Все виды кислот в химии. Неорганические кислоты
Кислоты можно классифицировать исходя из разных критериев:
1) Наличие атомов кислорода в кислоте
2) Основность кислоты
Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:
4) Растворимость
5) Устойчивость
7) Окисляющие свойства
Химические свойства кислот
1. Способность к диссоциации
Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:
либо в таком виде: HCl = H + + Cl —
либо в таком: HCl → H + + Cl —
По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.
В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:
CH 3 COOH CH 3 COO — + H +
Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :
H 3 PO 4 H + + H 2 PO 4 —
H 2 PO 4 — H + + HPO 4 2-
HPO 4 2- H + + PO 4 3-
Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H 3 PO 4 диссоциируют лучше (в большей степени), чем ионы H 2 PO 4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO 4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .
Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:
H 2 SO 4 2H + + SO 4 2-
2. Взаимодействие кислот с металлами
Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H 2 SO 4(конц.) и HNO 3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:
H 2 SO 4(разб.) + Zn ZnSO 4 + H 2
2HCl + Fe FeCl 2 + H 2
Что касается кислот-сильных окислителей, т.е. H 2 SO 4 (конц.) и HNO 3 , то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.
3. Взаимодействие кислот с основными и амфотерными оксидами
Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:
H 2 SO 4 + ZnO ZnSO 4 + H 2 O
6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O
H 2 SiO 3 + FeO ≠
4. Взаимодействие кислот с основаниями и амфотерными гидроксидами
HCl + NaOH H 2 O + NaCl
3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O
5. Взаимодействие кислот с солями
Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:
H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3
CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O
HCOONa + HCl HCOOH + NaCl
6. Специфические окислительные свойства азотной и концентрированной серной кислот
Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).
Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO 3 и концентрированной H 2 SO 4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.
В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.
Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:
7. Восстановительные свойства бескислородных кислот
Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:
4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O
18HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2
14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O
Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.
6HI + Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O
2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl
Высокой восстановительной активностью обладает также и сероводородная кислота H 2 S. Ее может окислить даже такой окислитель, как диоксид серы.
Кислоты - электролиты, при диссоциации которых из положительных ионов образуются только ионы H + :
HNO 3 ↔ H + + NO 3 — ;
CH 3 COOH↔ H + +CH 3 COO — .
Все кислоты классифицируют на неорганические и органические (карбоновые), которые также имеют свои собственные (внутренние) классификации.
При нормальных условияхзначительное количество неорганических кислот существуют в жидком состоянии, некоторые - в твёрдом состоянии (H 3 PO 4 , H 3 BO 3).
Органические кислоты с числом атомов углерода до 3 представляют собой легкоподвижные бесцветные жидкости с характерным резким запахом; кислоты с 4-9 атомами углерода — маслянистые жидкости с неприятным запахом, а кислоты с большим количеством атомов углерода— твёрдые вещества, нерастворимые в воде.
Химические формулы кислот
Химические формулы кислот рассмотрим на примере нескольких представителей (как неорганических, так и органических): хлороводородной кислоте -HCl, серной кислоте - H 2 SO 4 , фосфорной кислоте — H 3 PO 4 , уксусной кислоте - CH 3 COOH и бензойной кислоте - C 6 H 5 COOH. Химическая формула показывает качественный и количественный состав молекулы (сколько и каких атомов входит в конкретное соединение) По химической формуле можно вычислить молекулярную массу кислот (Ar(H) = 1 а.е.м., Ar(Cl) = 35,5 а.е.м., Ar(P) = 31 а.е.м., Ar(O) = 16 а.е.м., Ar(S) = 32 а.е.м., Ar(C) = 12 а.е.м.):
Mr(HCl) = Ar(H) + Ar(Cl);
Mr(HCl) = 1 + 35,5 = 36,5.
Mr(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O);
Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.
Mr(H 3 PO 4) = 3×Ar(H) + Ar(P) + 4×Ar(O);
Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.
Mr(CH 3 COOH) = 3×Ar(С) + 4×Ar(H) + 2×Ar(O);
Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.
Mr(C 6 H 5 COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);
Mr(C 6 H 5 COOH) = 7×12 + 6×1 + 2×16 = 84 + 6 + 32 = 122.
Структурные (графические) формулы кислот
Структурная (графическая) формула вещества является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы. Укажем структурные формулы каждого из вышеуказанных соединений:
Рис. 1. Структурная формула хлороводородной кислоты.
Рис. 2. Структурная формула серной кислоты.
Рис. 3. Структурная формула фосфорной кислоты.
Рис. 4. Структурная формула уксусной кислоты.
Рис. 5. Структурная формула бензойной кислоты.
Ионные формулы
Все неорганические кислоты являются электролитами, т.е. способны диссоциировать в водном растворе на ионы:
HCl ↔ H + + Cl — ;
H 2 SO 4 ↔ 2H + + SO 4 2- ;
H 3 PO 4 ↔ 3H + + PO 4 3- .
Примеры решения задач
ПРИМЕР 1
Задание | При полном сгорании 6 г органического вещества образовалось 8,8 г оксида углерода (IV) и 3,6 г воды. Определите молекулярную формулу сожженного вещества, если известно, что его молярная масса равна 180 г/моль. |
Решение | Составим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у»и «z» соответственно:
C x H y O z + O z →CO 2 + H 2 O. Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м. m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C); m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H); Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr): M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль; M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль. m(C) = ×12 = 2,4 г; m(H) = 2×3,6 / 18 ×1= 0,4 г. m(O) = m(C x H y O z) - m(C) - m(H) = 6 - 2,4 - 0,4 = 3,2 г. Определим химическую формулу соединения: x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O); x:y:z= 2,4/12:0,4/1:3,2/16; x:y:z= 0,2: 0,4: 0,2 = 1: 2: 1. Значит простейшая формула соединения CH 2 Oи молярную массу 30 г/моль . Чтобы найти истинную формулу органического соединения найдем отношение истинной и полученной молярных масс: M substance / M(CH 2 O) = 180 / 30 = 6. Значит индексы атомов углерода, водорода и кислорода должны быть в 6 раз выше, т.е. формула вещества будет иметь вид C 6 H 12 O 6 . Это глюкоза или фруктоза. |
Ответ | C 6 H 12 O 6 |
ПРИМЕР 2
Задание | Выведите простейшую формулу соединения, в котором массовая доля фосфора составляет 43,66%, а массовая доля кислорода - 56,34%. |
Решение | Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:
ω (Х) = n × Ar (X) / M (HX) × 100%. Обозначим число атомов фосфора в молекуле через «х», а число атомов кислорода через «у» Найдем соответствующие относительные атомные массы элементов фосфора и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Ar(P) = 31; Ar(O) = 16. Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения: x:y = ω(P)/Ar(P) : ω (O)/Ar(O); x:y = 43,66/31: 56,34/16; x:y: = 1,4: 3,5 = 1: 2,5 = 2: 5. Значит простейшая формула соединения фосфора и кислорода имеет вид P 2 O 5 . Это оксид фосфора (V). |
Ответ | P 2 O 5 |
Формулы кислот | Названия кислот | Названия соответствующих солей |
HClO 4 | хлорная | перхлораты |
HClO 3 | хлорноватая | хлораты |
HClO 2 | хлористая | хлориты |
HClO | хлорноватистая | гипохлориты |
H 5 IO 6 | иодная | периодаты |
HIO 3 | иодноватая | иодаты |
H 2 SO 4 | серная | сульфаты |
H 2 SO 3 | сернистая | сульфиты |
H 2 S 2 O 3 | тиосерная | тиосульфаты |
H 2 S 4 O 6 | тетратионовая | тетратионаты |
HNO 3 | азотная | нитраты |
HNO 2 | азотистая | нитриты |
H 3 PO 4 | ортофосфорная | ортофосфаты |
HPO 3 | метафосфорная | метафосфаты |
H 3 PO 3 | фосфористая | фосфиты |
H 3 PO 2 | фосфорноватистая | гипофосфиты |
H 2 CO 3 | угольная | карбонаты |
H 2 SiO 3 | кремниевая | силикаты |
HMnO 4 | марганцовая | перманганаты |
H 2 MnO 4 | марганцовистая | манганаты |
H 2 CrO 4 | хромовая | хроматы |
H 2 Cr 2 O 7 | дихромовая | дихроматы |
HF | фтороводородная (плавиковая) | фториды |
HCl | хлороводородная (соляная) | хлориды |
HBr | бромоводородная | бромиды |
HI | иодоводородная | иодиды |
H 2 S | сероводородная | сульфиды |
HCN | циановодородная | цианиды |
HOCN | циановая | цианаты |
Напомню кратко на конкретных примерах, как следует правильно называть соли.
Пример 1 . Соль K 2 SO 4 образована остатком серной кислоты (SO 4) и металлом К. Соли серной кислоты называются сульфатами. K 2 SO 4 - сульфат калия.
Пример 2 . FeCl 3 - в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.
Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!
Пример 3 . Ba(ClO) 2 - в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.
Пример 4 . (NH 4) 2 Cr 2 O 7 . Группа NH 4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.
В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.
Если вас интересует не только номенклатура солей, но и методы их получения и химические свойства, рекомендую обратиться к соответствующим разделам справочника по химии: "
Кислоты - сложные вещества, состоящие из одного или нескольких атомов водорода, способных замещаться на атома металлов, и кислотных остатков.
Классификация кислот
1. По числу атомов водорода: число атомов водорода (n ) определяет основность кислот:
n = 1 одноосновная
n = 2 двухосновная
n = 3 трехосновная
2. По составу:
а) Таблица кислород содержащих кислот, кислотных остатков и соответствующих кислотных оксидов:
Кислота (Н n А) |
Кислотный остаток (А) |
Соответствующий кислотный оксид |
H 2 SO 4 серная |
SO 4 (II) сульфат |
SO 3 оксид серы (VI ) |
HNO 3 азотная |
NO 3 (I) нитрат |
N 2 O 5 оксид азота (V ) |
HMnO 4 марганцевая |
MnO 4 (I) перманганат |
Mn 2 O 7 оксид марганца (VII ) |
H 2 SO 3 сернистая |
SO 3 (II) сульфит |
SO 2 оксид серы (IV ) |
H 3 PO 4 ортофосфорная |
PO 4 (III) ортофосфат |
P 2 O 5 оксид фосфора (V ) |
HNO 2 азотистая |
NO 2 (I) нитрит |
N 2 O 3 оксид азота (III ) |
H 2 CO 3 угольная |
CO 3 (II) карбонат |
CO 2 оксид углерода (IV ) |
H 2 SiO 3 кремниевая |
SiO 3 (II) силикат |
SiO 2 оксид кремния (IV) |
НСlO хлорноватистая |
СlO (I) гипохлорит |
С l 2 O оксид хлора (I) |
НСlO 2 хлористая |
СlO 2 (I) хлорит |
С l 2 O 3 оксид хлора (III) |
НСlO 3 хлорноватая |
СlO 3 (I) хлорат |
С l 2 O 5 оксид хлора (V) |
НСlO 4 хлорная |
СlO 4 (I) перхлорат |
С l 2 O 7 оксид хлора (VII) |
б) Таблица бескислородных кислот
Кислота (Н n А) |
Кислотный остаток (А) |
HCl соляная, хлороводородная |
Cl (I ) хлорид |
H 2 S сероводородная |
S (II ) сульфид |
HBr бромоводородная |
Br (I ) бромид |
HI йодоводородная |
I (I ) йодид |
HF фтороводородная,плавиковая |
F (I ) фторид |
Физические свойства кислот
Многие кислоты, например серная, азотная, соляная – это бесцветные жидкости. известны также твёрдые кислоты: ортофосфорная, метафосфорная HPO 3 , борная H 3 BO 3 . Почти все кислоты растворимы в воде. Пример нерастворимой кислоты – кремниевая H 2 SiO 3 . Растворы кислот имеют кислый вкус. Так, например, многим плодам придают кислый вкус содержащиеся в них кислоты. Отсюда названия кислот: лимонная, яблочная и т.д.
Способы получения кислот
бескислородные |
кислородсодержащие |
HCl, HBr, HI, HF, H 2 S |
HNO 3 , H 2 SO 4 и другие |
ПОЛУЧЕНИЕ |
|
1. Прямое взаимодействие неметаллов H 2 + Cl 2 = 2 HCl |
1. Кислотный оксид + вода = кислота SO 3 + H 2 O = H 2 SO 4 |
2. Реакция обмена между солью и менее летучей кислотой 2 NaCl (тв .) + H 2 SO 4 (конц .) = Na 2 SO 4 + 2HCl |
Химические свойства кислот
1. Изменяют окраску индикаторов
Название индикатора |
Нейтральная среда |
Кислая среда |
Лакмус |
Фиолетовый |
Красный |
Фенолфталеин |
Бесцветный |
Бесцветный |
Метилоранж |
Оранжевый |
Красный |
Универсальная индикаторная бумага |
Оранжевая |
Красная |
2.Реагируют с металлами в ряду активности до H 2
(искл. HNO 3 –азотная кислота)
Видео "Взаимодействие кислот с металлами"
Ме + КИСЛОТА =СОЛЬ + H 2 (р. замещения)
Zn + 2 HCl = ZnCl 2 + H 2
3. С основными (амфотерными) оксидами – оксидами металлов
Видео "Взаимодействие оксидов металлов с кислотами"
Ме х О у + КИСЛОТА= СОЛЬ + Н 2 О (р. обмена)
4. Реагируют с основаниями – реакция нейтрализации
КИСЛОТА + ОСНОВАНИЕ= СОЛЬ+ H 2 O (р. обмена)
H 3 PO 4 + 3 NaOH = Na 3 PO 4 + 3 H 2 O
5. Реагируют с солями слабых, летучих кислот - если образуется кислота, выпадающая в осадок или выделяется газ:
2 NaCl (тв .) + H 2 SO 4 (конц .) = Na 2 SO 4 + 2HCl ( р . обмена )
Видео "Взаимодействие кислот с солями"
6. Разложение кислородсодержащих кислот при нагревании
(искл. H 2 SO 4 ; H 3 PO 4 )
КИСЛОТА = КИСЛОТНЫЙ ОКСИД + ВОДА (р. разложения)
Запомните! Неустойчивые кислоты (угольная и сернистая) – разлагаются на газ и воду :
H 2 CO 3 ↔ H 2 O + CO 2
H 2 SO 3 ↔ H 2 O + SO 2
Сероводородная кислота в продуктах выделяется в виде газа:
СаS + 2HCl = H 2 S + Ca Cl 2
ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ
№1. Распределите химические формулы кислот в таблицу. Дайте им названия:
LiOH , Mn 2 O 7 , CaO , Na 3 PO 4 , H 2 S , MnO , Fe (OH ) 3 , Cr 2 O 3 ,HI , HClO 4 , HBr , CaCl 2 , Na 2 O , HCl , H 2 SO 4 , HNO 3 , HMnO 4 , Ca (OH ) 2 , SiO 2 , Кислоты
Бес-кисло-
родные
Кислород- содержащие
растворимые
нераст-воримые
одно-
основные
двух-основные
трёх-основные
№2. Составьте уравнения реакций:
Ca + HCl
Na + H 2 SO 4
Al + H 2 S
Ca
+ H 3 PO 4
Назовите продукты реакции.
№3. Составьте уравнения реакций, назовите продукты:
Na 2 O + H 2 CO 3
ZnO + HCl
CaO + HNO 3
Fe 2 O 3 + H 2 SO 4
№4. Составьте уравнения реакций взаимодействия кислот с основаниями и солями:
KOH + HNO 3
NaOH + H 2 SO 3
Ca(OH) 2 + H 2 S
Al(OH) 3 + HF
HCl + Na 2 SiO 3
H 2 SO 4 + K 2 CO 3
HNO 3 + CaCO 3
Назовите продукты реакции.
ТРЕНАЖЁРЫ
Тренажёр №1. "Формулы и названия кислот"
Тренажёр №2. " Установление соответствия: формула кислоты - формула оксида"
Техника безопасности - Оказание первой помощи при попадании кислот на кожу
Техника безопасности -