Что показывает доверительный интервал. Доверительный интервал для оценки среднего (дисперсия известна) в MS EXCEL
В предыдущих подразделах мы рассмотрели вопрос об оценке неизвестного параметра а одним числом. Такая оценка называется «точечной». В ряде задач требуется не только найти для параметра а подходящее численное значение, но и оценить его точность и надежность. Требуется знать, к каким ошибкам может привести замена параметра а его точечной оценкой а и с какой степенью уверенности можно ожидать, что эти ошибки не выйдут за известные пределы?
Такого рода задачи особенно актуальны при малом числе наблюдений, когда точечная оценка а в значительной мере случайна и приближенная замена а на а может привести к серьезным ошибкам.
Чтобы дать представление о точности и надежности оценки а ,
в математической статистике пользуются так называемыми доверительными интервалами и доверительными вероятностями.
Пусть для параметра а получена из опыта несмещенная оценка а. Мы хотим оценить возможную при этом ошибку. Назначим некоторую достаточно большую вероятность р (например, р = 0,9, 0,95 или 0,99) такую, что событие с вероятностью р можно считать практически достоверным, и найдем такое значение s, для которого
Тогда диапазон практически возможных значений ошибки, возникающей при замене а на а , будет ± s; большие по абсолютной величине ошибки будут появляться только с малой вероятностью а = 1 - р. Перепишем (14.3.1) в виде:
Равенство (14.3.2) означает, что с вероятностью р неизвестное значение параметра а попадает в интервал
При этом необходимо отметить одно обстоятельство. Ранее мы неоднократно рассматривали вероятность попадания случайной величины в заданный неслучайный интервал. Здесь дело обстоит иначе: величина а не случайна, зато случаен интервал / р. Случайно его положение на оси абсцисс, определяемое его центром а ; случайна вообще и длина интервала 2s, так как величина s вычисляется, как правило, по опытным данным. Поэтому в данном случае лучше будет толковать величину р не как вероятность «попадания» точки а в интервал / р, а как вероятность того, что случайный интервал / р накроет точку а (рис. 14.3.1).
Рис. 14.3.1
Вероятность р принято называть доверительной вероятностью , а интервал / р - доверительным интервалом . Границы интервала If. а х =а- s и а 2 = а + а называются доверительными границами.
Дадим еще одно истолкование понятию доверительного интервала: его можно рассматривать как интервал значений параметра а, совместимых с опытными данными и не противоречащих им. Действительно, если условиться считать событие с вероятностью а = 1-р практически невозможным, то те значения параметра а, для которых а - а > s, нужно признать противоречащими опытным данным, а те, для которых |а - а a t na 2 .
Пусть для параметра а имеется несмещенная оценка а. Если бы нам был известен закон распределения величины а , задача нахождения доверительного интервала была бы весьма проста: достаточно было бы найти такое значение s, для которого
Затруднение состоит в том, что закон распределения оценки а зависит от закона распределения величины X и, следовательно, от его неизвестных параметров (в частности, и от самого параметра а).
Чтобы обойти это затруднение, можно применить следующий грубо приближенный прием: заменить в выражении для s неизвестные параметры их точечными оценками. При сравнительно большом числе опытов п (порядка 20...30) этот прием обычно дает удовлетворительные по точности результаты.
В качестве примера рассмотрим задачу о доверительном интервале для математического ожидания.
Пусть произведено п X, характеристики которой - математическое ожидание т и дисперсия D - неизвестны. Для этих параметров получены оценки:
Требуется построить доверительный интервал / р, соответствующий доверительной вероятности р, для математического ожидания т величины X.
При решении этой задачи воспользуемся тем, что величина т представляет собой сумму п независимых одинаково распределенных случайных величин X h и согласно центральной предельной теореме при достаточно большом п ее закон распределения близок к нормальному. На практике даже при относительно небольшом числе слагаемых (порядка 10...20) закон распределения суммы можно приближенно считать нормальным. Будем исходить из того, что величина т распределена по нормальному закону. Характеристики этого закона - математическое ожидание и дисперсия - равны соответственно т и
(см. главу 13 подраздел 13.3). Предположим, что величина D нам известна и найдем такую величину Ер, для которой
Применяя формулу (6.3.5) главы 6, выразим вероятность в левой части (14.3.5) через нормальную функцию распределения
где - среднее квадратичное отклонение оценки т.
Из уравнения
находим значение Sp:
где arg Ф* (х) - функция, обратная Ф* (х), т.е. такое значение аргумента, при котором нормальная функция распределения равна х.
Дисперсия D, через которую выражена величина а 1П, нам в точности не известна; в качестве ее ориентировочного значения можно воспользоваться оценкой D (14.3.4) и положить приближенно:
Таким образом, приближенно решена задача построения доверительного интервала, который равен:
где gp определяется формулой (14.3.7).
Чтобы избежать при вычислении s p обратного интерполирования в таблицах функции Ф* (л), удобно составить специальную таблицу (табл. 14.3.1), где приводятся значения величины
в зависимости от р. Величина (р определяет для нормального закона число средних квадратических отклонений, которое нужно отложить вправо и влево от центра рассеивания для того, чтобы вероятность попадания в полученный участок была равна р.
Через величину 7 р доверительный интервал выражается в виде:
Таблица 14.3.1
Пример 1. Проведено 20 опытов над величиной X; результаты приведены в табл. 14.3.2.
Таблица 14.3.2
Требуется найти оценку от для математического ожидания от величины X и построить доверительный интервал, соответствующий доверительной вероятности р = 0,8.
Решение. Имеем:
Выбрав за начало отсчета л: = 10, по третьей формуле (14.2.14) находим несмещенную оценку D :
По табл. 14.3,1 находим
Доверительные границы:
Доверительный интервал:
Значения параметра т, лежащие в этом интервале, являются совместимыми с опытными данными, приведенными в табл. 14.3.2.
Аналогичным способом может быть построен доверительный интервал и для дисперсии.
Пусть произведено п независимых опытов над случайной величиной X с неизвестными параметрами от и Л, и для дисперсии D получена несмещенная оценка:
Требуется приближенно построить доверительный интервал для дисперсии.
Из формулы (14.3.11) видно, что величина D представляет собой
сумму п случайных величин вида . Эти величины не являются
независимыми, так как в любую из них входит величина т, зависящая от всех остальных. Однако можно показать, что при увеличении п закон распределения их суммы тоже приближается к нормальному. Практически при п = 20...30 он уже может считаться нормальным.
Предположим, что это так, и найдем характеристики этого закона: математическое ожидание и дисперсию. Так как оценка D - несмещенная, то М[D] = D.
Вычисление дисперсии D D связано со сравнительно сложными выкладками, поэтому приведем ее выражение без вывода:
где ц 4 - четвертый центральный момент величины X.
Чтобы воспользоваться этим выражением, нужно подставить в него значения ц 4 и D (хотя бы приближенные). Вместо D можно воспользоваться его оценкой D . В принципе четвертый центральный момент тоже можно заменить его оценкой, например величиной вида:
но такая замена даст крайне невысокую точность, так как вообще при ограниченном числе опытов моменты высокого порядка определяются с большими ошибками. Однако на практике часто бывает, что вид закона распределения величины X известен заранее: неизвестны лишь его параметры. Тогда можно попытаться выразить ц 4 через D.
Возьмем наиболее часто встречающийся случай, когда величина X распределена по нормальному закону. Тогда ее четвертый центральный момент выражается через дисперсию (см. главу 6 подраздел 6.2);
и формула (14.3.12) дает или
Заменяя в (14.3.14) неизвестное D
его оценкой D
, получим:
откуда
Момент ц 4 можно выразить через D также и в некоторых других случаях, когда распределение величины X не является нормальным, но вид его известен. Например, для закона равномерной плотности (см. главу 5) имеем:
где (а, Р) - интервал, на котором задан закон.
Следовательно,
По формуле (14.3.12) получим: откуда находим приближенно
В случаях, когда вид закона распределения величины 26 неизвестен, при ориентировочной оценке величины а /} рекомендуется все же пользоваться формулой (14.3.16), если нет специальных оснований считать, что этот закон сильно отличается от нормального (обладает заметным положительным или отрицательным эксцессом).
Если ориентировочное значение а /} тем или иным способом получено, то можно построить доверительный интервал для дисперсии аналогично тому, как мы строили его для математического ожидания:
где величина в зависимости от заданной вероятности р находится по табл. 14.3.1.
Пример 2. Найти приближенно 80%-й доверительный интервал для дисперсии случайной величины X в условиях примера 1, если известно, что величина X распределена по закону, близкому к нормальному.
Решение. Величина остается той же, что в табл. 14.3.1:
По формуле (14.3.16)
По формуле (14.3.18) находим доверительный интервал:
Соответствующий интервал значений среднего квадратичного отклонения: (0,21; 0,29).
14.4. Точные методы построения доверительных интервалов для параметров случайной величины, распределенной по нормальному закону
В предыдущем подразделе мы рассмотрели грубо приближенные методы построения доверительных интервалов для математического ожидания и дисперсии. Здесь мы дадим представление о точных методах решения той же задачи. Подчеркнем, что для точного нахождения доверительных интервалов совершенно необходимо знать заранее вид закона распределения величины X, тогда как для применения приближенных методов это не обязательно.
Идея точных методов построения доверительных интервалов сводится к следующему. Любой доверительный интервал находится из условия, выражающего вероятность выполнения некоторых неравенств, в которые входит интересующая нас оценка а. Закон распределения оценки а в общем случае зависит от неизвестных параметров величины X. Однако иногда удается перейти в неравенствах от случайной величины а к какой-либо другой функции наблюденных значений Х п Х 2 , ..., X п. закон распределения которой не зависит от неизвестных параметров, а зависит только от числа опытов и и от вида закона распределения величины X. Такого рода случайные величины играют большую роль в математической статистике; они наиболее подробно изучены для случая нормального распределения величины X.
Например, доказано, что при нормальном распределении величины X случайная величина
подчиняется так называемому закону распределения Стъюдента с п - 1 степенями свободы; плотность этого закона имеет вид
где Г (х) - известная гамма-функция:
Доказано также, что случайная величина
имеет «распределение % 2 » с п - 1 степенями свободы (см. главу 7), плотность которого выражается формулой
Не останавливаясь на выводах распределений (14.4.2) и (14.4.4), покажем, как их можно применить при построении доверительных интервалов для параметров ти D .
Пусть произведено п независимых опытов над случайной величиной X, распределенной по нормальному закону с неизвестными параметрами тиО. Для этих параметров получены оценки
Требуется построить доверительные интервалы для обоих параметров, соответствующие доверительной вероятности р.
Построим сначала доверительный интервал для математического ожидания. Естественно этот интервал взять симметричным относительно т ; обозначим s p половину длины интервала. Величину s p нужно выбрать так, чтобы выполнялось условие
Попытаемся перейти в левой части равенства (14.4.5) от случайной величины т к случайной величине Т, распределенной по закону Стьюдента. Для этого умножим обе части неравенства |m-w?|
на положительную величину: или, пользуясь обозначением (14.4.1),
Найдем такое число / р, что Величина / р найдется из условия
Из формулы (14.4.2) видно, что (1) - четная функция, поэтому (14.4.8) дает
Равенство (14.4.9) определяет величину / р в зависимости от р. Если иметь в своем распоряжении таблицу значений интеграла
то величину / р можно найти обратным интерполированием в таблице. Однако удобнее составить заранее таблицу значений / р. Такая таблица дается в приложении (табл. 5). В этой таблице приведены значения в зависимости от доверительной вероятности р и числа степеней свободы п
- 1. Определив / р по табл. 5 и полагая
мы найдем половину ширины доверительного интервала / р и сам интервал
Пример 1. Произведено 5 независимых опытов над случайной величиной X, распределенной нормально с неизвестными параметрами т и о. Результаты опытов приведены в табл. 14.4.1.
Таблица 14.4.1
Найти оценку т для математического ожидания и построить для него 90%-й доверительный интервал / р (т.е. интервал, соответствующий доверительной вероятности р = 0,9).
Решение. Имеем:
По таблице 5 приложения для п - 1 = 4 и р = 0,9 находим откуда
Доверительный интервал будет
Пример 2. Для условий примера 1 подраздела 14.3, предполагая величину X распределенной нормально, найти точный доверительный интервал.
Решение. По таблице 5 приложения находим при п - 1 = 19ир =
0,8 / р =1,328; отсюда
Сравнивая с решением примера 1 подраздела 14.3 (е р = 0,072), убеждаемся, что расхождение весьма незначительно. Если сохранить точность до второго знака после запятой, то доверительные интервалы, найденные точным и приближенным методами, совпадают:
Перейдем к построению доверительного интервала для дисперсии. Рассмотрим несмещенную оценку дисперсии
и выразим случайную величину D через величину V (14.4.3), имеющую распределение х 2 (14.4.4):
Зная закон распределения величины V, можно найти интервал / (1 , в который она попадает с заданной вероятностью р.
Закон распределения k n _ x {v) величины I 7 имеет вид, изображенный на рис. 14.4.1.
Рис. 14.4.1
Возникает вопрос: как выбрать интервал / р? Если бы закон распределения величины V был симметричным (как нормальный закон или распределение Стьюдента), естественно было бы взять интервал /р симметричным относительно математического ожидания. В данном случае закон к п _ х (v) несимметричен. Условимся выбирать интервал /р так, чтобы вероятности выхода величины V за пределы интервала вправо и влево (заштрихованные площади на рис. 14.4.1) были одинаковы и равны
Чтобы построить интервал / р с таким свойством, воспользуемся табл. 4 приложения: в ней приведены числа у} такие, что
для величины V, имеющей х 2 -распределение с г степенями свободы. В нашем случае г = п - 1. Зафиксируем г = п - 1 и найдем в соответствующей строке табл. 4 два значения х 2 - одно, отвечающее вероятности другое - вероятности Обозначим эти
значения у 2 и xl ? Интервал имеет у 2 , своим левым, а у ~ правым концом.
Теперь найдем по интервалу / р искомый доверительный интервал /|, для дисперсии с границами D, и D 2 , который накрывает точку D с вероятностью р:
Построим такой интервал / (, = (?> ь А), который накрывает точку D тогда и только тогда, когда величина V попадает в интервал / р. Покажем, что интервал
удовлетворяет этому условию. Действительно, неравенства равносильны неравенствам
а эти неравенства выполняются с вероятностью р. Таким образом, доверительный интервал для дисперсии найден и выражается формулой (14.4.13).
Пример 3. Найти доверительный интервал для дисперсии в условиях примера 2 подраздела 14.3, если известно, что величинаX распределена нормально.
Решение. Имеем . По таблице 4 приложения
находим при г = п - 1 = 19
По формуле (14.4.13) находим доверительный интервал для дисперсии
Соответствующий интервал для среднего квадратичного отклонения: (0,21; 0,32). Этот интервал лишь незначительно превосходит полученный в примере 2 подраздела 14.3 приближенным методом интервал (0,21; 0,29).
- На рисунке 14.3.1 рассматривается доверительный интервал, симметричный относительно а. Вообще, как мы увидим дальше, это необязательно.
Часто оценщику приходится анализировать рынок недвижимости того сегмента, в котором располагается объект оценки. Если рынок развит, проанализировать всю совокупность представленных объектов бывает сложно, поэтому для анализа используется выборка объектов. Не всегда эта выборка получается однородной, иногда требуется очистить ее от экстремумов - слишком высоких или слишком низких предложений рынка. Для этой цели применяется доверительный интервал . Цель данного исследования - провести сравнительный анализ двух способов расчета доверительного интервала и выбрать оптимальный вариант расчета при работе с разными выборками в системе estimatica.pro.
Доверительный интервал - вычисленный на основе выборки интервал значений признака, который с известной вероятностью содержит оцениваемый параметр генеральной совокупности.
Смысл вычисления доверительного интервала заключается в построении по данным выборки такого интервала, чтобы можно было утверждать с заданной вероятностью, что значение оцениваемого параметра находится в этом интервале. Другими словами, доверительный интервал с определенной вероятностью содержит неизвестное значение оцениваемой величины. Чем шире интервал, тем выше неточность.
Существуют разные методы определения доверительного интервала. В этой статье рассмотрим 2 способа:
- через медиану и среднеквадратическое отклонение;
- через критическое значение t-статистики (коэффициент Стьюдента).
Этапы сравнительного анализа разных способов расчета ДИ:
1. формируем выборку данных;
2. обрабатываем ее статистическими методами: рассчитываем среднее значение, медиану, дисперсию и т.д.;
3. рассчитываем доверительный интервал двумя способами;
4. анализируем очищенные выборки и полученные доверительные интервалы.
Этап 1. Выборка данных
Выборка сформирована с помощью системы estimatica.pro. В выборку вошло 91 предложение о продаже 1 комнатных квартир в 3-ем ценовом поясе с типом планировки «Хрущевка».
Таблица 1. Исходная выборка
Цена 1 кв.м., д.е. |
|
Рис.1. Исходная выборка
Этап 2. Обработка исходной выборки
Обработка выборки методами статистики требует вычисления следующих значений:
1. Среднее арифметическое значение
2. Медиана - число, характеризующее выборку: ровно половина элементов выборки больше медианы, другая половина меньше медианы
(для выборки, имеющей нечетное число значений)
3. Размах - разница между максимальным и минимальным значениями в выборке
4. Дисперсия - используется для более точного оценивания вариации данных
5. Среднеквадратическое отклонение по выборке (далее - СКО) - наиболее распространённый показатель рассеивания значений корректировок вокруг среднего арифметического значения.
6. Коэффициент вариации - отражает степень разбросанности значений корректировок
7. коэффициент осцилляции - отражает относительное колебание крайних значений цен в выборке вокруг средней
Таблица 2. Статистические показатели исходной выборки
Коэффициент вариации, который характеризует однородность данных, составляет 12,29%, однако коэффициент осцилляции слишком велик. Таким образом, мы можем утверждать, что исходная выборка не является однородной, поэтому перейдем к расчету доверительного интервала.
Этап 3. Расчёт доверительного интервала
Способ 1. Расчёт через медиану и среднеквадратическое отклонение.
Доверительный интервал определяется следующим образом: минимальное значение - из медианы вычитается СКО; максимальное значение - к медиане прибавляется СКО.
Таким образом, доверительный интервал (47179 д.е.; 60689 д.е.)
Рис. 2. Значения, попавшие в доверительный интервал 1.
Способ 2. Построение доверительного интервала через критическое значение t-статистики (коэффициент Стьюдента)
С.В. Грибовский в книге «Математические методы оценки стоимости имущества» описывает способ вычисления доверительного интервала через коэффициент Стьюдента. При расчете этим методом оценщик должен сам задать уровень значимости ∝, определяющий вероятность, с которой будет построен доверительный интервал. Обычно используются уровни значимости 0,1; 0,05 и 0,01. Им соответствуют доверительные вероятности 0,9; 0,95 и 0,99. При таком методе полагают истинные значения математического ожидания и дисперсии практически неизвестными (что почти всегда верно при решении практических задач оценки).
Формула доверительного интервала:
n - объем выборки;
Критическое значение t- статистики (распределения Стьюдента) с уровнем значимости ∝,числом степеней свободы n-1,которое определяется по специальным статистическим таблицам либо с помощью MS Excel ( →"Статистические"→ СТЬЮДРАСПОБР);
∝ - уровень значимости, принимаем ∝=0,01.
Рис. 2. Значения, попавшие в доверительный интервал 2.
Этап 4. Анализ разных способов расчета доверительного интервала
Два способа расчета доверительного интервала - через медиану и коэффициент Стьюдента - привели к разным значениям интервалов. Соответственно, получилось две различные очищенные выборки.
Таблица 3. Статистические показатели по трем выборкам.
Показатель |
Исходная выборка |
1 вариант |
2 вариант |
Среднее значение |
|||
Дисперсия |
|||
Коэф. вариации |
|||
Коэф. осциляции |
|||
Количество выбывших объектов, шт. |
На основании выполненных расчетов можно сказать, что полученные разными методами значения доверительных интервалов пересекаются, поэтому можно использовать любой из способов расчета на усмотрение оценщика.
Однако мы считаем, что при работе в системе estimatica.pro целесообразно выбирать метод расчета доверительного интервала в зависимости от степени развитости рынка:
- если рынок неразвит, применять метод расчета через медиану и среднеквадратическое отклонение, так как количество выбывших объектов в этом случае невелико;
- если рынок развит, применять расчет через критическое значение t-статистики (коэффициент Стьюдента), так как есть возможность сформировать большую исходную выборку.
При подготовке статьи были использованы:
1. Грибовский С.В., Сивец С.А., Левыкина И.А. Математические методы оценки стоимости имущества. Москва, 2014 г.
2. Данные системы estimatica.pro
В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную выборочную статистику, которая используется для оценки параметра генеральной совокупности. Например, выборочное среднее - это точечная оценка математического ожидания генеральной совокупности, а выборочная дисперсия S 2 - точечная оценка дисперсии генеральной совокупности σ 2 . было показано, что выборочное среднее является несмещенной оценкой математического ожидания генеральной совокупности. Выборочное среднее называется несмещенным, поскольку среднее значение всех выборочных средних (при одном и том же объеме выборки n ) равно математическому ожиданию генеральной совокупности.
Для того чтобы выборочная дисперсия S 2 стала несмещенной оценкой дисперсии генеральной совокупности σ 2 , знаменатель выборочной дисперсии следует положить равным n – 1 , а не n . Иначе говоря, дисперсия генеральной совокупности является средним значением всевозможных выборочных дисперсий.
При оценке параметров генеральной совокупности следует иметь в виду, что выборочные статистики, такие как , зависят от конкретных выборок. Чтобы учесть этот факт, для получения интервальной оценки математического ожидания генеральной совокупности анализируют распределение выборочных средних (подробнее см. ). Построенный интервал характеризуется определенным доверительным уровнем, который представляет собой вероятность того, что истинный параметр генеральной совокупности оценен правильно. Аналогичные доверительные интервалы можно применять для оценки доли признака р и основной распределенной массы генеральной совокупности.
Скачать заметку в формате или , примеры в формате
Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении
Построение доверительного интервала для доли признака в генеральной совокупности
В этом разделе понятие доверительного интервала распространяется на категорийные данные. Это позволяет оценить долю признака в генеральной совокупности р с помощью выборочной доли р S = Х/ n . Как указывалось , если величины n р и n (1 – р) превышают число 5, биномиальное распределение можно аппроксимировать нормальным. Следовательно, для оценки доли признака в генеральной совокупности р можно построить интервал, доверительный уровень которого равен (1 – α)х100% .
где p S - выборочная доля признака, равная Х/ n , т.е. количеству успехов, деленному на объем выборки, р - доля признака в генеральной совокупности, Z - критическое значение стандартизованного нормального распределения, n - объем выборки.
Пример 3. Предположим, что из информационной системы извлечена выборка, состоящая из 100 накладных, заполненных в течение последнего месяца. Допустим, что 10 из этих накладных составлены с ошибками. Таким образом, р = 10/100 = 0,1. Доверительному уровню 95% соответствует критическое значение Z = 1,96.
Таким образом, вероятность того, что от 4,12% до 15,88% накладных содержат ошибки, равна 95%.
Для заданного объема выборки доверительный интервал, содержащий долю признака в генеральной совокупности, кажется более широким, чем для непрерывной случайной величины. Это объясняется тем, что измерения непрерывной случайной величины содержат больше информации, чем измерения категорийных данных. Иначе говоря, категорийные данные, принимающие лишь два значения, содержат недостаточно информации для оценки параметров их распределения.
В ычисление оценок, извлеченных из конечной генеральной совокупности
Оценка математического ожидания. Поправочный коэффициент для конечной генеральной совокупности (fpc ) использовался для уменьшения стандартной ошибки в раз. При вычислении доверительных интервалов для оценок параметров генеральной совокупности поправочный коэффициент применяется в ситуациях, когда выборки извлекаются без возвращения. Таким образом, доверительный интервал для математического ожидания, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:
Пример 4. Чтобы проиллюстрировать применение поправочного коэффициента для конечной генеральной совокупности, вернемся к задаче о вычислении доверительного интервала для средней суммы накладных, рассмотренной выше в примере 3. Предположим, что за месяц в компании выписываются 5000 накладных, причем X̅ =110,27долл., S = 28,95 долл., N = 5000, n = 100, α = 0,05, t 99 = 1,9842. По формуле (6) получаем:
Оценка доли признака. При выборе без возвращения доверительный интервал для доли признака, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:
Доверительные интервалы и этические проблемы
При выборочном исследовании генеральной совокупности и формулировании статистических выводов часто возникают этические проблемы. Основная из них - как согласуются доверительные интервалы и точечные оценки выборочных статистик. Публикация точечных оценок без указания соответствующих доверительных интервалов (как правило, имеющих 95%-ный доверительный уровень) и объема выборки, на основе которых они получены, может породить недоразумения. Это может создать у пользователя впечатление, что точечная оценка - именно то, что ему необходимо, чтобы предсказать свойства всей генеральной совокупности. Таким образом, необходимо понимать, что в любых исследованиях во главу угла должны быть поставлены не точечные, а интервальные оценки. Кроме того, особое внимание следует уделять правильному выбору объемов выборки.
Чаще всего объектами статистических манипуляций становятся результаты социологических опросов населения по тем или иным политическим проблемам. При этом результаты опроса выносят на первые страницы газет, а ошибку выборочного исследования и методологию статистического анализа печатают где-нибудь в середине. Чтобы доказать обоснованность полученных точечных оценок, необходимо указывать объем выборки, на основе которой они получены, границы доверительного интервала и его уровень значимости.
Следующая заметка
Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 448–462
Центральная предельная теорема утверждает, что при достаточно большом объеме выборок выборочное распределение средних можно аппроксимировать нормальным распределением. Это свойство не зависит от вида распределения генеральной совокупности.
Доверительный интервал (ДИ; в англ, confidence interval - CI) полученный в исследовании при выборке даёт меру точности (или неопределённости) результатов исследования, для того чтобы делать выводы о популяции всех таких пациентов (генеральная совокупность). Правильное определение 95% ДИ можно сформулировать так: 95% таких интервалов будет содержать истинную величину в популяции. Несколько менее точна такая интерпретация: ДИ - диапазон величин, в пределах которого можно на 95% быть уверенным в том, что он содержит истинную величину. При использовании ДИ акцент делается на определении количественного эффекта, в противоположность величине Р, которая получается в результате проверки статистической значимости. Величина Р не оценивает никакого количества, а служит скорее мерой силы свидетельства против нулевой гипотезы «никакого эффекта». Величина Р сама по себе не говорит нам ничего ни о величине различия, ни даже о его направлении. Поэтому самостоятельные величины Р абсолютно неинформативны в статьях или рефератах. В отличие от них ДИ указывает и на количество эффекта, представляющего непосредственный интерес, например на полезность лечения, и на силу доказательств. Поэтому ДИ непосредственно имеет отношение к практике ДМ.
Подход оценки к статистическому анализу, иллюстрируемый ДИ, направлен на измерение количества интересующего нас эффекта (чувствительность диагностического теста, частота прогнозируемых случаев, сокращение относительного риска при лечении и т.д.), а также на измерение неопределённости в этом эффекте. Чаще всего ДИ - диапазон величин по обе стороны оценки, в котором, вероятно, лежит истинная величина, и можно быть уверенным в этом на 95%. Соглашение использовать 95% вероятность произвольно, также как и величину Р <0,05 для оценки статистической значимости, и авторы иногда используют 90% или 99% ДИ. Заметим, что слово «интервал» означает диапазон величин и поэтому стоит в единственном числе. Две величины, которые ограничивают интервал, называются «доверительными пределами».
ДИ основан на идее, что то же самое исследование, выполненное на других выборках пациентов, не привело бы к идентичным результатам, но что их результаты будут распределены вокруг истинной, однако неизвестной величины. Иными словами, ДИ описывает это как «вариабельность, зависящую от выборки». ДИ не отражает дополнительную неопределённости, обусловленную другими причинами; в частности, он не включает влияние селективной потери пациентов при отслеживании, плохого комплайнса или неточного измерения исхода, отсутствия «ослепления» и т.д. ДИ, таким образом, всегда недооценивает общее количество неопределённости.
Вычисление доверительного интервала
Таблица А1.1. Стандартные ошибки и доверительные интервалы для некоторых клинических измерений
Обычно ДИ вычисляют из наблюдаемой оценки количественного показателя, такого, как различие (d) между двумя пропорциями, и стандартной ошибки (SE) в оценке этого различия. Приблизительный 95% ДИ, получаемый таким образом, - d ± 1,96 SE. Формула изменяется согласно природе меры исхода и охвату ДИ. Например, в рандомизированном плацебо-контролируемом испытании бесклеточной коклюшной вакцины коклюш развивался у 72 из 1670 (4,3%) младенцев, получивших вакцину, и у 240 из 1665 (14,4%) в группе контроля. Различие в процентах, известное как абсолютное снижение риска, составляет 10,1%. SE этого различия равна 0,99%. Соответственно 95% ДИ составляет 10,1% + 1,96 х 0,99%, т.е. от 8,2 до 12,0.
Несмотря на разные философские подходы, ДИ и тесты на статистическую значимость тесно связаны математически.
Таким образом, величина Р «значимая», т.е. Р <0,05 соответствует 95% ДИ, который исключает величину эффекта, указывающую на отсутствие различия. Например, для различия между двумя средними пропорциями это ноль, а для относительного риска или отношения шансов - единица. При некоторых обстоятельствах эти два подхода могут быть не совсем эквивалентны. Преобладающая точка зрения: оценка с помощью ДИ - предпочтительный подход к суммированию результатов исследования, но ДИ и величина Р взаимодополняющи, и во многих статьях используются оба способа представления результатов.
Неопределенность (неточность) оценки, выражаемая в ДИ, в большой степени связана с квадратным корнем из размера выборки. Маленькие выборки предоставляют меньше информации, чем большие, и ДИ соответственно шире в меньшей выборке. Например, статья, сравнивающая характеристики трёх тестов, которые применяются для диагностики инфекции Helicobacter pylori , сообщила о чувствительности дыхательной пробы с мочевиной 95,8% (95% ДИ 75-100). В то время как число 95,8% выглядит внушительно, маленькая выборка из 24 взрослых пациентов с Я. pylori означает, что имеется значительная неопределенность в этой оценке, как показывает широкий ДИ. Действительно, нижний предел 75% намного ниже, чем оценка 95,8%. Если бы такая же чувствительность наблюдалась в выборке 240 человек, то 95% ДИ составлял бы 92,5-98,0, давая больше гарантий, что тест высокочувствителен.
В рандомизированных контролируемых испытаниях (РКИ) незначимые результаты (т.е. те, где Р >0,05) особенно подвержены неверному толкованию. ДИ особенно полезен здесь, поскольку он показывает, насколько совместимы результаты с клинически полезным истинным эффектом. Например, в РКИ, сравнивающем наложение анастомоза швом и скрепками на толстой кишке , раневая инфекция развилась у 10,9% и 13,5% пациентов соответственно (Р = 0,30). 95% ДИ для этого различия составляет 2,6% (от -2 до +8). Даже в этом исследовании, включавшем 652 пациента, остаётся вероятность, что существует умеренное различие в частоте инфекций, возникающих вследствие этих двух процедур. Чем меньше исследование, тем больше неуверенность. Сунг и соавт. выполнили РКИ, чтобы сравнить инфузию октреотида со срочной склеротерапией при остром кровотечении из варикозно-расширенных вен на 100 пациентах. В группе октреотида частота остановки кровотечения составила 84%; в группе склеротерапии - 90%, что даёт Р = 0,56. Заметим, что показатели продолжающегося кровотечения аналогичны таковым при раневой инфекции в упомянутом исследовании. В этом случае, однако, 95% ДИ для различия вмешательств равен 6% (от -7 до +19). Этот интервал весьма широк по сравнению с 5% различием, которое представляло бы клинический интерес. Ясно, что исследование не исключает значительной разницы в эффективности. Поэтому заключение авторов «инфузия октреотида и склеротерапия одинаково эффективны при лечении кровотечения из варикозно-расширенных вен» определённо невалидно. В подобных случаях, когда, как здесь, 95% ДИ для абсолютного снижения риска (АСР; absolute risk reduction - ARR, англ.) включает ноль, ДИ для ЧПЛП (NNT - number needed to treat, англ.) является довольно затруднительным для толкования. ЧПЛП и его ДИ получают из величин, обратных АСР (умножая их на 100, если эти величины даны в виде процентов). Здесь мы получаем ЧПЛП = 100: 6 = 16,6 с 95% ДИ от -14,3 до 5,3. Как видно из сноски «d» в табл. А1.1, этот ДИ включает величины ЧПЛП от 5,3 до бесконечности и ЧПЛВ от 14,3 до бесконечности.
ДИ можно построить для большинства обычно употребляемых статистических оценок или сравнений. Для РКИ он включает разность между средними пропорциями, относительными рисками, отношениями шансов и ЧПЛП. Аналогично ДИ можно получить для всех главных оценок, сделанных в исследованиях точности диагностических тестов - чувствительности, специфичности, прогностической значимости положительного результата (все они являются простыми пропорциями), и отношения правдоподобия - оценок, получаемых в метаанализах и исследованиях типа сравнения с контролем. Компьютерная программа для персональных компьютеров, которая покрывает многие из этих способов использования ДИ, доступна со вторым изданием «Statistics with Confidence». Макросы для вычисления ДИ для пропорций бесплатно доступны для Excel и статистических программ SPSS и Minitab на http://www.uwcm.ac.uk/study/medicine/epidemiology_ statistics/research/statistics/proportions, htm.
Множественные оценки эффекта лечения
В то время как построение ДИ желательно для первичных результатов исследования, они не обязательны для всех результатов. ДИ касается клинически важных сравнений. Например, при сравнении двух групп правилен тот ДИ, что построен для различия между группами, как показано выше в примерах, а не ДИ, который можно построить для оценки в каждой группе. Мало того, что бесполезно давать отдельные ДИ для оценок в каждой группе, это представление может вводить в заблуждение. Точно так же правильный подход при сравнении эффективности лечения в различных подгруппах - сравнение двух (или более) подгрупп непосредственно. Неправильно предполагать, что лечение эффективно только в одной подгруппе, если ее ДИ исключает величину, соответствующую отсутствию эффекта, а другие - нет . ДИ полезны также при сравнении результатов в нескольких подгруппах. На рис. А 1.1 показан относительный риск эклампсии у женщин с преэклампсией в подгруппах женщин из плацебо-контролируемого РКИ сульфата магния.
Рис. А1.2. Лесной график показывает результаты 11 рандомизированных клинических испытаний бычьей ротавирусной вакцины для профилактики диареи в сравнении с плацебо. При оценке относительного риска диареи использован 95% доверительный интервал. Размер чёрного квадрата пропорционален объёму информации. Кроме того, показана суммарная оценка эффективности лечения и 95% доверительного интервала (обозначается ромбом). В метаанализе использована модель случайных эффектов превышает некоторые предварительно установленные; например, это может быть размер, использованный при вычислении величины выборки. В соответствии с более строгим критерием весь диапазон ДИ должен показывать пользу, превышающую предустановленный минимум.
Мы уже обсуждали ошибку, когда отсутствие статистической значимости принимают как указание на то, что два способа лечения одинаково эффективны. Столь же важно не уравнивать статистическую значимость с клинической важностью. Клиническую важность можно предполагать, когда результат статистически значим и величина оценки эффективности лечения
Исследования могут показать, значимы ли результаты статистически и какие из них клинически важны, а какие - нет. На рис. А1.2 приведены результаты четырёх испытаний, для которых весь ДИ <1, т.е. их результаты статистически значимы при Р <0,05 , . После высказанного предположения о том, что клинически важным различием было бы сокращение риска диареи на 20% (ОР = 0,8), все эти испытания показали клинически значимую оценку сокращения риска, и лишь в исследовании Treanor весь 95% ДИ меньше этой величины. Два других РКИ показали клинически важные результаты, которые не были статистически значимыми. Обратите внимание, что в трёх испытаниях точечные оценки эффективности лечения были почти идентичны, но ширина ДИ различалась (отражает размер выборки). Таким образом, по отдельности доказательная сила этих РКИ различна.
Одним из методов решения статистических задач является вычисление доверительного интервала. Он используется, как более предпочтительная альтернатива точечной оценке при небольшом объеме выборки. Нужно отметить, что сам процесс вычисления доверительного интервала довольно сложный. Но инструменты программы Эксель позволяют несколько упростить его. Давайте узнаем, как это выполняется на практике.
Этот метод используется при интервальной оценке различных статистических величин. Главная задача данного расчета – избавится от неопределенностей точечной оценки.
В Экселе существуют два основных варианта произвести вычисления с помощью данного метода: когда дисперсия известна, и когда она неизвестна. В первом случае для вычислений применяется функция ДОВЕРИТ.НОРМ , а во втором — ДОВЕРИТ.СТЮДЕНТ .
Способ 1: функция ДОВЕРИТ.НОРМ
Оператор ДОВЕРИТ.НОРМ , относящийся к статистической группе функций, впервые появился в Excel 2010. В более ранних версиях этой программы используется его аналог ДОВЕРИТ . Задачей этого оператора является расчет доверительного интервала с нормальным распределением для средней генеральной совокупности.
Его синтаксис выглядит следующим образом:
ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)
«Альфа» — аргумент, указывающий на уровень значимости, который применяется для расчета доверительного уровня. Доверительный уровень равняется следующему выражению:
(1-«Альфа»)*100
«Стандартное отклонение» — это аргумент, суть которого понятна из наименования. Это стандартное отклонение предлагаемой выборки.
«Размер» — аргумент, определяющий величину выборки.
Все аргументы данного оператора являются обязательными.
Функция ДОВЕРИТ имеет точно такие же аргументы и возможности, что и предыдущая. Её синтаксис таков:
ДОВЕРИТ(альфа;стандартное_откл;размер)
Как видим, различия только в наименовании оператора. Указанная функция в целях совместимости оставлена в Excel 2010 и в более новых версиях в специальной категории «Совместимость» . В версиях же Excel 2007 и ранее она присутствует в основной группе статистических операторов.
Граница доверительного интервала определяется при помощи формулы следующего вида:
X+(-)ДОВЕРИТ.НОРМ
Где X – это среднее выборочное значение, которое расположено посередине выбранного диапазона.
Теперь давайте рассмотрим, как рассчитать доверительный интервал на конкретном примере. Было проведено 12 испытаний, вследствие которых были получены различные результаты, занесенные в таблицу. Это и есть наша совокупность. Стандартное отклонение равно 8. Нам нужно рассчитать доверительный интервал при уровне доверия 97%.
- Выделяем ячейку, куда будет выводиться результат обработки данных. Щелкаем по кнопке «Вставить функцию» .
- Появляется Мастер функций . Переходим в категорию «Статистические» и выделяем наименование «ДОВЕРИТ.НОРМ» . После этого клацаем по кнопке «OK» .
- Открывается окошко аргументов. Его поля закономерно соответствуют наименованиям аргументов.
Устанавливаем курсор в первое поле – «Альфа» . Тут нам следует указать уровень значимости. Как мы помним, уровень доверия у нас равен 97%. В то же время мы говорили, что он рассчитывается таким путем:(1-уровень доверия)/100
То есть, подставив значение, получаем:
Путем нехитрых расчетов узнаем, что аргумент «Альфа» равен 0,03 . Вводим данное значение в поле.
Как известно, по условию стандартное отклонение равно 8 . Поэтому в поле «Стандартное отклонение» просто записываем это число.
В поле «Размер» нужно ввести количество элементов проведенных испытаний. Как мы помним, их 12 . Но чтобы автоматизировать формулу и не редактировать её каждый раз при проведении нового испытания, давайте зададим данное значение не обычным числом, а при помощи оператора СЧЁТ . Итак, устанавливаем курсор в поле «Размер» , а затем кликаем по треугольнику, который размещен слева от строки формул.
Появляется список недавно применяемых функций. Если оператор СЧЁТ применялся вами недавно, то он должен быть в этом списке. В таком случае, нужно просто кликнуть по его наименованию. В обратном же случае, если вы его не обнаружите, то переходите по пункту «Другие функции…» .
- Появляется уже знакомый нам Мастер функций . Опять перемещаемся в группу «Статистические» . Выделяем там наименование «СЧЁТ» . Клацаем по кнопке «OK» .
- Появляется окно аргументов вышеуказанного оператора. Данная функция предназначена для того, чтобы вычислять количество ячеек в указанном диапазоне, которые содержат числовые значения. Синтаксис её следующий:
СЧЁТ(значение1;значение2;…)
Группа аргументов «Значения» представляет собой ссылку на диапазон, в котором нужно рассчитать количество заполненных числовыми данными ячеек. Всего может насчитываться до 255 подобных аргументов, но в нашем случае понадобится лишь один.
Устанавливаем курсор в поле «Значение1» и, зажав левую кнопку мыши, выделяем на листе диапазон, который содержит нашу совокупность. Затем его адрес будет отображен в поле. Клацаем по кнопке «OK» .
- После этого приложение произведет вычисление и выведет результат в ту ячейку, где она находится сама. В нашем конкретном случае формула получилась такого вида:
ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))
Общий результат вычислений составил 5,011609 .
- Но это ещё не все. Как мы помним, граница доверительного интервала вычисляется путем сложения и вычитания от среднего выборочного значения результата вычисления ДОВЕРИТ.НОРМ
. Таким способом рассчитывается соответственно правая и левая граница доверительного интервала. Само среднее выборочное значение можно рассчитать при помощи оператора СРЗНАЧ
.
Данный оператор предназначен для расчета среднего арифметического значения выбранного диапазона чисел. Он имеет следующий довольно простой синтаксис:
СРЗНАЧ(число1;число2;…)
Аргумент «Число» может быть как отдельным числовым значением, так и ссылкой на ячейки или даже целые диапазоны, которые их содержат.
Итак, выделяем ячейку, в которую будет выводиться расчет среднего значения, и щелкаем по кнопке «Вставить функцию» .
- Открывается Мастер функций . Снова переходим в категорию «Статистические» и выбираем из списка наименование «СРЗНАЧ» . Как всегда, клацаем по кнопке «OK» .
- Запускается окно аргументов. Устанавливаем курсор в поле «Число1» и с зажатой левой кнопкой мыши выделяем весь диапазон значений. После того, как координаты отобразились в поле, клацаем по кнопке «OK» .
- После этого СРЗНАЧ выводит результат расчета в элемент листа.
- Производим расчет правой границы доверительного интервала. Для этого выделяем отдельную ячейку, ставим знак «=»
и складываем содержимое элементов листа, в которых расположены результаты вычислений функций СРЗНАЧ
и ДОВЕРИТ.НОРМ
. Для того, чтобы выполнить расчет, жмем на клавишу Enter
. В нашем случае получилась следующая формула:
Результат вычисления: 6,953276
- Таким же образом производим вычисление левой границы доверительного интервала, только на этот раз от результата вычисления СРЗНАЧ
отнимаем результат вычисления оператора ДОВЕРИТ.НОРМ
. Получается формула для нашего примера следующего типа:
Результат вычисления: -3,06994
- Мы попытались подробно описать все действия по вычислению доверительного интервала, поэтому детально расписали каждую формулу. Но можно все действия соединить в одной формуле. Вычисление правой границы доверительного интервала можно записать так:
СРЗНАЧ(B2:B13)+ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))
- Аналогичное вычисление левой границы будет выглядеть так:
СРЗНАЧ(B2:B13)-ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))
Способ 2: функция ДОВЕРИТ.СТЮДЕНТ
Кроме того, в Экселе есть ещё одна функция, которая связана с вычислением доверительного интервала – ДОВЕРИТ.СТЮДЕНТ . Она появилась, только начиная с Excel 2010. Данный оператор выполняет вычисление доверительного интервала генеральной совокупности с использованием распределения Стьюдента. Его очень удобно использовать в том случае, когда дисперсия и, соответственно, стандартное отклонение неизвестны. Синтаксис оператора такой:
ДОВЕРИТ.СТЬЮДЕНТ(альфа;стандартное_откл;размер)
Как видим, наименования операторов и в этом случае остались неизменными.
Посмотрим, как рассчитать границы доверительного интервала с неизвестным стандартным отклонением на примере всё той же совокупности, что мы рассматривали в предыдущем способе. Уровень доверия, как и в прошлый раз, возьмем 97%.
- Выделяем ячейку, в которую будет производиться расчет. Клацаем по кнопке «Вставить функцию» .
- В открывшемся Мастере функций переходим в категорию «Статистические» . Выбираем наименование «ДОВЕРИТ.СТЮДЕНТ» . Клацаем по кнопке «OK» .
- Производится запуск окна аргументов указанного оператора.
В поле «Альфа» , учитывая, что уровень доверия составляет 97%, записываем число 0,03 . Второй раз на принципах расчета данного параметра останавливаться не будем.
После этого устанавливаем курсор в поле «Стандартное отклонение» . На этот раз данный показатель нам неизвестен и его требуется рассчитать. Делается это при помощи специальной функции – СТАНДОТКЛОН.В . Чтобы вызвать окно данного оператора, кликаем по треугольнику слева от строки формул. Если в открывшемся списке не находим нужного наименования, то переходим по пункту «Другие функции…» .
- Запускается Мастер функций . Перемещаемся в категорию «Статистические» и отмечаем в ней наименование «СТАНДОТКЛОН.В» . Затем клацаем по кнопке «OK» .
- Открывается окно аргументов. Задачей оператора СТАНДОТКЛОН.В
является определение стандартного отклонения при выборке. Его синтаксис выглядит так:
СТАНДОТКЛОН.В(число1;число2;…)
Нетрудно догадаться, что аргумент «Число» — это адрес элемента выборки. Если выборка размещена единым массивом, то можно, использовав только один аргумент, дать ссылку на данный диапазон.
Устанавливаем курсор в поле «Число1» и, как всегда, зажав левую кнопку мыши, выделяем совокупность. После того, как координаты попали в поле, не спешим жать на кнопку «OK» , так как результат получится некорректным. Прежде нам нужно вернуться к окну аргументов оператора ДОВЕРИТ.СТЮДЕНТ , чтобы внести последний аргумент. Для этого кликаем по соответствующему наименованию в строке формул.
- Снова открывается окно аргументов уже знакомой функции. Устанавливаем курсор в поле «Размер» . Опять жмем на уже знакомый нам треугольник для перехода к выбору операторов. Как вы поняли, нам нужно наименование «СЧЁТ» . Так как мы использовали данную функцию при вычислениях в предыдущем способе, в данном списке она присутствует, так что просто щелкаем по ней. Если же вы её не обнаружите, то действуйте по алгоритму, описанному в первом способе.
- Попав в окно аргументов СЧЁТ , ставим курсор в поле «Число1» и с зажатой кнопкой мыши выделяем совокупность. Затем клацаем по кнопке «OK» .
- После этого программа производит расчет и выводит значение доверительного интервала.
- Для определения границ нам опять нужно будет рассчитать среднее значение выборки. Но, учитывая то, что алгоритм расчета при помощи формулы СРЗНАЧ тот же, что и в предыдущем способе, и даже результат не изменился, не будем на этом подробно останавливаться второй раз.
- Сложив результаты вычисления СРЗНАЧ и ДОВЕРИТ.СТЮДЕНТ , получаем правую границу доверительного интервала.
- Отняв от результатов расчета оператора СРЗНАЧ результат расчета ДОВЕРИТ.СТЮДЕНТ , имеем левую границу доверительного интервала.
- Если расчет записать одной формулой, то вычисление правой границы в нашем случае будет выглядеть так:
СРЗНАЧ(B2:B13)+ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))
- Соответственно, формула расчета левой границы будет выглядеть так:
СРЗНАЧ(B2:B13)-ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))
Как видим, инструменты программы Excel позволяют существенно облегчить вычисление доверительного интервала и его границ. Для этих целей используются отдельные операторы для выборок, у которых дисперсия известна и неизвестна.