Что такое бактерия кратко. Фаза уменьшения скорости отмирания. Положительный анализ и бактериальные инфекции
Совокупность бактерий, населяющих человеческий организм, имеет общее название – микробиота. В нормальной, здоровой микрофлоре человека насчитывается несколько миллионов бактерий. Каждая из них играет важную роль для нормального функционирования человеческого тела.
При отсутствии какого-либо вида полезных бактерий человек начинает заболевать, нарушается работа ЖКТ, дыхательных путей. Полезные бактерии для человека концентрируются на коже, в кишечнике, на слизистых оболочках тела. Количество микроорганизмов регулируется с помощью иммунной системы.
В норме, тело человека содержит как полезную, так и патогенную микрофлору. Бактерия бывает полезная и патогенная.
Полезных бактерий намного больше. Они составляют 99% от общего числа микроорганизмов.
При таком положении соблюдается необходимый баланс.
Среди разных видов бактерий, обитающих на теле человека можно выделить:
- бифидобактерии;
- лактобактерии;
- энтерококки;
- кишечная палочка.
Бифидобактерии
Этот вид микроорганизмов самый распространённый, участвует в процессе выработки молочной кислоты и ацетата. Он создаёт кислую среду, этим самым нейтрализует большинство болезнетворных микробов. Патогенная флора перестаёт развиваться и вызывать процессы гниения и брожения.
Бифидобактерии играют важную роль в жизни ребёнка, так как именно они отвечают за наличие аллергической реакции на какие-либо пищевые продукты. Кроме того они оказывают антиоксидантное действие, предотвращают развитие опухолей.
Синтез витамина С не обходится без участия бифидобактерий. К тому же, есть информация, что бифидобактерии помогают усваиваться витаминам D и B, которые необходимы человеку для нормальной жизнедеятельности. При наличии дефицита бифидобактерий даже приём синтетических витаминов этой группы не принесёт никакого результата.
Лактобактерии
Эта группа микроорганизмов также важна для здоровья человека. Благодаря их взаимодействию с другими обитателями кишечника блокируется рост и развитие патогенных микроорганизмов, подавляются возбудители кишечных инфекций.
Лактобактерии участвуют в образовании молочной кислоты, лизоцина, бактериоцинов. Это отличная помощь иммунной системе. Если в кишечнике есть дефицит этих бактерий, то очень быстро развивается дисбактериоз.
Лактобактерии заселяют не только кишечник, но и слизистые. Так эти микроорганизмы важны для женского здоровья. Они поддерживают кислотность среды влагалища, не допускают развития бактериального вагиноза.
Кишечная палочка
Не все виды кишечной палочки являются болезнетворными. Большинство из них наоборот выполняют защитную функцию. Полезность рода кишечная палочка состоит в синтезе коцилина, который активно противостоит основной массе патогенной микрофлоры.
Данные бактерии полезны для синтеза разных групп витаминов, фолиевой и никотиновой кислоты. Нельзя недооценивать их роль для здоровья. Например, фолиевая кислота необходима для производства красных кровяных телец и поддержания нормального уровня гемоглобина.
Энтерококки
Этот вид микроорганизмов заселяет кишечник человека сразу после рождения.
Они помогают усваиваться сахарозе. Обитая в основном в тонком кишечнике, они, как и другие полезные не патогенные бактерии обеспечивают защиту от чрезмерного размножения вредоносных элементов. В то же время, энтерококки относятся к условно безопасным бактериям.
Если они начинают превышать допустимые нормы, развиваются разные бактериальные заболевания. Список болезней очень большой. Начиная от кишечных инфекций, заканчивая менингококковой.
Положительное влияние бактерий на организм
Полезные свойства не патогенных бактерий очень многообразно. До тех пор пока существует баланс между обитателями кишечника и слизистых, организм человека нормально функционирует.
Большинство бактерий участвует в процессах синтеза и расщепления витаминов. Без их присутствия витамины группы В не усваиваются кишечником, что приводит к нарушениям со стороны нервной системы, заболеваниям кожи, понижению гемоглобина.
Основная масса не переваренных компонентов пищи, достигших толстого кишечника, расщепляется именно благодаря бактериям. Кроме того, микроорганизмами обеспечивается постоянство водно-солевого обмена. Более половины всей микрофлоры участвует в регуляции всасывания жирных кислот, гормонов.
Микрофлора кишечника формирует местный иммунитет. Именно здесь происходит уничтожение основной массы патогенных организмов, блокируется вредоносный микроб.
Соответственно, люди не ощущают вздутия и метеоризма. Увеличение лимфоцитов провоцирует активные фагоциты для борьбы с врагом, стимулируют продуцирование иммуноглобулина А.
Полезные не патогенные микроорганизмы положительно влияют на стенки тонкого и толстого кишечника. Они поддерживают там постоянный уровень кислотности, стимулируют лимфоидный аппарат, эпителий становится устойчивым к разным канцерогенам.
Перистальтика кишечника также во многом зависит от того, какие бывают микроорганизмы в нём. Подавление процессов гниения и брожения – одна из основных задач бифидобактерий. Многие микроорганизмы долгие годы развиваются в симбиозе с болезнетворными бактериями, тем самым, контролируя их.
Биохимические реакции, которые постоянно происходят с бактериями, выделяют много тепловой энергии, поддерживая общий тепловой баланс организма. Питаются микроорганизмы не переваренными остатками.
Дисбактериоз
Дисбактериоз – это изменение количественного и качественного состава бактерий в организме человека. При этом полезные организмы погибают, а вредоносные активно размножаются.
Дисбактериоз затрагивает не только кишечник, но и слизистые (может быть дисбактериоз ротовой полости, влагалища). В анализах будут превалировать названия: стрептококк, стафилококк, микрококк.
В нормальном состоянии полезные бактерии регулируют развитие патогенной микрофлоры. Кожные покровы, органы дыхания обычно находятся под надёжной защитой. Когда нарушается баланс человек ощущает следующие симптомы: метеоризм кишечника, вздутие, боли в животе, расстройство.
Позже может начаться снижение веса, анемия, авитаминоз. Со стороны половой системы наблюдаются обильные выделения, часто сопровождающиеся неприятным запахом. На коже появляются раздражения, шероховатости, трещинки. Дисбактериоз побочное действие после приёма антибиотиков.
При обнаружении подобных симптомов нужно обязательно обратиться к врачу, который назначит комплекс мероприятий по восстановлению нормальной микрофлоры. Часто для этого требуется приём пробиотиков.
Бактерии - микроскопические одноклеточные организмы. Строение бактериальной клетки имеет особенности, которые являются причиной выделения бактерий в отдельное царство живого мира.
Оболочки клетки
Большинство бактерий имеет три оболочки:
- клеточная мембрана;
- клеточная стенка;
- слизистая капсула.
Непосредственно с содержимым клетки - цитоплазмой, соприкасается клеточная мембрана. Она тонкая и мягкая.
Клеточная стенка - плотная, более толстая оболочка. Её функция - защита и опора клетки. Клеточная стенка и мембрана имеют поры, через которые в клетку поступают необходимые ей вещества.
Многие бактерии имеют слизистую капсулу, которая выполняет защитную функцию и обеспечивает слипание с разными поверхностями.
ТОП-4 статьи которые читают вместе с этой
Именно благодаря слизистой оболочке стрептококки (один из видов бактерий) прилипают к зубам и вызывают кариес.
Цитоплазма
Цитоплазма - это внутреннее содержимое клетки. На 75% состоит из воды. В цитоплазме находятся включения - капли жира и гликогена. Они являются запасными питательными веществами клетки.
Рис. 1. Схема строения бактериальной клетки.
Нуклеоид
Нуклеоид означает «подобный ядру». У бактерий нет настоящего, или, как ещё говорят, оформленного ядра. Это значит, что у них нет ядерной оболочки и ядерного пространства, как у клеток грибов, растений и животных. ДНК находится прямо в цитоплазме.
Функции ДНК:
- сохраняет наследственную информацию;
- реализует эту информацию, управляя синтезом белковых молекул, характерных для данного вида бактерий.
Отсутствие истинного ядра - самая важная особенность бактериальной клетки.
Органоиды
В отличие от клеток растений и животных, бактерии не имеют органоидов, построенных из мембран.
Но клеточная мембрана бактерий в некоторых местах проникает в цитоплазму, образуя складки, которые называются мезосомой. Мезосома участвует в размножении клетки и обмене энергии и как бы заменяет мембранные органоиды.
Единственный органоид, имеющийся у бактерий - рибосомы. Это маленькие тельца, которые размещены в цитоплазме и синтезируют белки.
У многих бактерий есть жгутик, с помощью которого они перемещаются в жидкой среде.
Формы бактериальных клеток
Форма клеток бактерий различна. Бактерии в виде шара называются кокками. В виде запятой - вибрионами. Палочкообразные бактерии - бациллы. Спириллы имеют вид волнистой линии.
Рис. 2. Формы клеток бактерий.
Бактерии можно увидеть только под микроскопом. Средние размеры клетки 1-10 мкм. Встречаются бактерии длиной до 100 мкм. (1 мкм = 0,001 мм).
Спорообразование
При наступлении неблагоприятных условий бактериальная клетка переходит в спящее состояние, которое называется спорой. Причинами спорообразования могут быть:
- пониженные и повышенные температуры;
- засуха;
- недостаток питания;
- опасные для жизни вещества.
Переход происходит быстро, в течение 18-20 часов, а находиться клетка в состоянии споры может сотни лет. При восстановлении нормальных условий бактерия за 4-5 часов прорастает из споры и переходит в обычный режим жизнедеятельности.
Рис. 3. Схема образования споры.
Размножение
Бактерии размножаются делением. Период от рождения клетки до её деления составляет 20-30 минут. Поэтому бактерии широко распространены на Земле.
Что мы узнали?
Мы узнали, что, в общих чертах, клетки бактерий подобны клеткам растений и животных, они имеют мембрану, цитоплазму, ДНК. Основным отличием бактериальных клеток является отсутствие оформленного ядра. Поэтому бактерии называют доядерными организмами (прокариотами).
Тест по теме
Оценка доклада
Средняя оценка: 4.1 . Всего получено оценок: 281.
Бактерии – мельчайшие древнейшие микроорганизмы, невидимые невооруженным глазом. Лишь под микроскопом можно рассмотреть их строение, вид и взаимодействие друг с другом. Первые микроорганизмы имели примитивное строение, они развивались, мутировали, создавали колонии, приспосабливались под меняющуюся среду обитания. Бактерии разных видов обмениваются друг с другом аминокислотами, которые необходимы для роста и развития.
Виды бактерий
В школьных учебниках биологии размещены изображения разных видов бактерий, отличающихся по форме:
- Кокки – шарообразные организмы, отличающиеся по взаимному расположению. Под микроскопом заметно, что стрептококки представляют цепочку шариков, диплококки живут попарно, стафилококки – скопления произвольной формы. Ряд кокков вызывает различные воспалительные процессы, попадая в организм человека (гонококк, стафилококк, стрептококк). Не все кокки, живущие в организме человека, являются патогенными. Условно патогенные виды принимают участие в формировании защиты организма от внешних воздействий и безопасны при соблюдении баланса флоры.
- Палочковидные отличаются формой, размером и способностью к спорообразованию. Спорообразующие виды называются бациллами. К бациллам относятся: палочка столбняка, палочка сибирской язвы. Споры – это образования внутри микроорганизма. Споры нечувствительны к химической обработке, их устойчивость к внешним воздействиям – залог сохранения вида. Известно, что споры разрушаются при высокой температуре (выше 120ºС).
Формы палочковидных микробов:
- с заостренными полюсами, как у фузобактерии, входящей в состав нормальной микрофлоры верхних дыхательных путей;
- с утолщенными полюсами, напоминающими булаву, как у коринебактерии – возбудителя дифтерии;
- с закругленными концами, такими как у кишечной палочки, которая необходима для процесса пищеварения;
- с прямыми концами, как у палочки-возбудителя сибирской язвы.
Большинство палочковидных бацилл и бактерий по отношению друг к другу располагаются хаотично. Можно выделить стрептобактерии (стрептобациллы), которые расположены цепочкой, и диплобактерии (диплобациллы), существующие в паре.
3. Спириллы и спирохеты – микроорганизмы извитой формы. Они не образуют спор, очень подвижны. Под микроскопом можно увидеть их быстрые движения. Большинство спирилл безопасны для человека и животных. Это сапрофиты, питаются неживыми субстратами. Исключение составляют виды, вызывающие содоку. Спирохеты более опасны для человека и животных, способны вызывать заболевания кожных покровов, дыхательных путей, ЖКТ. Спириллы отличаются от спирохет меньшим количеством завитков и наличием жгутиков на полюсах.
4. Вибрионы – вибрирующие микробы. При рассмотрении под микроскопом можно увидеть их вибрирующие движения. Микроорганизм меняется в зависимости от условий среды обитания. Вибрионы бывают спиралевидной, палочковидной, нитевидной, шаровидной формы. Самым опасным для человека является вибрион холеры.
Грам(+) и грам (-)
Датский микробиолог Ганс Грам более 100 лет назад провел опыт, после которого все бактерии стали относиться к грамположительным и грамотрицательным. Грамположительные организмы создают с окрашивающим веществом длительную устойчивую связь, которая усиливается при воздействии йода. Грамотрицательные, наоборот, не восприимчивы к красителю, их оболочка прочно защищена.
К грамотрицательным микробам относятся хламидии, риккетсии, к грамположительным – стафилококки, стрептококки, коринебактерии.
Сегодня в медицине широко используется тест на грамм(+) и грамм(-) бактерии. Окрашивание по Граму является одной из методик исследования слизистых оболочек на определение состава микрофлоры.
Аэробные и анаэробные
Самые примитивные бактерии живут глубоко под водой. Для развития им не нужен доступ к кислороду. Более развитые колонии выбрались на сушу и живут на поверхностях. Для размножения и развития колонии этим микроорганизмам нужен кислород. Учитывая зависимость от кислорода, группы микроорганизмов носят названия аэробных и анаэробных.
Аэробные микроорганизмы нуждаются в кислороде для развития и дыхания:
Облигатные аэробы – эти бактерии свободно живут во внешней среде. В качестве примера можно привести туберкулезную палочку, которая устойчива к окружающей среде, сохраняется в воде до 5 месяцев, а во влажном, теплом и темном помещении до 7 лет.
Микроаэрофилы – этим микробам достаточно 2% содержания кислорода для нормальной жизни и развития. Ими являются стрептококки, вызывающие фарингит, скарлатину и живущие в дыхательных путях. При выращивании микробов в жидкой среде эти организмы скапливаются недалеко от поверхности, там, где содержание кислорода невысокое.
Анаэробные микроорганизмы способны расти и размножаться без кислорода:
- облигатные анаэробы избегают молекулярного кислорода (например, фузобактерии);
- факультативные способны к росту и развитию в присутствии кислорода и без него, это могут быть стрептококки, гонококки;
- аэротолерантные микроорганизмы не используют кислород для развития, хотя растут в присутствии молекулярного кислорода, как бактерии молочнокислого брожения.
Как живут бактерии
Биологи определяют бактерии в отдельное царство, они отличаются от других живых существ. Это одноклеточный организм без ядра внутри. Их форма может быть в виде шарика, конуса, палочки, спирали. Для перемещения прокариоты пользуются жгутиками.
Биопленка – это город для микроорганизмов, проходит несколько стадий формирования:
- Адгезия или сорбция – прикрепление микроорганизма к поверхности. Как правило, пленки образуются на границе двух сред: жидкость и воздух, жидкость и жидкость. Первоначальный этап обратим, формирование пленки можно предотвратить.
- Фиксация – бактерии выделяют полимеры, обеспечивая их прочное закрепление, формируют матрикс для прочности и защиты.
- Созревание – микробы сливаются, обмениваются питательными веществами, развиваются микроколонии.
- Этап роста – идет накопление бактерий, их слияние, вытеснение. Количество микроорганизмов составляет от 5 до 35%, все остальное пространство занимает межклеточный матрикс.
- Дисперсия – от пленки периодически отрываются микроорганизмы, которые прикрепляются к другим поверхностям и образуют биопленку.
Процессы, происходящие в биопленке, отличаются от того, что происходит с микробом, который не является составной частью колонии. Колонии стабильны, микробы организуют единую систему поведенческих реакций, определяя взаимодействие членов внутри матрикса и вне пленки. Слизистые оболочки человека населены большим количеством микроорганизмов, которые продуцируют гель для защиты и обеспечивают стабильность функционирования органов. Примером может служить слизистая оболочка желудка. Известно, что хеликобактер пилори, которые считаются причиной язвенной болезни желудка, есть более чем у 80% обследованных людей, но при этом язвенная болезнь развивается не у всех. Предполагают, что хеликобактер пилори, являясь членами колонии, участвуют в пищеварении. Их способность приносить вред проявляется лишь после создания определенных условий.
Взаимодействие бактерий в биопленках еще мало изучено. Но уже сегодня некоторые микробы стали помощниками человека при проведении реставрационных работ, увеличении прочности покрытий. В Европе производители дезинфектантов предлагают обрабатывать поверхности бактериальными растворами, содержащими безопасные микроорганизмы, которые не дают развиваться патогенной флоре. Бактерии используются для создания полимерных соединений, а также в перспективе будут вырабатывать электричество.
История изучения
Основы общей микробиологии и изучения роли бактерий в природе заложили Бейеринк Мартинус Виллем и Виноградский Сергей Николаевич .
Изучение строения бактериальной клетки началось с изобретением электронного микроскопа в 1930-е годы . В 1937 году Э. Чаттон предложил делить все организмы по типу клеточного строения на прокариот и эукариот, и в 1961 году Стейниер и Ван Ниль окончательно оформили это разделение. Развитие молекулярной биологии привело к открытию в 1977 году К. Вёзе коренных различий и среди самих прокариот: между бактериями и археями.
Строение
Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны . По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы , клостридии , псевдомонады), извитыми (вибрионы , спириллы , спирохеты), реже - звёздчатыми, тетраэдрическими , кубическими, C- или O-образными. Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы , то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).
Из обязательных клеточных структур выделяют три:
С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка , капсула , слизистый чехол), называемых клеточной оболочкой , а также поверхностные структуры (жгутики , ворсинки). ЦПМ и цитоплазму объединяют вместе в понятие протопласт .
Строение протопласта
ЦПМ ограничивает содержимое клетки (цитоплазму) от внешней среды. Гомогенная фракция цитоплазмы, содержащая набор растворимых РНК , белков , продуктов и субстратов метаболических реакций, названа цитозолем . Другая часть цитоплазмы представлена различными структурными элементами.
Вся необходимая для жизнедеятельности бактерий генетическая информация содержится в одной ДНК (бактериальная хромосома), чаще всего имеющей форму ковалентно замкнутого кольца (линейные хромосомы обнаружены у Streptomyces и Borrelia ). Она в одной точке прикреплена к ЦПМ и помещается в структуре, обособленной, но не отделённой мембраной от цитоплазмы, и называемой нуклеоид . ДНК в развёрнутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, то есть практически все прокариоты гаплоидны , хотя в определённых условиях одна клетка может содержать несколько копий своей хромосомы, а Burkholderia cepacia имеет три разных кольцевых хромосомы (длиной 3,6; 3,2 и 1,1 млн пар нуклеотидов). Рибосомы прокариот также отличны от таковых у эукариот и имеют константу седиментации 70 S (80 S у эукариот).
Помимо этих структур, в цитоплазме также могут находиться включения запасных веществ.
Клеточная оболочка и поверхностные структуры
У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам.
Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20-80 нм, построенный в основном из пептидогликана с меньшим количеством тейхоевых кислот и небольшим количеством полисахаридов , белков и липидов (так называемый липополисахарид). В клеточной стенке имеются поры диаметром 1-6 нм, которые делают её проницаемой для ряда молекул.
У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружён наружной мембраной, имеющей, как правило, неровную, искривлённую форму. Между ЦПМ, слоем пептидогликана и внешней мембраной имеется пространство, называемое периплазматическим и заполненное раствором, включающим в себя транспортные белки и ферменты .
С внешней стороны от клеточной стенки может находиться капсула - аморфный слой, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру. Однако между этими тремя идеализированными случаями есть множество переходных форм.
Размеры
Размеры бактерий в среднем составляют 0,5-5 мкм . Масса - 4⋅10 −13 г . Escherichia coli , например, имеет размеры 0,3-1 на 1-6 мкм , Staphylococcus aureus - диаметр 0,5-1 мкм , Bacillus subtilis - 0,75 на 2-3 мкм . Крупнейшей из известных бактерий является Thiomargarita namibiensis , достигающая размера в 750 мкм (0,75 мм ). Второй является Epulopiscium fishelsoni , имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus . Achromatium oxaliferum достигает размеров 33 на 100 мкм , Beggiatoa alba - 10 на 50 мкм . Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм . В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1-0,25 мкм , что соответствует размеру крупных вирусов , например, табачной мозаики , коровьей оспы или гриппа . По теоретическим подсчётам, сферическая клетка диаметром менее 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не могут поместиться все необходимые биополимеры и структуры в достаточном количестве.
При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём - пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой. Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных. Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.
Многоклеточность у бактерий
Многоклеточный организм должен отвечать следующим условиям:
- его клетки должны быть агрегированы,
- между клетками должно осуществляться разделение функций,
- между агрегированными клетками должны устанавливаться устойчивые специфические контакты.
Многоклеточность у прокариот известна, наиболее высокоорганизованные многоклеточные организмы принадлежат к группам цианобактерий и актиномицетов . У нитчатых цианобактерий описаны структуры в клеточной стенке, обеспечивающие контакт двух соседних клеток - микроплазмодесмы . Показана возможность обмена между клетками веществом (красителем) и энергией (электрической составляющей трансмембранного потенциала). Некоторые из нитчатых цианобактерий содержат помимо обычных вегетативных клеток функционально дифференцированные: акинеты и гетероцисты . Последние осуществляют фиксацию азота и интенсивно обмениваются метаболитами с вегетативными клетками.
Способы передвижения и раздражимость
Многие бактерии подвижны. Имеется несколько принципиально различных типов движения бактерий. Наиболее распространено движение при помощи жгутиков: одиночных бактерий и бактериальных ассоциаций (роение). Частным случаем этого также является движение спирохет , которые извиваются благодаря аксиальным нитям, близким по строению к жгутикам , но расположенным в периплазме. Другим типом движения является скольжение бактерий , не имеющих жгутиков, по поверхности твёрдых сред и движение в воде безжгутиковых бактерий рода Synechococcus . Его механизм пока недостаточно изучен; предполагается участие в нём выделения слизи (проталкивание клетки) и находящихся в клеточной стенке фибриллярных нитей, вызывающих «бегущую волну» по поверхности клетки. Наконец, бактерии могут всплывать и погружаться в жидкости, меняя свою плотность, наполняя газами или опустошая аэросомы .
Бактерии активно передвигаются в направлении, определяемом теми или иными раздражителями. Это явление получило название таксис . Различают хемотаксис, аэротаксис, фототаксис и др.
Метаболизм
Конструктивный метаболизм
За исключением некоторых специфических моментов биохимические пути, по которым осуществляется синтез белков , жиров , углеводов и нуклеотидов , у бактерий схожи с таковыми у других организмов. Однако по числу возможных вариантов этих путей и, соответственно, по степени зависимости от поступления органических веществ извне они различаются.
Часть из них может синтезировать все необходимые им органические молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, которые они способны лишь трансформировать (гетеротрофы).
Удовлетворять потребности в азоте бактерии могут как за счёт его органических соединений (подобно гетеротрофным эукариотам), так и за счёт молекулярного азота (как и некоторые археи). Большинство бактерий используют для синтеза аминокислот и других азотсодержащих органических веществ неорганические соединения азота: аммиак (поступающий в клетки в виде ионов аммония), нитриты и нитраты (которые предварительно восстанавливаются до ионов аммония). Фосфор они способны усваивать в виде фосфата , серу - в виде сульфата или реже сульфида .
Энергетический метаболизм
Способы же получения энергии у бактерий отличаются своеобразием. Существует три вида получения энергии (и все три известны у бактерий): брожение, дыхание и фотосинтез.
Бактерии, осуществляющие только бескислородный фотосинтез, не имеют фотосистемы II . Во-первых, это пурпурные и зелёные нитчатые бактерии, у которых функционирует только циклический путь переноса электронов, направленный на создание трансмембранного протонного градиента, за счёт которого синтезируется АТФ (фотофосфорилирование), а также восстанавливается НАД(Ф) + , использующийся для ассимиляции CO 2 . Во-вторых, это зелёные серные и гелиобактерии, имеющие и циклический, и нециклический транспорт электронов, что делает возможным прямое восстановление НАД(Ф) + . В качестве донора электрона, заполняющего «вакансию» в молекуле пигмента в бескислородном фотосинтезе используются восстановленные соединения серы (молекулярная, сероводород, сульфит) или молекулярный водород.
Существуют также бактерии с весьма специфическим энергетическим метаболизмом. Так, в октябре 2008 года в журнале Science появилось сообщение об обнаружении экосистемы, состоящей из представителей одного единственного ранее неизвестного вида бактерии - Desulforudis audaxviator , которые получают энергию для своей жизнедеятельности из химических реакций с участием водорода, образующегося в результате распада молекул воды под воздействием радиации залегающих вблизи нахождения колонии бактерий урановых руд . Некоторые колонии бактерий, обитающие на дне океана, используют для передачи энергии своим собратьям электрический ток .
Типы жизни
Объединить типы конструктивного и энергетического метаболизма можно в следующей таблице:
Способы существования живых организмов (матрица Львова) | ||||
---|---|---|---|---|
Источник энергии | Донор электрона | Источник углерода | Название способа существования | Представители |
ОВР | Неорганические соединения | Углекислый газ | Хемолитоавтотрофия | Нитрифицирующие, тионовые, ацидофильные железобактерии |
Органические соединения | Хемолитогетеротрофия | Метанообразующие архебактерии, водородные бактерии | ||
Органические вещества | Углекислый газ | Хемоорганоавтотрофия | Факультативные метилотрофы , окисляющие муравьиную кислоту бактерии | |
Органические соединения | Хемоорганогетеротрофия | Большинство прокариот, из эукариот: животные , грибы , человек | ||
Свет | Неорганические соединения | Углекислый газ | Фотолитоавтотрофия | Цианобактерии , пурпурные , зелёные бактерии , из эукариот: растения |
Органические соединения | Фотолитогетеротрофия | Некоторые цианобактерии, пурпурные, зелёные бактерии | ||
Органические вещества | Углекислый газ | Фотоорганоавтотрофия | Некоторые пурпурные бактерии | |
Органические вещества | Фотоорганогетеротрофия | Галобактерии, некоторые цианобактерии , пурпурные, зелёные бактерии |
Из таблицы видно, что разнообразие типов питания прокариот гораздо больше, чем у эукариот (последние способны лишь к хемоорганогетеротрофии и фотолитоавтотрофии).
Размножение и устройство генетического аппарата
Размножение бактерий
Некоторые бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием . Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток). Для обеспечения необходимой для эволюции и приспособления к изменчивой окружающей среде пластичности генотипа у них существуют иные механизмы.
Генетический аппарат
Гены, необходимые для жизнедеятельности и определяющие видовую специфичность, расположены у бактерий чаще всего в единственной ковалентно замкнутой молекуле ДНК - хромосоме (иногда для обозначения бактериальных хромосом, чтобы подчеркнуть их отличия от эукариотических, используют термин генофор (англ. genophore )). Область, где локализована хромосома, называется нуклеоид и не окружена мембраной. В связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, а транскрипция и трансляция сопряжены.
Отдельная клетка может содержать лишь 80 % от суммы генов, имеющихся во всех штаммах её вида (т. н. «коллективный геном»).
Помимо хромосомы, в клетках бактерий часто находятся плазмиды - также замкнутые в кольцо ДНК, способные к независимой репликации . Они могут быть настолько велики, что становятся неотличимы от хромосомы, но содержат дополнительные гены, необходимые лишь в специфических условиях. Специальные механизмы распределения обеспечивают сохранение плазмиды в дочерних клетках так, что они теряются с частотой менее 10 −7 в пересчёте на клеточный цикл. Специфичность плазмид может быть весьма разнообразной: от присутствия лишь у одного вида-хозяина до плазмиды RP4, встречающейся почти у всех грамотрицательных бактерий. В плазмидах кодируются механизмы устойчивости к антибиотикам , разрушения специфических веществ и т. д., nif-гены, необходимые для азотфиксации, также находятся в плазмидах. Ген плазмиды может включаться в хромосому с частотой около 10 −4 - 10 −7 .
В ДНК бактерий, как и в ДНК других организмов, выделяются транспозоны - мобильные сегменты, способные перемещаться из одной части хромосомы к другой, или во внехромосомные ДНК. В отличие от плазмид, они неспособны к автономной репликации и содержат IS-сегменты - участки, которые кодируют свой перенос внутри клетки. IS-сегмент может выступать в роли отдельной транспозоны.
Горизонтальный перенос генов
У прокариот может происходить частичное объединение геномов. При конъюгации клетка-донор в ходе непосредственного контакта передаёт клетке-реципиенту часть своего генома (в некоторых случаях весь). Участки ДНК донора могут обмениваться на гомологичные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.
Аналогично бактериальная клетка может поглощать и свободно находящуюся в среде ДНК, включая её в свой геном в случае высокой степени гомологии с собственной ДНК. Данный процесс носит название трансформация . В природных условиях протекает обмен генетической информацией при помощи умеренных фагов (трансдукция). Кроме этого, возможен перенос нехромосомных генов при помощи плазмид определённого типа, кодирующих этот процесс, процесс обмена другими плазмидами и передачи транспозон.
При горизонтальном переносе новых генов не образуется (как то имеет место при мутациях), однако осуществляется создание разных генных сочетаний. Это важно по той причине, что естественный отбор действует на всю совокупность признаков организма.
Клеточная дифференциация
Клеточная дифференциация - изменение набора белков (обычно также проявляющееся в изменении морфологии) при неизменном генотипе.
Образование покоящихся форм
Образование особо устойчивых форм с замедленным метаболизмом, служащих для сохранения в неблагоприятных условиях и распространения (реже для размножения) является наиболее распространённым видом дифференциации у бактерий. Наиболее устойчивыми из них являются эндоспоры , формируемые представителями Bacillus , Clostridium , Sporohalobacter , Anaerobacter (образует 7 эндоспор из одной клетки и может размножаться с их помощью ) и Heliobacterium . Образование этих структур начинается как обычное деление и на первых стадиях может быть превращено в него некоторыми антибиотиками. Эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100 °C, высушивание в течение 1000 лет и, по некоторым данным, сохраняются в почвах и горных породах в жизнеспособном состоянии миллионы лет.
Менее устойчивыми являются экзоспоры , цисты (Azotobacter , скользящие бактерии и др.), акинеты (цианобактерии) и миксоспоры (миксобактерии).
Другие типы морфологически дифференцированных клеток
Актиномицеты и цианобактерии образуют дифференцированные клетки, служащие для размножения (споры, а также гормогонии и баеоциты соответственно). Необходимо также отметить структуры, подобные бактероидам клубеньковых бактерий и гетероцистам цианобактерий, служащие для защиты нитрогеназы от воздействия молекулярного кислорода.
Классификация
Наибольшую известность получила фенотипическая классификация бактерий, основанная на строении их клеточной стенки, включённая, в частности, в IX издание Определителя бактерий Берджи (1984-1987). Крупнейшими таксономическими группами в ней стали 4 отдела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные), Tenericutes (микоплазмы) и Mendosicutes (археи).
В последнее время всё большее развитие получает филогенетическая классификация бактерий (и именно она используется в Википедии), основанная на данных молекулярной биологии. Одним из первых методов оценки родства по сходству генома был предложенный ещё в 1960-х годах метод сравнения содержания гуанина и цитозина в ДНК. Хотя одинаковые значения их содержания и не могут дать никакой информации об эволюционной близости организмов, их различия на 10 % означают, что бактерии не принадлежат к одному роду. Другим методом, произведшим в 1970-е настоящую революцию в микробиологии, стал анализ последовательности генов в 16s рРНК , который позволил выделить несколько филогенетических ветвей эубактерий и оценить связи между ними. Для классификации на уровне вида применяется метод ДНК-ДНК гибридизации . Анализ выборки хорошо изученных видов позволяет считать, что 70 % уровень гибридизации характеризует один вид, 10-60 % - один род, менее 10 % - разные роды.
Филогенетическая классификация отчасти повторяет фенотипическую, так, группа Gracilicutes присутствует и в той и в другой. В то же время систематика грамотрицательных бактерий была полностью пересмотрена, архебактерии и вовсе выделены в самостоятельный таксон высшего ранга , часть таксономических групп разбита на части и перегруппирована, в одни группы объединены организмы с совершенно разными экологическими функциями, что вызывает ряд неудобств и недовольство части научного сообщества. Объектом нареканий становится и то, что проводится фактически классификация молекул, а не организмов.
Происхождение, эволюция, место в развитии жизни на Земле
Бактерии наряду с археями были одними из первых живых организмов на Земле, появившись около 3,9-3,5 млрд лет назад. Эволюционные взаимоотношения между этими группами ещё до конца не изучены, есть как минимум три основные гипотезы : Н. Пэйс предполагает наличие у них общего предка протобактерии, Заварзин считает архей тупиковой ветвью эволюции эубактерий, освоившей экстремальные местообитания; наконец, по третьей гипотезе археи - первые живые организмы, от которых произошли бактерии.
Патогенные бактерии
Патогенными называются бактерии, паразитирующие на других организмах. Бактерии вызывают большое количество заболеваний человека, таких как чума (Yersinia pestis ), сибирская язва (Bacillus anthracis ), лепра (проказа, возбудитель: Mycobacterium leprae ), дифтерия (Corynebacterium diphtheriae ), сифилис (Treponema pallidum ), холера (Vibrio cholerae ), туберкулёз (Mycobacterium tuberculosis ), листериоз (Listeria monocytogenes ) и др. Открытие патогенных свойств у бактерий продолжается: в 1976 обнаружена болезнь легионеров , вызываемая Legionella pneumophila , в 1980-е -1990-е годы было показано, что Helicobacter pylori вызывает язвенную болезнь и даже рак желудка , а также хронический
В этот самый момент, человек, когда ты читаешь эти строки, ты получаешь пользу от работы бактерий. От кислорода, который мы вдыхаем, до питательных веществ, которые извлекает желудок из еды, нам нужно благодарить бактерий за процветание на этой планете. В нашем организме микроорганизмов, включая бактерий, больше, чем наших собственных клеток примерно в десять раз. По сути, мы больше микробы, чем люди.
Только недавно мы начали понемногу понимать микроскопические организмы и их влияние на нашу планету и здоровье, но история показывает, что много веков назад наши предки уже использовали мощь бактерий, ферментируя продукты питания и напитки (кто-нибудь слышал о хлебе и пиве?).
В 17 веке мы начали изучать бактерий уже непосредственно в наших телах в тесной связи с нами - во рту. Любопытство Антони ван Левенгука позволило обнаружить бактерии, когда он изучал бляшку между его собственными зубами. Ван Левенгук поэтически описал бактерий, обозначив бактериальную колонию на своих зубах как «немного белого вещества, похожего на застывшее тесто». Разместив образец под микроскопом, ван Левенгук увидел, что микроорганизмы движутся. Так они живые!
Вы должны знать, что бактерии сыграли важнейшую роль для Земли, став ключевым моментом в создании пригодного для дыхания воздуха и биологического богатства планеты, которую мы зовем домом.
В этой статье мы предоставим вам общую картину об этих крошечных, но очень влиятельных микроорганизмах. Мы рассмотрим хорошие, плохие и совершенно причудливые способы, которыми бактерии формируют историю человека и окружающей среды. Для начала рассмотрим, чем бактерии отличаются от других видов жизни.
Основы бактерий
Что ж, если бактерии незаметны невооруженному глазу, откуда мы можем знать так много о них?
Ученые разработали мощные микроскопы, чтобы взглянуть на бактерий - их размеры варьируются от одного до нескольких микрон (миллионной части метра) - и выяснить, как они соотносятся с другими формами жизни, растениями, животными, вирусами и грибками.
Как вы, возможно, знаете, клетки - это строительные кирпичики жизни, из них состоят и ткани нашего тела, и дерево, которое растет за окном. Люди, животные и растения обладают клетками с генетической информацией, заключенной в мембране под названием ядро. Эти типы клеток, которые называются эукариотическими, обладают специальными органеллами, каждая из которых выполняет уникальную работу, помогая клетке работать.
Бактерии, однако, не имеют ядер, и их генетический материал (ДНК) свободно плавает внутри клетки. У этих микроскопических клеток нет органелл и они обладают другими методами воспроизводства и передачи генетического материала. Бактерии считаются прокариотическими клетками.
- Выживают ли бактерии в среде с кислородом или без
- Их форма: палочки (bacillus), круги (cocci) или спирали (spirillum)
- Являются ли бактерии грамотрицательными или грамположительными, то есть обладают ли внешней защитной мембраной, препятствующей окрашиванию внутренностей клетки
- Как бактерии перемещаются и изучают окружающую среду (у многих бактерий есть жгутики, крошечные плетевидные структуры, которые позволяют им передвигаться в среде)
Микробиология - наука о всех типах микробов, включая бактерии, археи, грибы, вирусы и простейшие - позволяет отличать бактерии от их микробных братьев.
Похожие на бактерии прокариоты, ныне классифицирующиеся как археи, когда-то были вместе с бактериями, но когда ученые узнали о них больше, они предоставили бактериям и археям собственные категории.
Микробное питание (и миазма)
Как и людям, животным и растениям, бактериям нужна пища для выживания.
Некоторые бактерии - автотрофы - используют основные ресурсы вроде солнечного света, воды и химических веществ из окружающей среды для создания пищи (подумайте о цианобактериях, которые превращали солнечный свет в кислород в течение 2,5 миллионов лет). Другие бактерии ученые называют гетеротрофами, потому что они черпают энергию из существующих органических веществ в качестве пищи (к примеру, мертвые листья на лесной почве).
Правда в том, что то, что может быть вкусным для бактерий, будет нам противно. Они развивались, чтобы поглощать все типы продуктов, от разливов нефти и побочных продуктов ядерного распада до человеческих отходов и продуктов разложения.
Но склонность бактерий к конкретному источнику питания может принести пользу обществу. К примеру, специалисты по искусствам из Италии обратились к бактериям, которые могут поедать избыточные слои соли и клея, снижающие долговечность бесценных художественных произведений. Умение бактерий перерабатывать органические вещества также очень полезно для Земли, как в почве, так и в воде.
Исходя из ежедневного опыта, вы хорошо знакомы с запахом, который вызывают бактерии, поглощающие содержимое вашей мусорной корзины, перерабатывая остатки пищи и испуская собственные газообразные побочные продукты. Однако этим все не ограничивается. Вы также можете обвинить бактерии в том, что они вызывают эти неловкие моменты, когда вы сами испускаете газы.
Одна большая семья
Бактерии растут и образуют колонии, когда выпадает шанс. Если еда и экологические условия являются благоприятными, они размножаются и образуют липкие скопления, так называемые биопленки, чтобы выжить на разных поверхностях - от горных пород до зубов вашего рта.
У биопленок есть свои плюсы и минусы. С одной стороны, они взаимовыгодны природным объектам (мутуализм). С другой же - они могут быть серьезной угрозой. К примеру, врачи, которые лечат пациентов с медицинскими имплантатами и устройствами, серьезно озабочены биопленками, поскольку они представляют собой этакую недвижимость для бактерий. После колонизации биопленки могут вырабатывать побочные продукты, которые токсичны - а иногда и смертельны - для человека.
Как и люди в городах, клетки в биопленке сообщаются друг с другом, обмениваются информацией о продуктах питания и потенциальной опасности. Но вместо того, чтобы звонить соседям по телефону, бактерии отправляют записки с помощью химических веществ.
Также бактерии не боятся жить самостоятельно. Некоторые виды разработали интересные способы, чтобы выживать в суровых условиях. Когда еды больше нет, а условия становятся невыносимыми, бактерии консервируют себя, создавая жесткую оболочку - эндоспору, которая помещает клетку в состояние покоя и сохраняет генетический материал бактерии.
Ученые находят бактерии в таких временных капсулах, которые хранились и 100, и даже 250 миллионов лет. Это говорит о том, что бактерии могут самостоятельно храниться в течение длительного времени.
Теперь, когда мы знаем, какие возможности предоставляют колонии бактериям, давайте разберемся, как они попадают туда - путем деления и размножения.
Размножение бактерий
Как бактерии создают колонии? Как и другим формам жизни на Земле, бактериям нужно самокопироваться, чтобы выживать. Другие организмы делают это путем полового размножения, но не бактерии. Но сначала давайте обсудим, почему разнообразие - это хорошо.
Жизнь проходит естественный отбор, ну или селективные силы определенной среды позволяют одному типу процветать и размножаться больше, чем другому. Возможно, вы помните, что гены - это механизм, который инструктирует клетку, что ей делать, и определяет, какого цвета будут ваши волосы и глаза. Вы получаете гены от своих родителей. Половое размножение приводит к мутациям, или случайным изменениям в ДНК, что создает разнообразие. Чем больше генетического разнообразия, тем больше шансов, что организм сможет приспособиться к ограничениям окружающей среды.
Для бактерий воспроизводство не зависит от встречи с правильным микробом; они просто копируют собственную ДНК и делятся на две идентичных клетки. Этот процесс, называемый двоичным делением, происходит, когда одна бактерия делится на две, копируя ДНК и передавая ее обеим частям разделенной клетки.
Поскольку в конечном итоге рожденная клетка будет идентична той, из которой была рождена, такой метод размножения не самый лучший для создания разнообразного генофонда. Как же бактерии приобретают новые гены?
Оказывается, бактерии используют хитрый трюк: горизонтальный перенос генов, или обмен генетическим материалом без воспроизводства. Есть несколько способов, которые используют бактерии для этого. Один способ включает сбор генетического материала из окружающей среды вне клетки - из других микробов и бактерий (через молекулы под названием плазмиды). Другой способ - вирусы, которые используют бактерии в качестве дома. Заражая новую бактерию, вирусы оставляют генетический материал предыдущей бактерии в новой.
Обмен генетическим материалом дает бактериям гибкость к адаптации, и они адаптируются, если чувствуют стрессовые изменения в окружающей среде, такие как нехватка продовольствия или химические изменения.
Понимание того, как адаптируются бактерии, чрезвычайно важно для борьбы с ними и создания антибиотиков в медицине . Бактерии могут обмениваться генетическим материалом так часто, что порой лечение, которое работало раньше, уже не работает.
Ни высоких гор, ни большой глубины
Если задаться вопросом «где бактерии?», проще спросить «где бактерий нет?».
Бактерии обнаруживаются практически везде на Земле. Невозможно представить количество бактерий на планете одновременно, но по некоторым оценкам их число составляет (бактерий и архей вместе) 5 октиллионов - это число с 27 нулями.
Классификация видов бактерий чрезвычайно сложна по понятным причинам. Сейчас есть примерно 30 000 официально идентифицированных видов, но база знаний постоянно растет, и есть мнения, что перед нами только верхушка айсберга от всех видов бактерий.
Правда в том, что бактерии были вокруг на протяжении очень долгого времени. Они породили одни из самых древних окаменелостей, которым 3,5 миллиарда лет. Результаты научных исследований позволяют предположить, что цианобактерии начали создавать кислород примерно 2,3-2,5 миллиарда лет назад в мировом океане, насытив атмосферу Земли кислородом, которым мы дышим по сей день.
Бактерии могут выживать в воздухе, воде, почве, льде, на жаре, на растениях, в кишечнике, на коже - везде.
Некоторые бактерии являются экстремофилами, то есть могут противостоять экстремальным условиям, когда либо очень жарко или холодно, либо отсутствуют питательные вещества и химикаты, которые мы обычно ассоциируем с жизнью. Исследователи обнаружили такие бактерии в Марианской впадине, самой глубокой точке на Земле на дне Тихого океана, возле гидротермальных источников в воде и во льду. Встречаются также бактерии, которые любят высокую температуру - такие, например, окрашивают опалесцирующий бассейн в Йеллоустонском национальном парке.
Плохие (для нас)
Хотя бактерии делают важный вклад в здоровье человека и планеты, у них есть и темная сторона. Некоторые бактерии могут быть патогенными, то есть вызывать заболевания и болезни.
На протяжении истории человечества некоторые бактерии (понятно почему) получили плохую репутацию, вызвав панику и истерию. Взять, к примеру, чуму. Бактерия, вызывающая чуму - чумная палочка Yersinia pestis - не только убила более 100 миллионов человек, но и, возможно, внесла свой вклад в распад Римской империи. До появления антибиотиков, лекарств, которые способствуют борьбе с бактериальными инфекциями, их было очень сложно остановить.
Даже сегодня эти патогенные бактерии серьезно нас пугают. Благодаря выработке устойчивости к антибиотикам, бактерии, вызывающие сибирскую язву, пневмонию, менингит, холеру, сальмонеллез, ангину и прочие болезни, которые еще и остаются рядом с нами, всегда представляют опасность для нас.
Особенно верно это для золотистого стафилококка, бактерии, ответственной за стафилококковые инфекции. Эта «сверхбактерия» приводит к появлению многочисленных проблем в клиниках, поскольку пациенты весьма часто подхватывают эту инфекцию при внедрении медицинских имплантатов и катетеров.
Мы уже говорили о естественном отборе и о том, что некоторые бактерии вырабатывают разнообразные гены, которые помогают им справиться с условиями окружающей среды. Если у вас есть инфекция, и некоторые из бактерий в вашем теле отличаются от других, антибиотики могут поразить большую часть популяции бактерий. Но те бактерии, которые выживут, выработают устойчивость к лекарству и останутся, дожидаясь следующего шанса. Поэтому врачи рекомендуют завершать курс антибиотиков до конца, да и вообще обращаться к ним как можно реже, только в крайнем случае.
Биологическое оружие - еще один пугающий аспект этой беседы. Бактерий можно использовать как оружие в некоторых случаях, в частности, сибирскую язву так и использовали в одно время. Кроме того, не только люди страдают от бактерий. Отдельный вид - Halomonas titanicae - проявил аппетит к затонувшему океанскому лайнеру «Титаник», разъедая металл исторического корабля.
Конечно, бактерии могут приносить не только вред.
Героические бактерии
Давайте изучим хорошую сторону бактерий. В конце концов, эти микробы подарили нам такие вкусные продукты, как сыр, пиво, закваску и другие ферментированные элементы. Они также улучшают здоровье людей и используются в медицине.
Отдельных бактерий можно поблагодарить за формирование человеческой эволюции. Наука собирает все больше данных о микрофлоре - микроорганизмах, которые живут в наших телах, особенно в пищеварительной системе и кишечнике. Исследования показывают, что бактерии, новые генетические материалы и разнообразие, которое они приносят в наши тела, позволяют людям адаптироваться к новым источникам пищи, которые раньше не использовались.
Посмотрим на это с другой стороны: выстилая поверхность вашего желудка и кишечника, бактерии «работают» на вас. Когда вы едите, бактерии и другие микробы помогают вам разбивать и добывать питательные вещества из пищи, особенно углеводы. Чем разнообразнее бактерии, которых мы потребляем, тем больше разнообразия получают наши тела.
Хотя наши знания о наших же микробах весьма скудны, есть основания полагать, что отсутствие некоторых микробов и бактерий в организме может быть связано со здоровьем, метаболизмом и восприимчивости к аллергенам человека. Предварительные исследования на мышах показали, что метаболические заболевания вроде ожирения связаны с разнообразием и здоровой микрофлорой, а не нашей преобладающей точкой зрения «калории приходят, калории уходят».
Сейчас активно исследуются возможности внедрения определенных микробов и бактерий в организм человека, которые могут дать определенные преимущества, однако на момент написания статьи общие рекомендации по их использованию пока не были установлены.
Кроме того, бактерии сыграли важную роль в развитии научной мысли и человеческой медицины. Бактерии сыграли ведущую роль в развитии постулатов Коха 1884 года, которые привели к общему пониманию того, что болезни вызываются определенным видом микробов.
Исследователи, изучавшие бактерии, случайно открыли пенициллин - антибиотик, который спас множество жизней. Также совсем недавно в связи с этим был открыт легкий способ редактировать геном организмов, который может осуществить революцию в медицине.
По сути, мы только начинаем понимать, как извлекать пользу из нашего сожительства с этими маленькими друзьями. К тому же непонятно, кто истинный хозяин Земли: люди или микробы.
Июл 22, 2017 Геннадий