Что такое реакция разложения в химии? Примеры реакции разложения
Классификацию химических реакций в неорганической и органической химии осуществляют на основании различных классифицирующих признаков, сведения о которых приведены в таблице ниже.
По изменению степени окисления элементов
Первый признак классификации — по изменению степени окисления элементов, образующих реагенты и продукты.
а) окислительно-восстановительные
б) без изменения степени окисления
Окислительно-восстановительными
называют реакции, сопровождающиеся изменением степеней окисления химических элементов, входящих в состав реагентов. К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разложения и соединения, в которых участвует хотя бы одно простое вещество. К реакциям, идущим без изменения степеней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.
По числу и составу реагентов и продуктов
Химические реакции классифицируются по характеру процесса, т.е по числу и составу реагентов и продуктов.
Реакциями соединения
называют химические реакции, в результате которых сложные молекулы получаются из нескольких более простых, например:
4Li + O 2 = 2Li 2 O
Реакциями разложения
называют химические реакции, в результате которых простые молекулы получаются из более сложных, например:
CaCO 3 = CaO + CO 2
Реакции разложения можно рассматривать как процессы, обратные соединению.
Реакциями замещения
называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:
Fe + 2HCl = FeCl 2 + H 2
Их отличительный признак - взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии.
Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.
— обмена (в том числе и нейтрализации).
Реакциями обмена
называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:
AgNO 3 + KBr = AgBr + KNO 3
По возможности протекать в обратном направлении
По возможности протекать в обратном направлении – обратимые и необратимые.
Обратимыми называют химические реакции, протекающие при данной температуре одновременно в двух противоположных направлениях с соизмеримыми скоростями. При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками. Простейшим примером обратимой реакции является синтез аммиака взаимодействием азота и водорода:
N 2 +3H 2 ↔2NH 3
Необратимыми называют реакции, протекающие только в прямом направлении, в результате которых образуются продукты, не взаимодействующие между собой. К необратимым относят химические реакции, в результате которых образуются малодиссоциированные соединения, происходит выделение большого количества энергии, а также те, в которых конечные продукты уходят из сферы реакции в газообразном виде или в виде осадка, например:
HCl + NaOH = NaCl + H2O
2Ca + O 2 = 2CaO
BaBr 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaBr
По тепловому эффекту
Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии (теплосодержания) ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.
Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.
Реакции соединения как правило будут реакциями экзотермическими, а реакции разложения - эндотермическими. Редкое исключение - реакция азота с кислородом - эндотермическая:
N2 + О2 → 2NO – Q
По фазе
Гомогенными называют реакции, протекающие в однородной среде (однородные вещества, в одной фазе, например г-г, реакции в растворах).
Гетерогенными называют реакции, протекающие в неоднородной среде, на поверхности соприкосновения реагирующих веществ, находящихся в разных фазах, например, твердой и газообразной, жидкой и газообразной, в двух несмешивающихся жидкостях.
По использованию катализатора
Катализатор – вещество ускоряющее химическую реакцию.
Каталитические реакции протекают только в присутствии катализатора (в том числе и ферментативные).
Некаталитические реакции идут в отсутствие катализатора.
По типу разрыва связей
По типу разрыва химической связи в исходной молекуле различают гомолитические и гетеролитические реакции.
Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон - свободные радикалы.
Гетеролитическими называют реакции, протекающие через образование ионных частиц - катионов и анионов.
- гомолитические (равный разрыв, каждый атом по 1 электрону получает)
- гетеролитический (неравный разрыв – одному достается пара электронов)
Радикальными (цепными) называют химические реакции с участием радикалов, например:
CH 4 + Cl 2 hv →CH 3 Cl + HCl
Ионными называют химические реакции, протекающие с участием ионов, например:
KCl + AgNO 3 = KNO 3 + AgCl↓
Электрофильными называют гетеролитические реакции органических соединений с электрофилами - частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного замещения и электрофильного присоединения, например:
C 6 H 6 + Cl 2 FeCl3 → C 6 H 5 Cl + HCl
H 2 C =CH 2 + Br 2 → BrCH 2 –CH 2 Br
Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами - частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения, например:
CH 3 Br + NaOH → CH 3 OH + NaBr
CH 3 C(O)H + C 2 H 5 OH → CH 3 CH(OC 2 H 5) 2 + H 2 O
Классификация органических реакций
Классификация органических реакций приведена в таблице:
Во время химических реакций из одних веществ получаются другие (не путать с ядерными реакциями, в которых один химический элемент превращается в другой).
Любая химическая реакция описывается химическим уравнением :
Реагенты → Продукты реакции
Стрелка указывает направление протекания реакции.
Например:
В данной реакции метан (СН 4) реагирует с кислородом (О 2), в результате чего образуется диоксид углерода (СО 2) и вода (Н 2 О), а точнее - водяной пар. Именно такая реакция происходит на вашей кухне, когда вы поджигаете газовую конфорку. Читать уравнение следует так: одна молекула газообразного метана вступает в реакцию с двумя молекулами газообразного кислорода, в результате получается одна молекула диоксида углерода и две молекулы воды (водяного пара).
Числа, расположенные перед компонентами химической реакции, называются коэффициентами реакции .
Химические реакции бывают эндотермическими (с поглощением энергии) и экзотермические (с выделением энергии). Горение метана - типичный пример экзотермической реакции.
Существует несколько видов химических реакций. Самые распространенные:
- реакции соединения;
- реакции разложения;
- реакции одинарного замещения;
- реакции двойного замещения;
- реакции окисления;
- окислительно-восстановительные реакции.
Реакции соединения
В реакциях соединения хотя бы два элемента образуют один продукт:
2Na (т) + Cl 2 (г) → 2NaCl (т) - образование поваренной соли.
Следует обратить внимание на существенный нюанс реакций соединения: в зависимости от условий протекания реакции или пропорций реагентов, вступающих в реакцию, - ее результатом могут быть разные продукты. Например, при нормальных условиях сгорания каменного угля получается углекислый газ:
C (т) + O 2 (г) → CO 2 (г)
Если же количество кислорода недостаточно, то образуется смертельно опасный угарный газ:
2C (т) + O 2 (г) → 2CO (г)
Реакции разложения
Эти реакции являются, как бы, противоположными по сути, реакциям соединения. В результате реакции разложения вещество распадается на два (3, 4...) более простых элемента (соединения):
- 2H 2 O (ж) → 2H 2 (г) + O 2 (г) - разложение воды
- 2H 2 O 2 (ж) → 2H 2 (г) O + O 2 (г) - разложение перекиси водорда
Реакции одинарного замещения
В результате реакций одинарного замещения, более активный элемент замещает в соединении менее активный:
Zn (т) + CuSO 4 (р-р) → ZnSO 4 (р-р) + Cu (т)
Цинк в растворе сульфата меди вытесняет менее активную медь, в результате чего образуется раствор сульфата цинка.
Степень активности металлов по возрастанию активности:
- Наиболее активными являются щелочные и щелочноземельные металлы
Ионное уравнение вышеприведенной реакции будет иметь вид:
Zn (т) + Cu 2+ + SO 4 2- → Zn 2+ + SO 4 2- + Cu (т)
Ионная связь CuSO 4 при растворении в воде распадается на катион меди (заряд 2+) и анион сульфата (заряд 2-). В результате реакции замещения образуется катион цинка (который имеет такой же заряд, как и катион меди: 2-). Обратите внимание, что анион сульфата присутствует в обеих частях уравнения, т.е., по всем правилам математики его можно сократить. В итоге получится ионно-молекулярное уравнение:
Zn (т) + Cu 2+ → Zn 2+ + Cu (т)
Реакции двойного замещения
В реакциях двойного замещения происходит замещение уже двух электронов. Такие реакции еще называют реакциями обмена . Такие реакции проходят в растворе с образованием:
- нерастворимого твердого вещества (реакции осаждения);
- воды (реакции нейтрализации).
Реакции осаждения
При смешивании раствора нитрата серебра (соль) с раствором хлорида натрия образуется хлорид серебра:
Молекулярное уравнение: KCl (р-р) + AgNO 3 (p-p) → AgCl (т) + KNO 3 (p-p)
Ионное уравнение: K + + Cl - + Ag + + NO 3 - → AgCl (т) + K + + NO 3 -
Молекулярно-ионное уравнение: Cl - + Ag + → AgCl (т)
Если соединение растворимое, оно будет находиться в растворе в ионном виде. Если соединение нерастворимое, оно будет осаждаться, образовывая твердое вещество.
Реакции нейтрализации
Это реакции взаимодействия кислот и оснований, в результате которых образуются молекулы воды.
Например, реакция смешивания раствора серной кислоты и раствора гидроксида натрия (щелока):
Молекулярное уравнение: H 2 SO 4 (p-p) + 2NaOH (p-p) → Na 2 SO 4 (p-p) + 2H 2 O (ж)
Ионное уравнение: 2H + + SO 4 2- + 2Na + + 2OH - → 2Na + + SO 4 2- + 2H 2 O (ж)
Молекулярно-ионное уравнение:2H + + 2OH - → 2H 2 O (ж) или H + + OH - → H 2 O (ж)
Реакции окисления
Это реакции взаимодействия веществ с газообразным кислородом, находящимся в воздухе, при которых, как правило, выделяется большое количество энергии в виде тепла и света. Типичная реакция окисления - это горение. В самом начале данной страницы приведена реакция взаимодействия метана с кислородом:
CH 4 (г) + 2O 2 (г) → CO 2 (г) + 2H 2 O (г)
Метан относится к углеводородам (соединения из углерода и водорода). При реакции углеводорода с кислородом выделяется много тепловой энергии.
Окислительно-восстановительные реакции
Это реакции при которых происходит обмен электронами между атомами реагентов. Рассмотренные выше реакции, также являются окислительно-восстановительными реакциями:
- 2Na + Cl 2 → 2NaCl - реакция соединения
- CH 4 + 2O 2 → CO 2 + 2H 2 O - реакция окисления
- Zn + CuSO 4 → ZnSO 4 + Cu - реакция одинарного замещения
Максимально подробно окислительно-восстановительные реакции с большим количеством примеров решения уравнений методом электронного баланса и методом полуреакций описаны в разделе
Химические реакции (химические явления) – это процессы, в результате которых из одних веществ образуются другие, отличающиеся от исходных по составу или строению. При протекании химических реакций не происходит изменения числа атомов того или иного элемента, взаимопревращения изотопов.
Классификация химических реакций многопланова, в ее основу могут быть положены различные признаки: число и состав реагентов и продуктов реакции, тепловой эффект, обратимость и др.
I. Классификация реакций по числу и составу реагирующих веществ
А. Реакций, протекающие без изменения качественного состава вещества . Это многочисленные аллотропные превращения простых веществ (например, кислород ↔ озон (3О 2 ↔2О 3), белое олово ↔ серое олово); переход при изменении температуры некоторых твердых веществ из одного кристаллического состояния в другое –полиморфные превращения (например, красные кристаллы иодида ртути (II) при нагревании превращаются в вещество желтого цвета того же состава, при охлаждении протекает обратный процесс); реакции изомеризации (например,NH 4 OCN↔ (NH 2) 2 CO) и др.
Б. Реакции, протекающие с изменением состава реагирующих веществ.
Реакции соединения – это реакции, при которых из двух или более исходных веществ образуется одно новое сложное вещество. Исходные вещества могут быть как простыми, так и сложными, например:
4Р + 5О 2 = 2Р 2 О 5 ; 4NO 2 + О 2 + 2Н 2 О = 4HNO 3 ; СаО+ Н 2 О =Са(ОН) 2 .
Реакции разложения – это реакции, при которых из одного исходного сложного вещества образуется два или более новых вещества. Вещества, образующиеся в реакциях такого типа могут быть как простыми, так и сложными, например:
2HI = Н 2 + I 2 ; СаCO 3 =СаО+ CO 2 ; (CuOH) 2 CO 3 = CuO + H 2 O + CO 2 .
Реакции замещения – это процессы, в которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе. Поскольку в реакциях замещения в качестве одного из реагентов обязательно участвует простое вещество, практически все превращения такого типа являются окислительно-восстановительными, например:
Zn + H 2 SO 4 = H 2 + ZnSO 4 ; 2Al + Fe 2 O 3 = 2Fe + Al 2 O 3 ; H 2 S + Br 2 = 2HBr + S.
Реакции обмена – это реакции, при которых два сложных вещества обмениваются своими составными частями. Реакции обмена могут протекать непосредственно между двумя реагентами без участия растворителя, например:H 2 SO 4 + 2КОН =K 2 SO 4 + 2Н 2 О;SiО 2 (тв) + 4HF(г)=SiF 4 + 2Н 2 О.
Реакции обмена, протекающие в растворах электролитов, называют реакциями ионного обмена. Такие реакции возможны лишь в том случае, если одно из образующихся веществ является слабым электролитом, выделяется из сферы реакции в виде газа или труднорастворимого вещества (правило Бертолле):
AgNO 3 +HCl=AgCl↓ +HNO 3 , илиAg + +Cl - =AgCl↓;
NH 4 Cl+ КОН =KCl+NH 3 +H 2 O, илиNH 4 + +OH - =H 2 O+NH 3 ;
NaOH+HCl=NaCl+H 2 O, или Н + +OH - =H 2 O.
II. Классификация реакций по тепловому эффекту
А. Реакции, протекающие с выделением тепловой энергии –экзотермические реакции (+ Q).
Б. Реакции, протекающие с поглощением теплоты –эндотермические реакции (– Q).
Тепловым эффектом реакции называют количество теплоты, которое выделяется или поглощается в результате химической реакции. Уравнение реакции, в котором указан ее тепловой эффект, называюттермохимическим. Значение теплового эффекта реакции удобно приводить в расчете на 1 моль одного из участников реакции, поэтому в термохимических уравнениях часто можно встретить дробные коэффициенты:
1/2N 2 (г) + 3/2Н 2 (г) =NH 3 (г) + 46,2 кДж /моль.
Экзотермическими являются все реакции горения, подавляющее большинство реакций окисления и соединения. Реакции разложения, как правило, требуют затрат энергии.
В современной науке различают химические и ядерные реакции, протекающие в результате взаимодействия исходных веществ, которые принято называть реагентами. В результате образуются другие химические вещества, которые называются продуктами. Все взаимодействия происходят при определенных условиях (температура, излучение, присутствие катализаторов и прочее). Ядра атомов реагентов химических реакций не меняются. В ядерных превращениях образуются новые ядра и частицы. Существует несколько различных признаков, по которым определяют типы химических реакций.
За основу классификации можно взять число исходных и образующихся веществ. В этом случае все типы химических реакций делятся на пять групп:
- Разложения (несколько новых получается из одного вещества), например, разложение при нагревании на хлористый калий и кислород: KCLO3 → 2KCL + 3O2.
- Соединения (два или несколько соединений образуют одно новое), взаимодействуя с водой, окись кальция превращается в гидроокись кальция: H2O + CaO → Ca(OH)2;
- Замещения (число продуктов равно числу исходных веществ, в которых замещена одна составляющая часть на другую), железо в сульфате меди, замещая медь, образует сульфат двухвалентного железа: Fe + CuSO4 → FeSO4 +Cu.
- Двойного обмена (молекулы двух веществ обмениваются оставляющими их частями), металлы в и обмениваются анионами, образуя выпадающий в осадок йодид серебра и азотнокислый кадий: KI + AgNO3 → AgI↓ + KNO3.
- Полиморфного превращения (происходит переход вещества из одной кристаллической формы в другую), йодид цвета при нагревании переходит в йодид ртути желтого цвета: HgI2 (красный) ↔ HgI2 (желтый).
Если химические превращения рассматривать по признаку изменения в реагирующих веществах степени окисления элементов, то тогда типы химических реакций могут делиться на группы:
- С изменением степени окисления — реакции окислительно-восстановительные (ОВР). В качестве примера можно рассмотреть взаимодействие железа с соляной кислотой: Fe + HCL → FeCl2 + H2, в результате степень окисления железа (восстановитель, отдающий электроны) изменилась с 0 до -2, а водорода (окислитель, принимающий электроны) с +1 до 0.
- Без изменения степени окисления (т. е. не ОВР). Например, реакции кислотно-щелочного взаимодействия бромистого водорода с гидроокисью натрия: HBr + NaOH → NaBr + H2O, в результате таких реакций образуются соль и вода, а степени окисления химических элементов, входящих в исходные вещества, не меняются.
Если рассматривать и скорость протекания в прямом и обратном направлении, то все типы химических реакций могут делиться также на две группы:
- Обратимые — те, что одновременно протекают в двух направлениях. Большинство реакций являются обратимыми. В качестве примера можно привести растворение в воде двуокиси углерода с образованием нестойкой угольной кислоты, которая разлагается на исходные вещества: H2O + CO2 ↔ H2CO3.
- Необратимые - протекают только в прямом направлении, после полного расходования одного из исходных веществ завершаются, после чего присутствуют только продукты и исходное вещество, взятое в избытке. Обычно один из продуктов является или выпавшим в осадок нерастворимым веществом или выделившимся газом. Например, при взаимодействии серной кислоты и хлористого бария: H2SO4 + BaCl2 + → BaSO4↓ + 2HCl в осадок выпадает нерастворимый
Типы химических реакций в органической химии можно разделить на четыре группы:
- Замещение (происходит замена одних атомов или групп атомов на другие), например, при взаимодействии хлорэтана с гидроокисью натрия образуется этанол и хлорид натрия: C2H5Cl + NaOH → C2H5OH + NaCl, то есть атом хлора замещается на атом водорода.
- Присоединение (две молекулы реагируют и образовывают одну), например, бром присоединяется в месте разрыва двойной связи в молекуле этилена: Br2 + CH2=CH2 → BrCH2—CH2Br.
- Отщепление (молекула разлагается на две и более молекулы), например, при определенных условиях этанол разлагается на этилен и воду: C2H5OH → CH2=CH2 + H2O.
- Перегруппировка (изомеризация, когда одна молекула превращается в другую, но качественный и количественный состав атомов в ней не меняется), например, 3-хлорутен-1 (C4H7CL) превращается в 1 хлорбутен-2 (C4H7CL). Здесь атом хлора перешел от третьего углеродного атома в углеводородной цепочке к первому, а двойная связь соединяла первый и второй атомы углерода, а затем стала соединять второй и третьи атомы.
Известны и другие виды химических реакций:
- По протекающие с поглощением (эндотермические) или выделением тепла (экзотермические).
- По типу взаимодействующих реагентов или образующихся продуктов. Взаимодействие с водой — гидролиз, с водородом — гидрирование, с кислородом — окисление или горение. Отщепление воды — дегидратация, водорода — дегидрирование и так далее.
- По условиям взаимодействия: в присутствии под действием низкой или высокой температуры, при изменении давления, на свету и прочее.
- По механизму протекания реакции: ионные, радикально-цепные или цепные реакции.
Химические свойства веществ выявляются в разнообразных химических реакциях.
Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).
Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.
В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.
Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.
Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.
В качестве классификационных признаков могут быть выбраны следующие:
1. Число и состав исходных веществ и продуктов реакции.
2. Агрегатное состояние реагентов и продуктов реакции.
3. Число фаз, в которых находятся участники реакции.
4. Природа переносимых частиц.
5. Возможность протекания реакции в прямом и обратном направлении.
6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):
С +О 2 = СО 2 + Q
и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):
N 2 +О 2 = 2NО — Q.
Такие реакции относят к термохимическим .
Рассмотрим более подробно каждый из типов реакций.
Классификация по числу и составу реагентов и конечных веществ
1. Реакции соединения
При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:
Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.
Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:
СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,
так и относиться к числу окислительно-восстановительных:
2FеСl 2 + Сl 2 = 2FеСl 3 .
2. Реакции разложения
Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:
А = В + С + D.
Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.
Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:
t o | ||
4HNO 3 | = | 2H 2 O + 4NO 2 O + O 2 O. |
2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.
Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.
Реакции разложения в органической химии носят название крекинга :
С 18 H 38 = С 9 H 18 + С 9 H 20 ,
или дегидрирования
C 4 H 10 = C 4 H 6 + 2H 2 .
3. Реакции замещения
При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:
А + ВС = АВ + С.
Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:
2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,
Zn + 2НСl = ZnСl 2 + Н 2 ,
2КВr + Сl 2 = 2КСl + Вr 2 ,
2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .
Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:
СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,
Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,
Иногда эти реакции рассматривают как реакции обмена :
СН 4 + Сl 2 = СН 3 Сl + НСl.
4. Реакции обмена
Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:
АВ + СD = АD + СВ.
Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:
ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,
AgNО 3 + КВr = АgВr + КNО 3 ,
СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.
Частный случай этих реакций обмена — реакции нейтрализации :
НСl + КОН = КСl + Н 2 О.
Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:
NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,
Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,
СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .
5. Реакции переноса.
При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:
АВ + ВС = А + В 2 С,
А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .
Например:
2AgCl + SnCl 2 = 2Ag + SnCl 4 ,
H 2 O + 2NO 2 = HNO 2 + HNO 3 .
Классификация реакций по фазовым признакам
В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:
1. Газовые реакции
H 2 + Cl 2 | 2HCl. |
2. Реакции в растворах
NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)
3. Реакции между твердыми веществами
t o | ||
СаО(тв) +SiO 2 (тв) | = | СаSiO 3 (тв) |
Классификация реакций по числу фаз.
Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.
Все многообразие реакций с этой точки зрения можно разделить на два класса:
1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.
2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:
газожидкофазные реакции
CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).
газотвердофазные реакции
СO 2 (г) + СаО(тв) = СаСO 3 (тв).
жидкотвердофазные реакции
Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).
жидкогазотвердофазные реакции
Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.
Классификация реакций по типу переносимых частиц
1. Протолитические реакции.
К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.
В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:
К протолитическим реакциям относят реакции нейтрализации и гидролиза.
2. Окислительно-восстановительные реакции.
К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:
Zn + 2H + → Zn 2 + + H 2 ,
FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,
Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.
3. Лиганднообменные реакции.
К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:
Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,
Fe + 5CO = ,
Al(OH) 3 + NaOH = .
Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.
4. Реакции атомно-молекулярного обмена.
К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.
Обратимые и необратимые химические реакции
Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.
Для обратимых реакций уравнение принято записывать следующим образом:
Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:
СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.
Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:
2КСlО 3 → 2КСl + ЗО 2 ,
или окисление глюкозы кислородом воздуха:
С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.