особого труда вычислить длину дуги 1 градуса меридиана путем простого деления первой величины на вторую.

Этот способ измерения больших расстояний на земной поверхности получил название триангуляции — от латинского слова «триапгулюм», что значит «треугольник». Он оказался удобным для определения размеров Земли.

Изучением размеров нашей планеты и формы се поверхности занимается наука геодезия, что в переводе с греческого означает «землеизмерение». Ее зарождение следует отнести к Эратосфсну. Но собственно научная геодезия началась с триангуляции, впервые предложенной Сиеллиусом.

Самое грандиозное градусное измерение XIX века возглавил основатель Пулковской обсерватории В. Я. Струве. Под руководством Струве русские геодезисты совместно с норвежскими измерили дугу» простиравшуюся от Дуная по западным областям России в Финляндию и Норвегию до побережья Северного Ледовитого океана. Общая протяженность этой дуги превысила 2800 км! В ней было заключено более 25 градусов, что составляет почти 1/14 часть земной окружности. В историю науки она -вошла под названием «дуги Струве». Автору этой книги в послевоенные годы довелось работать на наблюдениях (измерениях углов) на пунктах государственной триангуляции, примыкавших непосредственно к знаменитой «дуге».

Градусные измерения показали, что паша Земля не является в точности шаром, а похожа на эллипсоид, то есть она сжата у полюсов. У эллипсоида все меридианы представляют собой эллипсы, а экватор и параллели — окружности.

Чем длиннее измеряемые дуги меридианов и параллелей, тем точнее можно вычислить радиус Земли и определить ее сжатие.

Отечественные геодезисты промерили государственную триангуляционную сеть почти на половине территории СССР. Это позволило советскому ученому Ф. Н. Красовскому (1878-1948) более точно определить размеры и форму Земли. Эллипсоид Красовского: экваториальный радиус — 6378,245 км, полярный радиус — 6356,863 км. Сжатие планеты — 1/298,3, то есть на такую часть полярный радиус Земли короче экваториального (в линейной мере — 21,382 км).

Представим себе, что па глобусе с поперечником 30 см решили изобразить сжатие земного шара. Тогда полярную ось глобуса пришлось бы укоротить на 1 мм. Это так мало, что совершенно незаметно для глаза. Вот так и Земля с большого расстояния кажется совершенно круглой. Такой ее наблюдают космонавты.

Изучая форму Земли, ученые прийти к выводу, что она сжата не только вдоль оси вращения. Экваториальное сечение земного шара в проекции на плоскость дает кривую, которая тоже отличается от правильной окружности, правда совсем немного — на сотни метров. Все это свидетельствует о том, что фигура у нашей планеты более сложная, чем казалось раньше.

Теперь уже совершенно ясно, что Земля не является правильным геометрическим телом, то есть эллипсоидом. К тому же поверхность нашей планеты далеко не гладкая. На ней есть возвышенности и высокие горные хребты. Правда, суши почти в три раза меньше, чем воды. Что же в таком случае мы должны подразумевать подземной поверхностью?

Как известно, океаны и моря, сообщаясь друг с другом, образуют на Земле обширную водную гладь. Поэтому ученые условились принимать за поверхность планеты поверхность Мирового океана, находящегося в спокойном состоянии.

А как поступать в районах континентов? Что там считать поверхностью Земли? Тоже поверхность Мирового океана, мысленно продолженную под всеми материками и островами.

Вот эта фигура, ограниченная поверхностью среднего уровня Мирового океана, была названа геоидом. От поверхности геоида и ведется отсчет всех известных «высот над уровнем моря». Слово «геоид», или «землеподобный», специально придумало для названия фигуры Земли. В геометрии такой фигуры не существует. Близок по форме к геоиду геометрически правильный эллипсоид.

4 октября 1957 года с запуском в нашей стране первого искусственного спутника Земли человечество вступило в космическую эру. 11ачалось активное исследование околоземного пространства. При этом выяснилось, что спутники очень полезны и для познания самой Земли. Даже в области геодезии они сказали свое «веское слово».

Как известно, классическим методом изучения геометрических характеристик Земли является триангуляция. Но раньше геодезические сети развивали лишь в пределах материков, а между собой они не были связаны. Ведь на морях и океанах триангуляцию не построишь. Поэтому расстояния между материками были определены менее точно. За счет этого снижалась точность определения размеров самой Земли.

С запуском спутников геодезисты сразу поняли: появились «визирные цели» на большой высоте. Теперь можно будет измерить большие расстояния.

Идея метода космической триангуляции проста. Синхронные (одновременные) наблюдения спутника из нескольких отдаленных пунктов земной поверхности позволяют привести их геодезические координаты к единой системе. Так были связаны воедино триангуляции, построенные на разных материках, а заодно были уточнены размеры Земли: экваториальный радиус — 6378,160 км, полярный радиус — 6356,777 км. Величина сжатия — 1/298,25, то есть почти такая же, как у эллипсоида Красовского. Разница между экваториальным и полярным диаметрами Земли достигает 42 км 766 м.

Если бы наша планета была правильным шаром, а массы внутри нее распределены равномерно, то спутник мог бы двигаться вокруг Земли по круговой орбите. Но отклонение формы Земли от шарообразной и неоднородность ее недр приводят к тому, что над различными точками земной поверхности сила притяжения неодинаковая. Изменяется сила притяжения Земли — изменяется орбита спутника. И все, даже малейшие изменения в движении спутника с низкой орбитой — то результат гравитационного воздействия на него той или иной земной выпуклости или и падины, над которой он пролетает.

Оказалось, что наша планета имеет еще и слегка грушевидную форму. Ее Северный полюс приподнят над плоскостью экватора па 16 м, а Южный — примерно на столько же опущен (как бы вдавлен). Вот и получается, что в сечении по меридиану фигура Земли напоминает грушу. Она чуть-чуть вытянута к северу и приплюснута у Южного полюса. Налицо полярная асимметрия: Се пер нос полушарие нетождественно Южному. Так на основании спутниковых данных было получено самое точное представление об истинной форме Земли. Как видим, фигура нашей планеты заметно отклоняется от геометрически правильной формы шара, а также от фигуры эллипсоида вращения.

Полярный радиус Земли - малая полуось эллипсоида Красовского, равная 6 356 863 м.

Экваториальный радиус Земли - большая полуось эллипсоида Красовского, равная 6 378 245 м.

Средний радиус Земли - 6 371 302 м.

История измерения радиуса Земли

Эраторсфен. Еще древнейшие египтяне увидели, что во время летнего солнцестояния Солнце освещает дно глубочайших колодцев в Сиене (сейчас Асуан), а в Александрии - нет. У Эратосфена Киренского (276 год до н. э.-194 год до н. э.) появилась превосходный мысль - применять данный факт для измерения окружности и радиуса Земли. В день летнего солнцестояния в Александрии он использовал скафис - чашу с длинноватой иглой, с помощью которого есть возможность было найти под каким углом Солнце находится на небе.
Итак, после измерения угол оказался 7 градусов 12 минут, другими словами 1/50 окружности. Стало быть Сиена отстоит от Александрии на 1/50 окружности Земли. Расстояние меж городами числилось равным 5 тыс. стадиев, как следует окружность Земли равнялась 250 тыс. стадиев, а радиус тогда 39,8 тыс. стадиев.
Непонятно каким стадием воспользовался Эратосфен. В том случае греческим (178 метров), то его радиус Земли выходил 7,08 тыс. км, в том случае египетским, то 6,3 тыс. км. Современные измерения предоставляют для усреднённого радиуса Земли величину 6,371 км. В любом случае, точность для тех времён потрясающая.

Фернель. В 1528 г. Жан Фернель методом подсчета числа оборотов колеса экипажа измерил расстояние от Парижа до Амьена. Величина 1ой дуги меридиана у него составила 110,6 км. Через 4 года после возвращения спутников Магеланна в исследовании Земли был изготовлен 1-ый шаг. Парижанин Фернель пришел к мысли провести измерение радиуса Земли. Он решил измерить длину дуги величиной 1 градус. Он измерил полуденную высоту Солнца в Париже 26 августа. Дальше ему необходимо было отыскать место, где тогда же высота Солнца была ровно на 1 градус меньше. Для этого он издержал некоторое количество дней. Однако потому что наступала осень, разница была меньше 1 градуса. Фернель, чтоб обойти это препятствие высчитал высоту Солнца в Париже на неколько дней вперед.

Двигаясь на север, он имел возможность ассоциировать приобретенные данные каждый день в тот же самый день. Каждый день в полдень он останавливался и создавал наблюдения. 29 августа он нашел, что высота Солнца на 1 градус меньше чем в Париже тогда же. Фернель измерил длину колеса (20 футов), а потом повернул назад в Париж и считал обороты колеса (17024 об.). Позже он вычислил градусную меру дуги меридиана в туазах (1 туаз = 6 футов = 1,949 м), позже умножив на 360 и переведя туазы в метры есть возможность отыскать длину меридиана:

1,949/6-20-17024-360/1000=39815 км.

Другие пробы

Еще век спустя, в 1614-1617 гг. голландский астролог Виллеброрд Снеллиус в первый раз применил способ триангуляции, когда линейная протяженность большой дуги на поверхности Земли измеряется через систему поочередно сопряженных треугольников. Его измерение 1 градуса отдало 107 335 м.

В 1671 г. член Парижской академии Жан Пикар (1620-1682) опубликовал собственный труд «Измерение Земли», в каком не только лишь сказал результаты высокоточных триангуляционных измерений в 1669-1670 гг. дуги Париж-Амьен (1° = 111 210 м, настоящее значение 111 180 м), да и высказал предположение о том, что настоящая форма Земли - не шар.

Практически через год, в 1672 г. Жан Рише , проводя наблюдения Марса в Кайенне (Гвиана в Южной Америке, широта +5°), нашел замедление периода секундного маятника по сопоставлению с его периодом в Париже. Это было 1-ое инструментальное свидетельство уменьшения силы тяжести на экваторе. Это открытие вновь заострило бурный спор, имевший место в то время в европейской науке. Дело в том, что в согласовании с теорией глобального тяготения Ньютона, крутящиеся тела (в том числе наша Земля) должны принимать форму сплюснутого эллипсоида, а по теории эфирных вихрей Декарта, напротив, вытянутого сфероида. Потому вопрос об настоящей форме Земли для ньютонианцев и картезианцев был принципно важен.

Директор Парижской обсерватории Джованни Доменико Кассини (1625-1712) с 1683 г. начал проводить новые необъятные работы по градусным измерениям уже на длинноватой дуге - от нормандских берегов Франции на севере до испанской границы на юге. К огорчению, из-за погибели Кольбера (министра денег Людовика XIV) и самого Кассини работы прерывались и были завершены его отпрыском Жаком Кассини (1677-1756) исключительно в 1718 г., а результаты размещены в 1720 г. Кассини также был картезианцем по своим взорам и даже вступил в спор с Ньютоном, утверждая, что земной шар имеет вытянутую форму. Сам Ньютон давал теоретическую оценку сжатия Земли в 1/230.

Чтоб совсем разобраться с формой Земли, Французская академия в 1735 г. организовала две превосходные по тому времени экспедиции к экватору и полярному кругу. В Лапландию (66° с.ш.) направились Пьер Мопертюи и Алексис Клеро, где измерили дугу протяженностью 57"30" и получили длину 1° равной 57 422 туаз (111,9 км). В Перу под управлением академика Пьера Бугера (1698-1758) способом триангуляции была измерена дуга от +0°02"30" с. ш. до -3°04"30" ю. ш., по которой длина 1° составила 56 748 туаз (110,6 км). Итог этой экспедиции стал первым опытным доказательством сплюснутости Земли, что она имеет форму эллипсоида вращения. В честь этого действия была даже выбита медаль, на которой изображенный Бугер опирался на земной шар и немного его сплющивал.

Самое потрясающее градусное измерение XIX века возглавил основоположник Пулковской обсерватории В. Я. Струве. Под управлением Струве российские геодезисты вместе с норвежскими измерили дугу, простиравшуюся от Дуная по западным областям Рф в Финляндию и Норвегию до побережья Северного Ледовитого океана. Общая протяженность этой дуги превысила 2800 км. Она обхватывала более 25 градусов, что составляет практически 1/14 часть земной окружности. В историю науки она вошла под заглавием «дуги Струве». Создателю этой книжки в послевоенные годы довелось работать на наблюдениях (измерениях углов) на пт гос триангуляции, примыкавших прямо к известной «дуге».

Первую теорию фигуры Земли предложил в 1743 г. Алексис Клод Клеро (1713-1765). Аксиомы Клеро устанавливают связь меж формой Земли, ее вращением и рассредотачиванием силы тяжести на ее поверхности, тем были заложены базы нового направления науки - гравиметрии. В 1841 г. Фридрих Бессель (1784-1846) установил для Земли форму сфероида со сжатием в 1/299,15, а в 1909 г. Джон Хейфорд получил эллипсоид с экваториальным радиусом 6378,388 м и сжатием 1/297,0, который употреблялся в качестве эталона до 1964 г.

Фундаментальные определения были выполнены в 1940 г. Ф. Н. Красовским и А. А. Изотовым и размещены в 1950 г. Эллипсоид Красовского очень близок к современной системе астрономических неизменных, принятых Интернациональным астрономическим союзом:

  • экваториальный радиус Земли - 6 378 160±3 м,
  • полярный радиус - 6 356 779 м ,
  • сжатие - 1/298,25 = 0,0033529 .
  • При всем этом было введено и экваториальное сжатие 1/30000. Следовательно, неким промежным приближением формы Земли служит трехосный эллипсоид, у которого разница меж экваториальным и полярным радиусами составляет 21381 м, а экваториальные радиусы в направлении Африки и Бразилии отличаются на 200 м .

    По сути, настоящая форма Земли на уровне точности в сотки метров уже не может быть представлена ни одной из математических фигур, и для ее представления применяется понятие геоида. Геоид - условная поверхность равного потенциала (поверхность равновесия), совпадающая с поверхностью свободно покоящейся воды в открытом океане. Отличия геоида от эллипсоида не превосходят, чаше всего, 100 м. Все же, при условном представлении отклонений реальной формы Земли от аналитической фигуры, эти отличия напоминают по форме грушу: «шишка» на северном полюсе и «провал» в Антарктиде. При помощи современных способов определения координат, в том числе и высоты над уровнем моря (спутниковые навигационные системы GPS, радиоинтерферометрические измерения и т. д.) настоящая поверхность Земли описывается большущим массивом данных, при всем этом положение хоть какого репера в трехмерном пространстве может быть определено с точностью до см.

    Не нужно путать форму Земли (геоид) с ее реальной жесткой поверхностью. Явно, что рельеф литосферы в океанах размещается ниже поверхности геоида, а на континентах - выше (говорят: «высота над уровнем моря»). Самая глубочайшая (относительно геоида) точка литосферы размещена в Марианском желобе (-11022 м), а самая высочайшая - г. Джомолунгма (8848 м). Больший перепад высот рельефа находится около Южной Америки, где разница высоты Анд (г. Аконкагуа - 6960 м) и прилегающего Чилийского желоба (наибольшая глубина - 8180 м) составляет 15140 м.

    Любопытно напомнить, что форма Земли меняется во времени. На ранешних шагах существования Земли, как планетного тела, она крутилась вокруг собственной оси существенно резвее; подразумевается, что древнейшие земные день имели возможность составлять 4-5 часов. Явно, что сжатие Земли в ту эру было существенно больше современного. Со временем скорость вращения Земли замедляется (приблизительно на 15% за полмиллиарда лет), а ее форма, соответственно, «округляется». На наименьших отрезках времени и в наименьших масштабах по высоте существенную роль играет геотектоника плит. Как понятно, континенты «плавают» по поверхности магмы, как льдины по воде, и, перемещаясь, искажают при всем этом форму геоида на величины ~100 м за периоды ~200 млн лет.

    Более «быстрыми» искажениями формы Земли являются приливы - гравитационные возмущения от Луны и Солнца. Более известны эти возмущения в аква оболочке Земли, хотя находятся они и в атмосфере, и в литосфере. Теоретическая высота прилива (т.е. искажение формы геоида вследствие гравитационного возмущения от Луны) составляет около 50 см. Но «приподнимание» «твердой» земной поверхности из-за упругости тела Земли значительно меньше (10-20 см). Самую большую величину имеют водные приливы, связанные с воздействием на океаническую приливную волну маленького дна и узостей береговой полосы (до 18 м в заливе Фанди).

    Первоисточники:

  • Как в первый раз измерили радиус Земли;
  • 1-ые пробы измерения радиуса Земли;
  • Как определяли Землю;
  • Википедия: Земля;
  • Словарь определений. Радиус Земли экваториальный;
  • Словарь определений. Радиус Земли полярный;
  • Земля.
  • Дополнительно на сайт:

  • Почему Земля имеет форму шара?
  • Где отыскать сопоставление Земли и Луны?
  • Сколько Земле лет?
  • Чему равна длина экватора Земли?
  • Cтраница 1


    Радиус Земли принят равным 6400 км. Действительная вариация величины g на глубине, большей 4000 км, достоверно 1те известна.  

    Радиус Земли равен 6 38 - 108 см. Расстояние (64), грубо говоря, составляет одну десятую расстояния до Луны.  

    Радиус Земли по экватору составляет примерно 6400 км. Структура земной тверди представляет собой тонкую земную кору, 3 / 4 которой занимают океаны, а под ними толщина всего 5 - 10 км.  

    Радиус Земли в то время уже был известен. Массу Земли М3 Ньютон ориентировочно оценил по средней плотности, которую вычислил сам.  

    Радиус Земли сам по себе легко запомнить, так как метрическая система связана с ним довольно просто.  

    Поскольку радиус Земли г0 к 6 106 м, сила тока из атмосферы в Землю равна / J0 4nrl 1400 А.  

    Но радиус Земли равен примерно 6400 км, и поэтому изменение расстояния от центра Земли на несколько километров или несколько десятков километров могло бы лишь ничтожно мало изменить напряженность поля. Опыт же показывает, как мы отмечали выше, что напряженность электрического поля Земли очень быстро падает по мере удаления от нее. Это указывает на то, что положительный заряд, соответствующий отрицательному заряду Земли, находится где-то на не очень большой высоте над поверхностью Земли. Действительно, был обнаружен на высоте нескольких десятков километров над Землей слой положительно заряженных (ионизованных) молекул. Объемный положительный заряд этого облака зарядов компенсирует отрицательный заряд Земли.  

    Поскольку радиус Земли R 6370 км, а напряженность известна, можно подсчитать заряд Земли q, который оказывается равным 0 6 миллиона кулонов.  

    R - радиус Земли, лежит в плоскости меридиана. В северном полушарии она отклонена от вертикали к югу на угол ф, в южном - к северу на тот же угол. Таким образом, вертикальная составляющая этой силы изменяет силу тяжести, а ее горизонтальная составляющая направлена по касательной к поверхности Земли вдоль меридиана к экватору.  

    R - радиус Земли, h - первоначальная высота тела над Землей, у - расстояние тела до поверхности Земли, со - угловая скорость вращения Земли, v - тангенциальная скорость тела относительно Земли.  


    RO - радиус Земли), и К С h n h %; последнее условие имеет место при наземной радиосвязи на УКВ и радиосвязи Вемля - самолет на КВ.