В чем измеряется светимость звезд. Цвет, температура и состав звезд
Единственной физической величиной, которой можно ха-рактеризовать звезду и которую можно измерить, является ос-вещённость, создаваемая звездой на земной поверхности. Из оптики известно, что освещённость E, светимость звезды L и расстояние до звезды R связаны соотношением
E = L / 4πR 2 .
Освещённость, создаваемая самой яркой звездой Сириус на поверхности Земли, более чем в 10 10 раз превышает освещён-ность, создаваемую самой слабой наблюдаемой звездой, но при-мерно во столько же раз меньше освещённости, создаваемой Солнцем .
Зная расстояние до звезды, измерив создаваемую ею осве-щённость, можно определить одну из основных физических её характеристик — светимость. Оказалось, что светимости звёзд разбросаны в весьма широких пределах. Светимость большин-ства звёзд меньше солнечной (у самых маломощных в милли-он раз), у самых больших и ярких звёзд, называемых бе-лыми или голубыми сверхгигантами, в десятки тысяч раз больше.
Самые горячие звезды имеют температуру до 35 000 K. Максимум излучения у них лежит в далёкой ультрафиолето-вой области, и нам они кажутся голубыми. Звезды с темпера-турой 10 000 K белые, с температурой 6000 K жёлтые, с тем-пературой 3000—3500 K красные.
Темпера-тура, K |
Основные линии в видимом спектре (химические элементы) |
Цвет звезды |
Представитель |
Голубовато-белый |
Вега (α Лиры) |
||
Сириус (α Боль-шого Пса) |
|||
Металлы, OH, TiO |
Арктур (α Воло-паса) |
||
Металлы, OH, TiO |
Темно-красный |
R Зайца |
Цвет звёзд
Внимательный наблю-датель сразу заметит, что яркие звезды имеют разный цвет. Так, Вега (α Лиры) голубовато-белая, Альдебаран (α Тельца) красновато-жёлтая, Сириус (α Большого Пса) белая, Антарес (α Скорпиона) красная, Солнце и Капелла (α Возничего) жёлтые. Мы не видим цвет у более слабых звёзд только из-за осо-бенностей нашего зрения. Цвет звезды обусловлен её темпера-турой, что непосредственно следует из закона Вина.
Энергия, испускаемая единицей поверх-ности звезды, определяется законом Стефана—Больцмана. Вся поверхность звезды равна 4πR 2 (R — радиус звезды). Поэтому светимость звезды определяется выражением
L = 4πR 2 σT .
Таким образом, если нам известны температура и свети-мость звезды, то мы можем вычислить и её радиус. Угловые размеры дисков звёзд намного меньше предельного угла для большинства существующих телескопов. Лишь используя са-мые большие телескопы и специальные способы наблюдений, удалось не только непосредственно измерить диаметры несколь-ких звёзд, но и получить изображения их дисков.
Полученные значения радиусов звёзд в целом совпадают с вычисленными по приведённой формуле светимости.
Массы звёзд лежат в очень узких пределах. Если светимости звёзд лежат в пределах от L ≈ 10 -4 L ☉ до L ≈ 10 4 L ☉ , радиусы — в пре-делах от 0,01R ☉ до 3 . 10 3 R ☉ , то массы звёзд лежат в пределах от 0,02M ☉ до 100M ☉ . Тело меньшей массы уже не является звездой, а большей не может существовать. Такая звезда не-устойчива и уже при возникновении либо сбросит избыточную массу, либо распадётся на две или несколько.
Название звезды |
Светимость, в светимостях Солнца |
Радиус, в радиусах Солнца |
Темпера-тура, K |
Плотность по отношению к плотности воды |
|
Главная последовательность |
|||||
ε Возничего |
|||||
α Центавра |
|||||
70 Змееносца |
|||||
Гиганты |
|||||
Альдебаран |
|||||
Сверхгиганты |
|||||
Белые карлики |
|||||
40 Эридана |
10 000 Материал с сайта |
||||
2,7 . 10 -3 |
Характеристика небесных тел может быть очень запутанной. Только у звезд есть видимая, абсолютная величина, светимость и другие параметры. С последним мы и попробуем разобраться. Что такое светимость звезд? Имеет ли она что-то общее с их видимостью на ночном небосклоне? Какая светимость у Солнца?
Природа звезд
Звезды - очень массивные космические тела, излучающие свет. Они образуются из газов и пыли, в результате гравитационного сжатия. Внутри звезд находится плотное ядро, в котором происходят ядерные реакции. Они и способствуют свечению звезд. Основными характеристиками светил являются спектр, размер, блеск, светимость, внутренняя структура. Все эти параметры зависят от массы конкретной звезды и её химического состава.
Главными «конструкторами» этих небесных тел являются гелий и водород. В меньшем количестве относительно них, может содержаться углерод, кислород и металлы (марганец, кремний, железо). Наибольшее количество водорода и гелия у молодых звезд, со временем их пропорции уменьшаются, уступая место другим элементам.
Во внутренних областях звезды обстановка очень «горячая». Температура в них доходит до нескольких миллионов кельвинов. Здесь идут непрерывные реакции, в которых водород превращается в гелий. На поверхности температура намного ниже и доходит только до нескольких тысяч кельвинов.
Что такое светимость звезд?
Термоядерные реакции внутри звезд сопровождаются выбросами энергии. Светимостью же называют физическую величину, которая отражает, сколько именно энергии производит небесное тело за определенное время.
Её часто путают с другими параметрами, например, с яркостью звезд на ночном небе. Однако яркость или же видимая величина - это примерная характеристика, которая никак не измеряется. Она во многом связана с удаленностью светила от Земли и описывает только то, насколько хорошо звезда видна на небосклоне. Чем меньше цифра этой величины, тем больше её видимая яркость.
В отличие от неё, светимость звезд - это объективный параметр. Он не зависит от того, где находится наблюдатель. Это характеристика звезды, определяющая её энергетическую мощность. Она может изменяться в разные периоды эволюции небесного тела.
Приближенной к светимости, но не тождественной, является абсолютная Она обозначает яркость светила, видимую наблюдателю на расстоянии 10 парсек или 32,62 световых лет. Обычно она используется для вычисления светимости звезд.
Определение светимости
Количество энергии, которое выделяет небесное тело, определяется в ваттах (Вт), джоулях на секунду (Дж/с) или в эргах на секунду (эрг/с). Существует несколько способов найти необходимый параметр.
Его легко вычислить по формуле L = 0,4(Ma -M),если знать абсолютную величину нужной звезды. Так, латинской буквой L обозначается светимость, буква М - это абсолютная звездная величина, а Ма - абсолютная величина Солнца (4,83 Ма).
Другой способ предполагает больших знаний о светиле. Если нам известны радиус (R) и температура (T ef)его поверхности, то светимость можно определить по формуле L=4pR 2 sT 4 ef . Латинская s в данном случае означает стабильную физическую величину - постоянную Стефана-Больцмана.
Светимость нашего Солнца равна 3.839 х 10 26 Ваттам. Для простоты и наглядности, ученые обычно сравнивают светимость космического тела именно с этой величиной. Так, существуют объекты в тысячи или миллионы раз слабее или мощнее Солнца.
Классы светимости звезд
Для сравнения звезд между собой, астрофизики использую различные классификации. Их делят по спектрам, размерам, температурам и т.д. Но чаще всего, для более полной картины используют сразу несколько характеристик.
Существует центральная гарвардская классификация, основанная на спектрах, которые излучают светила. В ней используют латинские буквы, каждая из которых соответствует конкретному цвету излучения (О-голубой, В - бело-голубой, А - белый и т.д.).
Звезды одного спектра могут иметь различную светимость. Поэтому ученые разработали йеркскую классификацию, которая учитывает и этот параметр. Она разделяет их по светимости, основываясь на абсолютной величине. При этом каждому виду звезд приписывают не только буквы спектра, но и цифры, отвечающие за светимость. Так, выделяют:
- гипергигантов (0);
- ярчайших сверхгигантов (Ia+);
- ярких сверхгигантов (Ia);
- нормальных сверхгигантов (Ib);
- ярких гигантов (II);
- нормальных гигантов (III);
- субгигантов (IV);
- карликов главной последовательности (V);
- субкарликов (VI);
- белых карликов (VII);
Чем больше светимость, тем меньше значение абсолютной величины. У гигантов и сверхгигантов оно обозначается со знаком минус.
Связь между абсолютной величиной, температурой, спектром, светимостью звезд показывает диаграмма Герцшпрунга — Рессела. Она была принята ещё в 1910 году. Диаграмма объединяет гарвардскую и йеркскую классификации и позволяет рассматривать и классифицировать светила более целостно.
Разница в светимости
Параметры звезд сильно взаимосвязаны друг с другом. На светимость влияние оказывает температура звезды и её масса. А они во много зависят от химического состава светила. Масса звезды становится тем больше, чем меньше в ней тяжелых элементов (тяжелее водорода и гелия).
Самой большой массой обладают гипергиганты и различные сверхгиганты. Они наиболее мощные и яркие звезды во Вселенной, но вместе с тем, и редчайшие. Карлики, наоборот, обладают небольшой массой и светимостью, но составляют около 90% всех звезд.
Самой массивной звездой, которая известна сейчас, является голубой гипергигант R136a1. Её светимость превышает солнечную в 8,7 миллионов раз. Переменная звезда в созвездии Лебедя (Р Лебедя) превосходит по светимости Солнце в 630 000 раз, а S Золотой Рыбы превышает этот его параметр в 500 000 раз. Одна из самых маленьких известных звезд 2MASS J0523-1403 обладает светимостью 0,00126 от солнечной.
Излучения, испускаемого с малого участка светящейся поверхности единичной площади . Она равна отношению светового потока, исходящего от рассматриваемого малого участка поверхности, к площади этого участка :
,где dΦ - световой поток, испускаемый участком поверхности площадью dS . Светимость измеряется в лм/м². 1 лм/м² - это светимость поверхности площадью 1 м 2 , излучающей световой поток, равный 1 лм.
Светимость не зависит от расстояния до объекта, от него зависит только видимая звёздная величина . Светимость - одна из важнейших звёздных характеристик, позволяющая сравнивать между собой различные типы звёзд на диаграммах «спектр - светимость» , «масса - светимость». Светимость звезды можно рассчитать по формуле:
где R - радиус звезды, T - температура её поверхности, σ - коэффициент Стефана-Больцмана.
Светимость коллайдера
В экспериментальной физике элементарных частиц светимостью называют параметр ускорителя или коллайдера , характеризующий интенсивность столкновения частиц двух встречных пучков, либо частиц пучка с частицами фиксированной мишени. Светимость L измеряется в см −2 ·с −1 . При умножении сечения реакции на светимость получается средняя частота протекания этого процесса на данном коллайдере .
Примечания
Wikimedia Foundation . 2010 .
- Кооперация
- Композиционный материал
Смотреть что такое "Светимость" в других словарях:
СВЕТИМОСТЬ - в точке поверхности. одна из световых величин, отношение светового потока, исходящего от элемента поверхности, к площади этого элемента. Единица С. (СИ) люмен с квадратного метра (лм/м2). Аналогичная величина в системе энергетич. величин наз.… … Физическая энциклопедия
светимость - Отношение светового потока, испускаемого светящейся поверхностью, к площади этой поверхности [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] светимость (Mν) Физическая величина, определяемая отношением… … Справочник технического переводчика
СВЕТИМОСТЬ - СВЕТИМОСТЬ, абсолютная яркость ЗВЕЗДЫ количество энергии, излучаемой ее поверхностью в секунду. Выражается в ваттах (джоулях в секунду) или в единицах измерения яркости Солнца. Болометрическая светимость измеряет общую мощность света звезды на… … Научно-технический энциклопедический словарь
СВЕТИМОСТЬ - СВЕТИМОСТЬ, 1) в астрономии полное количество энергии, испускаемое космическим объектом в единицу времени. Иногда говорят о светимости в некотором диапазоне длин волн, например радиосветимость. Обычно измеряется в эрг/с, Вт или в единицах… … Современная энциклопедия
СВЕТИМОСТЬ - звезды мощность излучения. Обычно выражается в единицах, равных светимости Солнца L? = 3,86?1026 Вт …
СВЕТИМОСТЬ - величина полного светового потока, испускаемого единицей поверхности источника света. Измеряется в лм/м² (в СИ) … Большой Энциклопедический словарь
СВЕТИМОСТЬ - (светность) физ. величина, равная отношению светового (см.) Ф, испускаемого светящейся поверхностью, к площади S этой поверхности: R = Ф/S В СИ выражается в (см.) на квадратный метр (лм/м2) … Большая политехническая энциклопедия
Светимость - I Светимость в точке поверхности, отношение светового потока (См. Световой поток), исходящего от малого элемента поверхности, который содержит данную точку, к площади этого элемента. Одна из световых величин (См. Световые величины).… … Большая советская энциклопедия
светимость - и; ж. Астрон. Световой поток, испускаемый единицей поверхности источника света. С. звезды (отношение силы света звезды к силе света Солнца). С. ночного неба (свечение атомов и молекул воздуха в высоких слоях атмосферы). * * * светимость I… … Энциклопедический словарь
Светимость - в астрономии полная энергия, излучаемая источником в единицу времени (в абсолютных единицах или в единицах светимости Солнца; светимость Солнца = 3,86·1033 эрг/с). Иногда говорят не о полной С., а о С. в некотором диапазоне длин волн. Напр., в… … Астрономический словарь
Звезды. Светимость, спектр и классификация.
Одни звезды светят более мощно, другие – слабее. Мощность излучения звезды называется светимостью. Светимость – это полная энергия, излучаемая звездой за 1 секунду. Светимость звезды характеризует поток энергии, излучаемой звездой по всем направлениям, и имеет размерность мощности Дж/с или Вт. Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными инструментальными методами, то расстояние до звезд определить не так просто. Абсолютная звездная величина Солнца во всем диапазоне излучения (болометрическая величина) M = 4,72, его светимость L = 3,86∙10 26 Вт. Зная абсолютную звездную величину, можно найти светимость: lg L/L = 0,4 (M – M).
Звезда | Светимость |
Сириус | 22 L |
Канопус | 4 700 L |
Арктур | 107 L |
Вега | 50 L |
Светимости других звезд определяют в относительных единицах, сравнивая со светимостью Солнца. Известны звезды, излучающие в десятки тысяч раз меньше, чем Солнце. А звезда S Золотой Рыбы, видимая только в странах южного полушария Земли как звездочка 8-й звездной величины (не видимая невооруженным глазом!), в миллион раз ярче Солнца, ее абсолютная звездная величина М = –10,6. По светимости звезды могут отличаться в миллиард раз. Среди звезд очень высокой светимости выделяют гиганты и сверхгиганты. Большинство гигантов имеет температуру 3 000–4 000 К, поэтому их называют красными гигантами.
Альдебаран – красный гигант в созвездии Тельца.
Альфа Ориона – Бетельгейзе. Сверхгиганты, например, Бетельгейзе – самые мощные источники света. Звезды, имеющие маленькую светимость, называются карликами.
Небольшая точка рядом с Сириусом – его спутник, белый карлик Сириус B. Спектры звезд – это их паспорта с описанием всех звездных особенностей. Звезды состоят из тех же химических элементов, которые известны на Земле, но в процентном отношении в них преобладают легкие элементы: водород и гелий. По спектру звезды можно узнать ее светимость, расстояние до звезды, температуру, размер, химический состав ее атмосферы, скорость вращения вокруг оси, особенности движения вокруг общего центра тяжести. Спектральный аппарат, устанавливаемый на телескопе, раскладывает свет звезды по длинам волн в полоску спектра. По спектру можно узнать, какая энергия приходит от звезды на различных длинах волн и оценить очень точно ее температуру. Цвет и спектр звезд связан с их температурой. В холодных звездах с температурой фотосферы 3 000 К преобладает излучение в красной области спектра. В спектрах таких звездах много линий металлов и молекул. В горячих голубых звездах с температурой свыше 10 000–15 000 К большая часть атомов ионизована. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звездах линий мало.
Согласно спектрам звезды делятся на спектральные классы:
|
Спектры различных звезд. Характерной особенностью звездных спектров также является наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.
Химический состав наружных слоев звезд, откуда к нам непосредственно приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а количество остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходится тысяча атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Примеси остальных элементов совершенно ничтожны. Без преувеличения можно сказать, что звезды состоят из водорода и гелия с небольшой примесью более тяжелых элементов. Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми, звезды же спектральных классов К и М – красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи («В»), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом («V»). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектральный класс звезды с точностью до подкласса. Для слабых звезд анализ цветов – единственная возможность их спектральной классификации.
Гарвардская спектральная классификация основана на наличии или отсутствии, а также относительной интенсивности определенных спектральных линий.
Кроме перечисленных в таблице основных спектральных классов для относительно холодных звезд имеются еще классы N и R (полосы поглощения молекул углерода C2, циана CN и окиси углерода CO), класс S (полосы окисей титана TiO и циркония ZrO), а также для самых холодных звезд – класс L (полоса CrH, линии рубидия, цезия, калия и натрия). Для объектов субзвездного типа – «коричневых карликов», промежуточных по массе между звездами и планетами, недавно введен специальный спектральный класс T (полосы поглощения воды, метана и молекулярного водорода). Спектральные классы О, В, А часто называют горячими или ранними, классы F и G – солнечными, а классы К и М – холодными или поздними спектральными классами. Для более тонкого определения звездных спектров интервалы между перечисленными классами делятся на 10 частей-подклассов. Например, F5 – это спектр, средний между F0 и G0. Спектральный класс Солнца – G2.
Возможность измерять и сравнивать блеск разных звезд привела к открытию новой области в астрономии – колориметрии. Колориметрия – это измерение цвета звезд и его изучение.
Ощущение цвета чисто субъективное, оно зависит от реакции сетчатки глаза наблюдателя. Цветочувствительность глаза человека ограничена примерно следующей областью: от фиолетовых лучей (4 000 A) до красных лучей (7 500 A). Звезды излучают энергию во всех диапазонах электромагнитного спектра, не только в видимой области. Цвета звезд определяются отношением интенсивностей излучения в двух или нескольких областях спектра. Вначале цвет звезд предложили измерять при помощи фотографий. Если звезду сфотографировать на две фотопластинки, одна из которых чувствительна к более коротким, синим лучам, а вторая – к более длинным, красным лучам, то почернение, то есть видимая звездная величина на разных фотопластинках будет разная. Разность между фотографическими звездными величинами назвали показателем цвета CI (англ. color index).
CI = m(1) – m(2). Красные звезды имеют положительные показатели цвета, а бело-голубые звезды – отрицательные. С развитием техники фотометрических измерений и появлением фотоумножителей договорились употреблять систему цветов U, B, V. Система U, B, V заменила прежнюю фотографическую и фотовизуальную систему определения цветов. Система цветов U измеряет звездные величины в ультрафиолетовой области спектра, система цветов В – в обычной фотографической области, которая соответствует синим лучам, а система цветов V – в области того цвета, который преобладает в освещении нашей планеты, т.е. желтого цвета.
Система UBV.
Показатель цвета B-V позволяет сравнивать интенсивности излучения в синих и желтых лучах, а показатель цвета U-B в ультрафиолетовом и синем диапазоне спектра. Условились считать, что показатель цвета B-V для звезды класса АО равен нулю. Это соответствует потоку квантов с длиной волны 5 550 A. Если показатель цвета звезды главной последовательности отрицательный, то это звезда ранних спектральных классов с температурой поверхности больше 10 000 К. Если показатель цвета положительный, то это звезда поздних спектральных классов с температурой поверхности менее 10 000 К. Таким образом, в колориметрии устанавливается связь между показатель цвета B-V, спектральным классом и температурой фотосферы для звезд главной последовательности. Звезды, за редчайшим исключением, наблюдаются как точечные источники излучения. Это означает, что их угловые размеры очень малы. Даже в самые большие телескопы нельзя увидеть звезды в виде «реальных» дисков. Звезда даже в самый большой телескоп не может быть разрешена.
Методы определения размеров звезд:
- по наблюдениям затмения Луной звезды можно определить угловой размер, а, зная расстояние до звезды, можно определить ее истинные, линейные размеры;
- непосредственно размеры звезды можно измерить на специальном приборе – оптическом интерферометре;
- размеры звезды можно рассчитать теоретически, исходя из оценок полной светимости и температуры по закону Стефана – Больцмана.
Сравнительные размеры Солнца и карликов.
Размеры звезд существенно различаются между собой: существуют карлики, гиганты и обычные звезды, которых большинство. Измерения показали, что размеры белых карликов – несколько тысяч километров, а размеры красных гигантов сравнимы с размерами Солнечной системы. Масса звезды – едва ли не самая важная ее характеристика. Масса определяет весь жизненный путь звезды. Массу можно оценить для звезд, входящих в двойные звездные системы, если известны большая полуось орбиты а и период обращения T. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде: здесь М1 и М2 – массы компонент системы, G – гравитационная постоянная. Уравнение дает сумму масс компонент системы. Если к тому же известно отношение орбитальных скоростей, то их массы можно определить отдельно. К сожалению, только для сравнительно небольшого количества двойных систем можно таким образом определить массу каждой из звезд.
Все другие способы оценок массы – косвенные. В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы изолированной звезды. И это серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Для звезд главной последовательности установлено, что чем больше масса, тем выше светимость звезды. Эта зависимость нелинейна: например, с увеличением массы вдвое светимость возрастает более чем в 10 раз. Самые малые по массе звезды значительно массивнее любой планеты Солнечной системы. Массы звезд заключены в пределах от 0,1 масс Солнца до нескольких десятков масс Солнца. Таким образом, массы звезд различаются всего в несколько сот раз.
Сравнения масс и светимостей для большинства звезд выявили следующую зависимость: светимость приблизительно пропорциональна четвертой степени массы.
Плотность газа в центре Солнца в сто раз превышает плотность воды. Звезда, весящая в два раза больше, чем Солнце, излучает примерно в 16 раз мощнее. Под действием высокой температуры (миллионы кельвинов) атомы ядра полностью ионизируются, а расстояния между ними сокращаются. Плотность газа в центре Солнца в сто раз превышает плотность воды. Температура звезды также увеличивается по мере приближения к центру. Звезды ранних спектральных классов О, В, А характеризуются также высокими скоростями вращения.
Экваториальные скорости вращения звезд: спектр v, км/с О5 400 А0 320 А5 250 F0 180
Наибольшие наблюдаемые скорости найдены у звезд с эмиссионными линиями в спектре и, конечно, у нейтронных звезд. Наше Солнце вращается с экваториальной скоростью 2 км/с. Звезды сильно различаются по размерам, светимости, температуре.
Благодаря огромной площади поверхности, гиганты излучают неизмеримо больше энергии, чем нормальные звезды вроде Солнца, несмотря на то, что температура их поверхности значительно ниже. Радиус красного сверхгиганта Бетельгейзе (созв. Ориона) во много раз превосходит радиус Солнца. Напротив, размер нормальной красной звезды, как правило, не превосходит одной десятой размера Солнца. По контрасту с гигантами их называют карликами. Например, две звезды, имеющие одинаковый спектральный класс М2, Бетельгейзе и Лаланд 21185, различаются по светимости в 600 000 раз. Светимость Бетельгейзе в 3 000 раз больше светимости Солнца, а Лаланд 21185 – в 200 раз меньше. Гигантами и карликами звезды бывают на разных стадиях своей эволюции, и гигант, достигнув «пожилого возраста», может превратиться в белый карлик. Наряду с красными гигантами и сверхгигантами встречаются белые и голубые сверхгиганты: Регул (α Льва), Ригель (β Ориона).
Источник информации: "Открытая Астрономия 2.5", ООО "ФИЗИКОН"
Если смотреть на звездное небо, сразу бросается в глаза, что звезды резко отличаются по своей яркости - одни светят очень ярко, они легко заметны, другие трудно различить невооруженным глазом.
Еще древний астроном Гиппарх предложил различать яркость звезд. Звезды были разделены на шесть групп: к первой относятся самые яркие - это звезды первой величины (сокращенно - 1m, от латинского magnitudo- величина), звезды послабей - ко второй звездной величине (2m) и так далее до шестой группы - едва различимые невооруженным глазом звезды. Звездная величина характеризует блеск звезды, тоесть освещенность, которую звезда создает на земле. Блеск звезды 1m больше блеска звезды 6mв 100 раз.
Изначально яркость звезд определялась неточно, на глазок; позже, с появлением новых оптических приборов, светимость стали определять точнее и стали известны менее яркие звезды со звездной величиной больше 6. (Самый мощный российский телескоп - 6-ти метровый рефлектор - позволяет наблюдать звезды до 24-й величины.)
С увеличением точности измерений, появлением фотоэлект-рических фотометров, возрастала точность измерения яркости звезд. Звездные величины стали обозначать дробными числами. Наиболее яркие звезды, а также планеты имеют нулевую или даже отрицательную величину. Например, Луна в полнолуние имеет звездную величину -12,5, а Солнце -- -26,7.
В 1850 г. английский астроном Н. Поссон вывел формулу:
E1/E2=(5v100)m3-m1?2,512m2-m1
где E1и E2 - освещенности, создаваемые звездами на Земле, а m1и m2- их звездные величины. Иными словами, звезда, например, первой звездной величины в 2,5 раза ярче звезды второй величины и в 2,52=6,25 раз ярче звезды третьей величины.
Однако значения звездной величины недостаточно для характеристики светимости объекта, для этого необходимо знать расстояние до звезды.
Расстояние до предмета можно определить, не добираясь до него физически. Нужно измерить направление на этот предмет с двух концов известного отрезка (базиса), а затем рассчитать размеры треугольника, образованного концами отрезка и удалённым предметом. Этот метод называется триангуляцией.
Чем больше базис, тем точнее результат измерений. Расстояния до звёзд столь велики, что длина базиса должна превосходить размеры земного шара, иначе ошибка измерения будет велика. К счастью, наблюдатель вместе с планетой путешествует в течение года вокруг Солнца, и если он произведёт два наблюдения одной и той же звезды с интервалом в несколько месяцев, то окажется, что он рассматривает её с разных точек земной орбиты, - а это уже порядочный базис. Направление на звезду изменится: она немного сместится на фоне более далёких звёзд. Это смещение называется параллактическим, а угол, на который сместилась звезда на небесной сфере, - параллаксом. Годичным параллаксом звезды называется угол, под которым с неё был виден средний радиус земной орбиты, перпендикулярный направлению на звезду.
С понятием параллакса связано название одной из основных единиц расстояний в астрономии - парсек. Это расстояние до воображаемой звезды, годичный параллакс которой равнялся бы точно 1"". Годичный параллакс любой звезды связан с расстоянием до неё простой формулой:
где r - расстояние в парсеках, П - годичный параллакс в секундах.
Сейчас методом параллакса определены расстояния до многих тысяч звёзд.
Теперь, зная расстояние до звезды, можно определить ее светимость - количество реально излучаемой ею энергии. Ее характеризует абсолютная звездная величина.
Абсолютная звездная величина (M) - такая величина, которую имела бы звезда на расстоянии 10 парсек (32,6 световых лет) от наблюдателя. Зная видимую звездную величину и расстояние до звезды, можно найти ее абсолютную звездную величину:
M=m + 5 - 5 * lg(r)
Ближайшая к Солнцу звезда Проксима Центавра - крошечный тусклый красный карлик - имеет видимую звездную величину m=-11,3, а абсолютную M=+15,7. Несмотря на близость к Земле, такую звезду можно разглядеть только в мощный телескоп. Еще более тусклая звезда №359 по каталогу Вольфа: m=13,5; M=16,6. Наше Солнце светит ярче, чем Вольф 359 в 50000 раз. Звезда дЗолотой Рыбы (в южном полушарии) имеет только 8-ю видимую величину и не различима невооруженным глазом, но ее абсолютная величина M=-10,6; она в миллион раз ярче Солнца. Если бы она находилась от нас на таком же расстоянии, как Проксима Центавра, она бы светила ярче Луны в полнолуние.
Для Солнца M=4,9. На расстоянии 10 парсек солнце будет видно слабой звездочкой, с трудом различимой невооруженным глазом.