Катер-амфибия своими руками. Самодельный аппарат на воздушной подушке. Изготавливаем самостоятельно судно на воздушной подушке Чертежи судно на воздушной подушке


Все началось с того, что я хотел сделать какой-нибудь проект и вовлечь в него внука. У меня большой инженерный опыт за плечами, поэтому простых проектов я не искал, и вот, как то раз смотря ТВ, я увидел лодку, которая двигалась за счет пропеллера. "Классная штука!" - подумал я, и начал шерстить просторы интернета в поисках хоть какой то информации.

Мотор мы взяли со старой газонокосилки, а саму планировку купили (стоит 30$) . Она хороша тем, что требует только одного мотора, большинство же подобных лодок требуют двух движков. В той же компании мы купили пропеллер, пропеллерный хаб, ткань для воздушной подушки, эпоксидную смолу, стекловолокно и шурупы (все это они продают в одном наборе). Остальные материалы довольно банальные и могут быть куплены в любом строительном магазине. Итоговый бюджет немногим превысил 600$.

Шаг 1: Материалы


Из материалов понадобятся: пенопласт, фанера, кит от Universal Hovercraft (~500$). В наборе есть все мелочи, которые понадобятся для выполнения проекта: план, стекловолокно, пропеллер, хаб для пропеллера, ткань для воздушной подушки, клей, эпоксидная смола, втулки и т.д. Как и писал в описании, на все материалы ушло порядка 600$.

Шаг 2: Делаем каркас


Берем пенопласт (толщина 5 см) и вырезаем из него прямоугольник 1.5 на 2 метра. Такие размеры обеспечат плавучесть веса в ~270 кг. Если 270 кг кажется мало, можно взять еще один такой же лист и прикрепить его понизу. Лобзиком вырезаем две дырки: одна для входящего потока воздуха и другая для надува подушки.

Шаг 3: Покрываем стеловолокном


Нижняя часть корпуса должна быть водонепроницаемой, для этого покрываем ее стекловолокном и эпоксидкой. Чтобы все высохло как надо, без неровностей и шероховатостей, нужно избавиться от воздушных пузырей, которые могут возникнуть. Для этого можно использовать промышленный пылесос. Покрываем стекловолокно слоем пленки, затем покрываем одеялом. Покрытие нужно, чтобы одеяло не приклеилось к волокну. Затем одеяло покрываем еще одним слоем пленки и приклеиваем к полу липкой лентой. Делаем небольшой разрез, засовываем в него хобот пылесоса и включаем. В таком положении оставляем на пару часов, когда процедура завершится, пластик можно будет отскрести от стекловолокна без каких либо усилий, он к нему не приклеится.

Шаг 4: Нижняя часть корпуса готова


Нижняя часть корпуса готова, и выглядит сейчас примерно так как на фото.

Шаг 5: Делаем трубу


Труба делается из стирофома, толщиной в 2.5 см. Сложно описать весь процесс, но в плане он расписан подробно, у нас никаких проблем на этом этапе не возникло. Отмечу лишь что диск из фанеры временный, и на последующих шагах будет снят.

Шаг 6: Держатель для мотора


Конструкция не хитрая, сооружается из фанеры и брусков. Размещается точно по центру корпуса лодки. Крепится на клей и шурупы.

Шаг 7: Пропеллер


Пропеллер можно приобрести в двух видах: готовый, и "полуфабрикат". Готовый как правило гораздо дороже, и покупая полуфабрикат можно хорошо сэкономить. Так мы и сделали.

Чем ближе лопасти пропеллера к краям воздухоотвода, тем эффективнее работает последний. Как только вы определились с зазором, можно отшлифовать лопасти. Как только шлифовка закончена, нужно обязательно провести балансировку лопастей, чтобы в будущем не было вибраций. Если одна из лопастей весит больше другой, то вес нужно выровнять, но не урезанием концов, и шлифовкой. Как только баланс найден, можно нанести пару слоев краски чтобы он сохранился. Для безопасности желательно наконечники лопастей покрасить в белый цвет.

Шаг 8: Воздушная камера


Воздушная камера разделяет потоки входящего и исходящего воздуха. Делается из 3 мм фанеры.

Шаг 9: Установка воздушной камеры


Воздушная камера крепится на клей, но можно и на стекловолокно, я предпочитаю всегда использовать волокно.

Шаг 10: Направляющие


Направляющие делаются из 1 мм фанеры. Чтобы придать им прочности, покройте одним слоем стекловолокна. На фото не очень хорошо видно, но все же можно заметить, что оба направляющих соединены вместе по низу алюминиевой планкой, делается это чтобы они работали синхронно.

Шаг 11: Придадим лодке форму, добавим боковые панели


Очертания формы/контура делаются на днище, после чего по очертаниям крепится на шурупы деревянная планка. Фанера в 3 мм гнется хорошо, и ложится прямо по нужной нам форме. Далее крепим и клеим 2 см балку вдоль верхнего края боков из фанеры. Добавляем поперечную балку, и устанавливаем рукоятку, которая будет рулем. К ней крепим тросики отходящие от направляющих лопастей установленных ранее. Теперь можно раскрасить лодку, желательно нанести несколько слоев. Мы выбрали белый цвет, с ним даже при длительных прямых лучах солнца корпус практически не греется.

Должен сказать, что плывет она резво, и это радует, но удивило меня рулевое управление. На средних скоростях повороты получаются, а вот на большой скорости лодку сначала заносит в бок, а потом еще по инерции некоторое время она движется назад. Хотя немного приноровившись я понял, что наклоняя тело в сторону поворота и немного сбавляя газ можно заметно снизить этот эффект. Точную скорость сказать сложно, т.к на лодке нет спидометра, но по ощущениям она вполне себе хорошая, и после лодки еще остается приличный след и волны.

В день теста лодку опробовало около 10 человек, самый грузный весил около 140 кг, и она его выдержала, хотя выжать скорость которая доступна нам у него конечно же не вышло. С весом до 100 кг лодка идет резво.

Вступить в клуб

узнавайте о самых интересных инструкциях раз в неделю, делитесь своими и участвуйте в розыгрышах!

Одной из самых серьезных и труднорешаемых проблем для жителей сельской местности являются дороги, особенно в весеннее время в половодье. Идеальной альтернативой любым транспортным средствам в таких условиях становятся вездеходы на воздушной подушке.

Что из себя представляет подобный транспорт?

Судно на представляет собой особое средство передвижения, в основе динамики которого лежит нагнетаемый под днищем поток воздуха, что позволяет ему передвигаться по любой поверхности - как жидкой, так и твердой.

Главным преимуществом такого транспорта является его высокая скорость. Кроме того, его навигационный период не ограничивается условиями окружающей среды - передвигаться на таких вездеходах можно как зимой, так и летом. Еще одним плюсом можно назвать возможность преодоления препятствий не более метра в высоту.

К минусам же относят небольшое количество пассажиров, которых способны перевозить вездеходы на воздушной подушке, и достаточно высокий расход топлива. Объясняется это повышенной мощностью двигателя, направленной на создание потока воздуха под днищем. Находящиеся в подушке мелкие частички могут стать причиной появления статического электричества.

Преимущества и недостатки вездеходов

Точно сказать, с чего стоит начинать выбор такой модели судна, достаточно сложно, поскольку все зависит от личных предпочтений будущего владельца и его планов на приобретаемый транспорт. Среди огромного количества характеристик и параметров у вездеходов на воздушной подушке имеются свои преимущества и недостатки, о многих из которых знают либо профессионалы, либо производители, но не обычные пользователи.

Одним из минусов таких судов является их нередкое упрямство: при температуре в -18 градусов они могут отказаться заводиться. Причиной этому становится конденсат в силовой установке. С целью повышения износостойкости и прочности вездеходы на воздушной подушке экономкласса имеют стальные вставки в днище, чего нет у их дорогостоящих аналогов. Достаточно мощный двигатель может не потянуть подъем транспорта на достаточно небольшой берег с уклоном в пару-тройку градусов.

Подобные нюансы обнаруживаются только во время эксплуатации вездехода. Чтобы избежать разочарования в транспорте, перед его покупкой желательно посоветоваться со специалистами и просмотреть всю доступную информацию.

Разновидности вездеходов на воздушной подушке

  • Младшие суда. Идеальный вариант для активного отдыха либо рыбалки на небольших водоемах. В большинстве случаев приобретают такие вездеходы те, кто живет достаточно далеко от цивилизации и до места их проживания добраться можно разве что только на вертолете. Передвижение небольших судов во многом походит на однако последние не способны на боковое скольжение на скорости порядка 40-50 км/ч.
  • Крупные суда. Такой транспорт можно брать уже на серьезную охоту или рыбалку. Грузоподъемность вездехода составляет от 500 до 2000 килограмм, вместимость - 6-12 пассажирских мест. Крупные суда практически полностью игнорируют бортовую волну, что позволяет использовать их даже на море. Приобрести такие вездеходы на воздушной подушке в нашей стране можно - на рынках реализуются транспорт как отечественного, так и иностранного производства.

Принцип работы

Функционирование воздушной подушки достаточно простое и во многом основывается на курс физики, знакомый со школьных времен. Принцип работы - поднятие катера над поверхностью земли и нивелирование силы трения. Данный процесс носит название «выход на подушку» и представляет собой временную характеристику. Для малых суден он занимает порядка 10-20 секунд, крупным требуется порядка полминуты. Промышленные вездеходы нагнетают воздух на протяжении нескольких минут, дабы увеличить давление до нужного уровня. После достижения необходимой отметки можно начинать движение.

На небольших судах, способных перевозить от 2 до 4 пассажиров, воздух в подушку нагнетается при помощи банальных воздухозаборников от тягового двигателя. Езда начинается практически сразу же после набора давления, что не всегда удобно, поскольку задняя передача у вездеходов младшего и среднего класса отсутствует. На более крупных вездеходах на 6-12 человек данный недостаток компенсируется вторым двигателем, контролирующим только давление воздуха в подушке.

на воздушной подушке

Сегодня можно встретить многих народных умельцев, которые самостоятельно создают подобную технику. Вездеход на воздушной подушке собирается на основе другого транспорта - к примеру, мотоцикла «Днепр». На двигатель устанавливается винт, нагнетающий в рабочем режиме воздух под днище, укрытое манжетой из кожзаменителя, устойчивого к воздействию отрицательных температур. Тот же мотор осуществляет и движение судна вперед.

Подобный вездеход на воздушной подушке своими руками создается с неплохими техническими характеристиками - к примеру, скорость его передвижения составляет порядка 70 км/ч. По сути, такой транспорт является наиболее выгодным для самостоятельного изготовления, поскольку не требует создания сложных чертежей и ходовой части, отличаясь при этом максимальным уровнем проходимости.

Вездеходы на воздушной подушке «Арктика»

Одной из разработок российских ученых из Омска является амфибийная грузовая платформа под названием «Арктика», которая была поставлена на вооружение армии РФ.

Амфибийное отечественное судно обладает следующими преимуществами:

  • Полная вездеходность - транспорт проходит по поверхности любого рельефа.
  • Может эксплуатироваться в любую погоду и любое время года.
  • Большая грузоподъемность и внушительный запас хода.
  • Безопасность и надежность, обеспеченная особенностями конструкции.
  • По сравнению с другими видами транспорта отличается экономичностью.
  • Экологически безопасна для окружающей среды, что подтверждено соответствующими сертификатами.

«Арктика» представляет собой судно на воздушной подушке, способное передвигаться по поверхности как воды, так и суши. Основным ее отличием от аналогичного транспорта, способного только временно находиться на земле, является возможность эксплуатации как на болотистых, заснеженных и обледенелых участках, так и на различных водоемах.

Постройке транспортного средства, которое позволяло бы передвигаться как по суше, так и по воде, предшествовало знакомство с историей открытия и создания оригинальных амфибий-аппаратов на воздушной подушке (АВП), изучение принципиального их устройства, сравнение различных конструкций и схем.

С этой целью я посетил немало интернетовских сайтов энтузиастов и создателей АВП (в том числе и зарубежных), познакомился с некоторыми из них очно. В конце концов, за прототип задуманного катера () взял английский «Ховеркрафт» («парящее судно»-так в Великобритании называют АВП), построенный и испытанный тамошними энтузиастами.

Наши наиболее интересные отечественные машины этого типа большей частью создавались для силовых ведомств, а в последние годы-для коммерческих целей, имели большие габариты, и потому мало подходили для любительского изготовления.

Мой аппарат на воздушной подушке (я его называю «Аэроджип»)-трехместный: пилот и пассажиры располагаются по Т-образной схеме, как на трицикле: пилот впереди посередине, а пассажиры позади рядом, один около другого.

Машина одномоторная, с разделяющимся воздушным потоком, для чего в его кольцевом канале немного ниже его центра установлена специальная панель. Катер-АВП состоит из трех основных частей: винтомоторной установки с трансмиссией, стеклопластикового корпуса и «юбки» - гибкого ограждения нижней части корпуса-так сказать, «наволочки» воздушной подушки. Корпус «Аэроджипа».

Он двойной: стеклопластиковый, состоит из внутренней и наружной оболочек. Наружная оболочка имеет довольно простую конфигурацию-это всего лишь наклонные (около 50° к горизонтали) борта без днища-плоские почти по всей ширине и слегка выгнутые в верхней ей части. Носовая часть-скругленная, а задняя имеет вид наклонного транца.

В верхней части по периметру наружной оболочки вырезаны продолговатые отверстия-пазы, а внизу снаружи закреплен в рым-болтах охватывающий оболочку трос для крепления к нему нижних частей сегментов.

Внутренняя оболочка по конфигурации посложнее, чем наружная, поскольку она имеет практически все элементы маломерного судна (скажем, шлюпки или лодки): борта, днище, выгнутые планшири, небольшую палубу в носу (нет только верхней части транца в корме),-при этом выполненные, как одна деталь.

К тому же по середине кокпита вдоль него к днищу приклеен еще отдельно отформованный туннель с банкой под сиденье водителя, В нем размещаются топливный бак и аккумулятор, а также проложен трос «газа» и трос управления рулями. В кормовой части внутренней оболочки устроен своеобразный ют, приподнятый и открытый спереди.

Он служит основанием кольцевого канала для воздушною винта, а его палуба-перемычка-разделителем воздушного потока, часть которого (поддерживающий поток) направляется в отверстие шахты, а другая часть-для создания пропульсивной силы тяги.

Все элементы корпуса: внутренняя и наружная оболочки, туннель и кольцевой канал-выклеивались по матрицам из стекломата толщиной около 2 мм на полиэфирной смоле. Конечно, эти смолы уступают винилэфирным и эпоксидным по адгезии, уровню фильтрации, усадке, а также выделению вредных веществ при высыхании, но имеют неоспоримое преимущество в цене-они значительно дешевле, что немаловажно.

Для тех, кто намеревается использовать такие смолы, напомню, что помещение, где проводятся работы, должно иметь хорошую вентиляцию и температуру не менее 22°С. Матрицы изготавливались заранее по мастер-модели из таких же стекломатов на той же полиэфирной смоле, только толщина их стенок была побольше и составляла 7-8 мм (у оболочек корпуса-около 4 мм).

Перед выклей-кой элементов с рабочей поверхности матрицы были тщательно убраны все шероховатости и задиры, и она трижды покрывалась разбавленным в скипидаре воском и полировалась. После этого на поверхность распылителем (или валиком) был нанесен тонкий слой (до 0,5 мм) гелькоута (цветного лака) выбранного желтого цвета.

После его высыхания начался процесс выклейки оболочки по следующей технологии. Вначале с помощью валика восковая поверхность матрицы и сторона стекломата с более мелкими порами промазываются смолой, и затем мат укладывается на матрицу и прикатывается до полного удаления воздуха из-под слоя (при необходимости можно сделать и небольшую прорезь в мате).

Таким же образом укладываются и последующие слои стекломатов до требуемой толщины (4-5 мм), с установкой, где необходимо, закладных деталей (металлических и деревянных). Излишние лоскуты по краям обрезаются при выклейке «помокрому». Рекомендуется для изготовления бортов корпуса использовать 2-3 слоя стекломата, а днища-до 4 слоев.

При этом следует проклеить дополнительно еще все углы, а также места вворачивания крепежных деталей. После отвердения смолы оболочка легко снимается с матрицы и обрабатывается: обтачиваются края, вырезаются пазы, сверлятся отверстия. Для обеспечения непотопляемости «Аэроджипа» к внутренней оболочке приклеивают куски пенопласта (например, мебельного), оставляя свободными лишь каналы для прохода воздуха по всему периметру.

Куски пенопласта склеиваются между собой смолой, а к внутренней оболочке прикрепляются полосками стекломата, тоже смазанными смолой. После изготовления по отдельности наружной и внутренней оболочек они состыковываются, скрепляются струбцинами и саморезами, а затем соединяются (склеиваются) по периметру полосками промазанного полиэфирной смолой того же стекломата шириной 40-50 мм, из которого были изготовлены сами оболочки.

После этого корпус оставляют до полной полимеризации смолы. Через сутки к верхнему стыку оболочек по периметру прикрепляют вытяжными заклепками дюралюминиевую полосу сечением 30x2 мм, установив ее вертикально (на ней фиксируются язычки сегментов). К нижней части дна приклеивают деревянные полозья размерами 1500x90x20 мм (длина х ширина х высота) на расстоянии 160 мм от края.

Сверху на полозья наклеивается один слой стекломата. Точно так же, только изнутри оболочки, в кормовой части кокпита, устраивается основание из деревянной плиты под двигатель. Стоит отметить, что по такой же технологии, по которой изготавливались наружная и внутренняя оболочки, выклеивались и более мелкие элементы: внутренняя и наружная оболочки диффузора, рули поворота, бензобак, кожух двигателя, ветроотбойник, тоннель и сиденье водителя.

Тем же, кто только начинает работать со стеклопластиком, рекомендую подготавливать изготовление катера именно с этих мелких элементов. Полная масса стеклопластикового корпуса вместе с диффузором и рулями направления-около 80 кг.

Конечно, изготовление такого корпуса можно поручить и специалистам-фирмам, производящим стеклопластиковые лодки и катера. Благо и в России их немало, да и расходы будут соизмеримы. Однако в процессе самостоятельного изготовления удастся получить необходимые опыт и возможность в дальнейшем самому моделировать и создавать различные элементы и конструкции из стеклопластика. Винтомоторная установка.

Она включает в себя двигатель, воздушный винт и трансмиссию, передающую от первого ко второму крутящий момент. Двигатель использован BRIGGS & STATTION, выпускающийся в Японии по американской лицензии: 2-цилиндровый, V-образный, четырехтактный, мощностью 31 л.с. при 3600 оборотах в минуту. Его гарантированный моторесурс составляет 600 тыс. часов.

Запуск осуществляется электростартером, от аккумулятора, а работа свечей зажигания-от магнето. Двигатель установлен на днище корпуса «Аэроджипа», а ось ступицы пропеллера закреплена с обоих концов на кронштейнах по центру диффузора, приподнятого над корпусом. Передача крутящего момента с выходного вала двигателя на ступицу осуществляется зубчатым ремнем. Ведомый и ведущий шкивы, как и ремень,-зубчатые.

Хотя масса двигателя не столь уж велика (около 56 кг), но расположение его на днище значительно понижает центр тяжести катера, что положительно сказывается на устойчивости и маневренности машины, особенно такой - «воздухоплавающей».

Выхлоп отработавших газов выведен в нижний воздушный поток. Вместо установленного японского можно использовать и подходящие отечественные двигатели,-например, от снегоходов «Буран», «Рысь» и другие. Кстати, для одно- или двухместного АВП вполне подойдут двигатели мощностью поменьше-около 22 л. с.

Воздушный винт-шестилопастный, с фиксированным шагом (устанавливаемым на суше углом атаки) лопастей. К неотъемлемой части винтомоторной установки следует отнести и кольцевой канал воздушного винта, хотя его основание (нижний сектор) выполнено заодно с внутренней оболочкой корпуса.

Кольцевой канал, как и корпус-тоже составной, склеен из наружной и внутренней обечаек. Как раз в том месте, где нижний сектор его стыкуется с верхним, устроена стеклопластиковая разделительная панель: она разделяет воздушный поток, создаваемый пропеллером (а стенки нижнего сектора, наоборот, соединяет по хорде).

Двигатель, расположенный у транца в кокпите (за спинкой сиденья пассажиров), закрыт сверху стеклопластиковым капотом, а воздушный винт, кроме диффузора,-еще и проволочной решеткой спереди. Мягкое эластичное ограждение «Аэроджипа» (юбка) состоит из отдельных, но одинаковых сегментов, выкроенных и сшитых из плотной легкой ткани.

Желательно, чтобы ткань была водоотталкивающей, не твердела на морозе и не пропускала воздух. Я использовал материал Vinyplan финского производства, но вполне подойдет отечественная ткань типа перкаль. Выкройка сегмента несложная, и сшить его можно даже вручную. Крепится каждый сегмент к корпусу следующим образом.

Язычок накидывается на бортовую вертикальную планку, с нахлестом в 1,5 см; на него-язычок соседнего сегмента, и оба они в месте нахлеста закрепляются на планке специальным зажимом типа «крокодильчик», только без зубьев. И так по всему периметру «Аэроджипа». Для надежности можно еще поставить зажим и по середине язычка.

Два же нижних угла сегмента с помощью капроновых хомутиков подвешиваются свободно на тросе, обхватывающем нижнюю часть наружной оболочки корпуса. Такая составная конструкция юбки позволяет без проблем заменять вышедший из строя сегмент, на что потребуется 5-10 минут. К месту будет сказать, что конструкция оказывается работоспособной при выходе из строя до 7% сегментов. Всего же их размещается на юбке до 60 штук.

Принцип движения «Аэроджипа» следующий. После запуска двигателя и его работы на холостом ходу аппарат остается на месте. При увеличении числа оборотов воздушный винт начинает гнать более мощный поток воздуха. Часть его (большая) создает пропульсивную силу и обеспечивает катеру движение вперед.

Другая же часть потока уходит под разделительную панель в бортовые воздуховоды корпуса (свободное пространство между оболочками до самой носовой части), и далее через отверстия-пазы в наружной оболочке равномерно поступает в сегменты.

Этот поток одновременно с началом движения создает воздушную подушку под днищем, приподнимая аппарат над подстилающей поверхностью (будь то грунт, снег или вода) на несколько сантиметров. Поворот «Аэроджипа» осуществляется двумя рулями направления, отклоняющими «поступательный» поток воздуха в сторону.

Управление рулями осуществляется от двухплечего рычага рулевой колонки мотоциклетного типа, через боуденовский трос, идущий по правому борту между оболочками к одному из рулей. Другой руль соединен с первым жесткой тягой. На левой рукоятке двуплечего рычага закреплена и манетка управления дроссельной заслонкой карбюратора (аналог ручки газа).

Для эксплуатации катера на воздушной подушке его необходимо зарегистрировать в местной государственной инспекции по маломерным судам (ГИМС) и получить судовой билет. Для получения же удостоверения на право управления катером надо пройти еще и курс обучения по управлению маломерным судном. Однако и на этих курсах пока еще далеко не везде есть инструкторы по пилотированию аппаратов на воздушной подушке.

Поэтому каждому пилоту приходится осваивать управление АВП самостоятельно, буквально по крупицам набирая соответствующий опыт.

Катер на воздушной подушке "Аэроджип": 1 -сегмент (плотная ткань); 2-швартовная утка (3 шт.); 3-ветровой козырек; 4-бортовая планка крепления сегментов; 5-ручка (2 шт.); 6-ограждение воздушного винта; 7-кольцевой канал; 8-руль направления (2 шт.); 9-рычаг управления рулями; 10-лючок доступа к бензобаку и аккумулятору; 11-сиденье пилота; 12-пассажирский диван; 13-кожух двигателя; 14-двигатель; 15-наружная оболочка; 16-наполнитель (пенопласт); 17-внутренняя оболочка; 18-разделительная панель; 19-воздушный винт; 20-втулка воздушного винта; 21-приводной зубчатый ремень; 22-узел для крепления нижней части сегмента


Теоретический чертеж корпуса: 1 -внутренняя оболочка; 2-наружная оболочка


Схема трансмиссии винтомоторной установки: 1 -выходной вал двигателя; 2-ведущий зубчатый шкив; 3 -зубчатый ремень; 4-ведомый зубчатый шкив; 5 -гайка; 6-дистанционные втулки; 7-подшипник; 8-ось; 9-ступица; 10-подшипник; 11-дистанционная втулка; 12-опора; 13-воздушный винт


Рулевая колонка: 1-рукоятка; 2-двуплечий рычаг; 3-стойка; 4-сошка (см. фото)

Схема рулевого управления: 1-рулевая колонка; 2-трос Боудена, 3-узел крепления оплетки к корпусу (2 шт.); 4-подшипник (5 шт.); 5-рулевая панель (2 шт.); 6-двуплечий рычаг-кронштейн (2 шт.); 7-соединительная тяга рулевых панелей (см. фото)


Сегмент гибкого ограждения: 1 -стенки; 2-крышка с язычком

Высокие скоростные характеристики и амфибийные возможности аппаратов, передвигающихся на воздушной подушке (АВП), а также сравнительная простота их конструкций привлекают внимание конструкторов-любителей. В последние годы появилось немало небольших АВП, построенных самостоятельно и используемых для спорта, туризма или хозяйственных разъездов.

В некоторых странах, например в Великобритании, США и Канаде, налажено серийное промышленное производство малых АВП; предлагаются готовые аппараты либо наборы деталей для самостоятельной сборки.

Типичный спортивный АВП компактен, прост по конструкции, имеет независимые друг от друга системы подъема и движения, легко передвигается как над землей, так и над водой. Это преимущественно одноместные аппараты с карбюраторными мотоциклетными или легкими автомобильными двигателями воздушного охлаждения.

Туристские АВП более сложны по конструкции. Обычно они двух- или четырехместные, предназначены для сравнительно длительных путешествий и соответственно имеют багажники, топливные баки большой емкости, приспособления для защиты пассажиров от непогоды.


Для хозяйственных целей используются небольшие платформы, приспособленные для транспортировки преимущественно сельскохозяйственных грузов по пересеченной и болотистой местности.

Основные характеристики

Любительские АВП характеризуются главными размерениями, массой, диаметром нагнетателя и воздушного винта, расстоянием от центра массы АВП до центра его аэродинамического сопротивления.

В табл. 1 сопоставляются важнейшие технические данные наиболее популярных английских любительских АВП. Таблица позволяет ориентироваться в широком диапазоне значений отдельных параметров и использовать их для сравнительного анализа с собственными проектами.


Самые легкие АВП имеют массу около 100 кг, самые тяжелые - более 1000 кг. Естественно, чем меньше масса аппарата, тем меньшая требуется мощность двигателя для его движения или тем более высокие эксплуатационные качества могут быть достигнуты при той же потребляемой мощности.

Ниже приводятся наиболее характерные данные о массе отдельных узлов, составляющих общую массу любительского АВП: карбюраторный двигатель с воздушным охлаждением - 20-70 кг; осевой нагнетатель. (насос) - 15 кг, центробежный насос - 20 кг; воздушный винт - 6-8 кг; рама мотора - 5-8 кг; трансмиссия - 5-8 кг; кольцо-насадка воздушного винта - 3-5 кг; органы управления - 5-7 кг; корпус - 50-80 кг; топливные баки и бензопроводы - 5-8 кг; сиденье - 5 кг.

Общая грузоподъемность определяется расчетом в зависимости от числа пассажиров, заданного количества перевозимого груза, запасов топлива и масла, необходимых для обеспечения требуемой дальности плавания.

Параллельно с расчетом массы АВП требуется точный расчет положения центра тяжести, поскольку от этого зависят ходовые качества, остойчивость и управляемость аппарата. Главным условием является то, чтобы равнодействующая сил поддержания воздушной подушки проходила через общий центр тяжести (ЦТ) аппарата. При этом необходимо учитывать, что все массы, изменяющие свою величину в процессе эксплуатации (такие, например, как горючее, пассажиры, грузы), должны быть размещены вблизи от ЦТ аппарата, чтобы не вызывать его перемещения.

Центр тяжести аппарата определяется расчетом по чертежу боковой проекции аппарата, где наносят центры тяжести отдельных агрегатов, узлов конструкции пассажиров и грузов (рис. 1). Зная массы G i и координаты (относительно осей координат) x i и y i их центров тяжести, можно определить положение ЦТ всего аппарата по формулам:


Проектируемый любительский АВП должен соответствовать определенным эксплуатационным, конструктивным и технологическим требованиям. Основой для создания проекта и конструкции нового типа АВП являются, прежде всего, исходные данные и технические условия, которые определяют тип аппарата, его назначение, полную массу, грузоподъемность, габариты, тип главной энергетической установки, ходовые характеристики и специфические особенности.

От туристских и спортивных АВП, как, впрочем, и от других типов любительских АВП, требуется простота изготовления, использование в конструкции легкодоступных материалов и агрегатов, а также полная безопасность эксплуатации.

Говоря о ходовых характеристиках, подразумевают высоту парения АВП и связанную с этим качеством способность преодоления препятствий, максимальную скорость и приемистость, а также длину тормозного пути, остойчивость, управляемость, дальность хода.

В конструкции АВП принципиальную роль играет форма корпуса (рис. 2), которая является компромиссом между:

  • а) круглыми в плане обводами, которые характеризуются наилучшими параметрами воздушной подушки в момент зависания на месте;
  • б) каплевидной формой обводов, которая предпочтительнее с точки зрения снижения аэродинамического сопротивления при движении;
  • в) заостренной в носу ("клювообразной") формой корпуса, оптимальной с гидродинамической точки зрения во время движения по взволнованной поверхности воды;
  • г) формой, оптимальной для эксплуатационных целей.
Соотношения между длиной и шириной корпусов любительских АВП варьируются в пределах L:В=1,5÷2,0.

Используя статистические данные по существующим конструкциям, которые соответствуют вновь создаваемому типу АВП, конструктор должен установить:

  • массу аппарата G, кг;
  • площадь воздушной подушки S, м 2 ;
  • длину, ширину и очертания корпуса в плане;
  • мощность двигателя подъемной системы N в.п. , кВт;
  • мощность тягового двигателя N дв, КВТ.
Эти данные позволяют вычислить удельные показатели:
  • давление в воздушной подушке P в.п. = G:S;
  • удельную мощность подъемной системы q в.п. = G:N в.п. .
  • удельную мощность тягового двигателя q дв = G:N дв, а также начать разработку конфигурации АВП.

Принцип создания воздушной подушки, нагнетатели

Наиболее часто при постройке любительских АВП используются две схемы образования воздушной подушки: камерная и сопловая.

В камерной схеме, используемой чаще всего в простых конструкциях, объемный расход воздуха, проходящего через воздушный тракт аппарата, равен объемному расходу воздуха нагнетателя


где:
F - площадь периметра зазора между опорной поверхностью и нижней кромкой корпуса аппарата, через который воздух выходит из-под аппарата, м 2 ; ее можно определить как произведение периметра ограждения воздушной подушки Р на величину зазора h e между ограждением и опорной поверхностью; обычно h 2 = 0,7÷0,8h, где h - высота парения аппарата, м;

υ - скорость истечения воздуха из-под аппарата; с достаточной точностью ее можно рассчитать по формуле:


где Р в.п. - давление в воздушной подушке, Па; g - ускорение свободного падения, м/с 2 ; у - плотность воздуха, кг/м 3 .

Мощность, необходимая для создания воздушной подушки в камерной схеме, определяется по приближенной формуле:


где Р в.п. - давление за нагнетателем (в ресивере), Па; η н - коэффициент полезного действия нагнетателя.

Давление в воздушной подушке и расход воздуха - основные параметры воздушной подушки. Их величины зависят прежде всего от размеров аппарата, т. е. от массы и несущей поверхности, от высоты парения, скорости движения, способа создания воздушной подушки и сопротивления в воздушном тракте.

Наиболее экономичные аппараты на воздушной подушке - это АВП больших размеров или больших несущих поверхностей, при которых минимальное давление в подушке позволяет получить достаточно большую грузоподъемность. Однако самостоятельная постройка аппарата больших размеров связана с трудностями транспортировки и хранения, а также ограничивается финансовыми возможностями конструктора-любителя. При уменьшении размеров АВП требуется значительное повышение давления в воздушной подушке и, соответственно, увеличение потребляемой мощности.

От давления в воздушной подушке и скорости истечения воздуха из-под аппарата зависят, в свою очередь, негативные явления: забрызгивание во время движения над водой и запыление - при движении над песчаной поверхностью либо сыпучим снегом.

По-видимому, удачная конструкция АВП является в известном смысле компромиссом между описанными выше противоречивыми зависимостями.

Чтобы снизить затраты мощности на прохождение воздуха через воздушный канал от нагнетателя в полость подушки, он должен обладать минимальным аэродинамическим сопротивлением (рис. 3). Потерн мощности, неизбежные при прохождении воздуха по каналам воздушного тракта, бывают двоякого рода: потерн на движение воздуха в прямых каналах постоянного сечения и местные потери - при расширении и изгибах каналов.

В воздушном тракте небольших любительских АВП потери на движение воздушных потоков вдоль прямых каналов постоянного сечения относительно невелики вследствие незначительной протяженности этих каналов, а также тщательности обработки их поверхности. Эти потери можно оценить по формуле:


где: λ - коэффициент потерь давления на длину канала, рассчитанный по графику, представленному на рис. 4, в зависимости от числа Рейнольдса Re=(υ·d):v, υ - скорость прохождения воздуха в канале, м/с; l - длина канала, м; d - диаметр канала, м (если канал имеет отличное от круглого сечение, то d - диаметр эквивалентного по площади поперечного сечения цилиндрического канала); v - коэффициент кинематической вязкости воздуха, м 2 /с.

Местные потери мощности, связанные с сильным увеличением либо уменьшением сечения каналов и значительными изменениями направления потока воздуха, а также потери на всасывание воздуха в нагнетатель, сопла и к рулям составляют основные затраты мощности нагнетателя.


Здесь ζ м - коэффициент местных потерь, зависящий от числа Рейнольдса, которое определяется геометрическими параметрами источника потерь и скоростью прохождения воздуха (рис. 5-8).

Нагнетатель в АВП должен создавать определенное давление воздуха в воздушной подушке с учетом затрат мощности на преодоление сопротивления каналов воздушному потоку. В некоторых случаях часть воздушного потока используется и для образования горизонтальной тяги аппарата с целью обеспечения движения.

Полное давление, создаваемое нагнетателем, складывается из статического и динамического давлений:


В зависимости от типа АВП, площади воздушной подушки, высоты подъема аппарата и величины потерь составляющие компоненты p sυ и p dυ варьируются. Это определяет выбор типа и производительность нагнетателей.

В камерной схеме воздушной подушки статическое давление p sυ , необходимое для создания подъемной силы, можно приравнять к статическому давлению за нагнетателем, мощность которого определяется по формуле, приведенной выше.

При расчете потребной мощности нагнетателя АВП с гибким ограждением воздушной подушки (сопловая схема) статическое давление за нагнетателем можно рассчитать по приближенной формуле:


где: Р в.п. - давление в воздушной подушке под днищем аппарата, кг/м 2 ; kp - коэффициент перепада давления между воздушной подушкой и каналами (ресивером), равный k p =Р р:Р в.п. (Р р - давление в воздушных каналах за нагнетателем). Величина k p колеблется в пределах 1,25÷1,5.

Объемный расход воздуха нагнетателя можно рассчитать по формуле:


Регулировка производительности (расхода) нагнетателей АВП осуществляется чаще всего - путем изменения частоты вращения либо (реже) путем дросселирования потока воздуха в каналах при помощи находящихся в них поворотных заслонок.

После того как рассчитана необходимая мощность нагнетателя, необходимо найти для него двигатель; чаще всего любители используют мотоциклетные двигатели, если требуется мощность до 22 кВт. При этом в качестве расчетной мощности принимается 0,7-0,8 максимальной мощности двигателя, указываемой в паспорте мотоцикла. Необходимо предусмотреть интенсивное охлаждение двигателя и тщательную очистку воздуха, поступающего через карбюратор. Важно также получить установку с минимальной массой, которая складывается из массы двигателя, передачи между нагнетателем и двигателем, а также массы самого нагнетателя.

В зависимости от типа АВП применяются двигатели с рабочим объемом от 50 до 750 см 3 .

В любительских АВП применяются в равной степени как осевые нагнетатели, так и центробежные. Осевые нагнетатели предназначаются для небольших я несложных конструкций, центробежные - для АВП со значительным давлением в воздушной подушке.

Осевые нагнетатели, как правило, имеют четыре лопасти или больше (рис. 9). Их обычно изготовляют из дерева (четырехлопастные) или металла (нагнетатели с большим количеством лопастей). Если они из алюминиевых сплавов, то роторы можно отлить, а также применить сварку; можно сделать их сварной конструкции из стального листа. Диапазон давления, создаваемого осевыми четырехлопастными нагнетателями, составляет 600-800 Па (около 1000 Па с большим числом лопастей); КПД этих нагнетателей достигает 90%.

Центробежные нагнетатели делают сварной конструкции из металла или формуют из стеклопластика. Лопасти изготовляют гнутыми из тонкого листа либо с профилированным поперечным сечением. Центробежные нагнетатели создают давление до 3000 Па, а КПД их достигает 83%.

Выбор тягового комплекса

Движители, создающие горизонтальную тягу, можно разделить в основном на три типа: воздушный, водяной и колесный (рис. 10).

Под воздушным движителем понимается воздушный винт авиационного типа в кольце-насадке или без него, осевой или центробежный нагнетатель, а также воздушно-реактивный движитель. В простейших конструкциях горизонтальную тягу иногда можно создать с помощью наклона АВП и использования появляющейся при этом горизонтальной составляющей силы воздушного потока, истекающего из воздушной подушки. Воздушный движитель удобен для амфибийных аппаратов, не имеющих контакта с опорной поверхностью.

Если речь идет об АВП, передвигающихся только над поверхностью воды, то можно применить гребной винт или водометный движитель. По сравнению с воздушными эти движители позволяют получить значительно большую тягу на каждый киловатт затраченной мощности.

Ориентировочное значение тяги, развиваемой различными движителями, можно оценить по данным, приведенным на рис. 11.

При выборе элементов воздушного винта следует учитывать все виды сопротивления, возникающие в процессе движения АВП. Аэродинамическое сопротивление рассчитывается по формуле


Сопротивление воды, обусловленное образованием волн при движении АВП по воде, можно вычислить по формуле


где:

V - скорость движения АВП, м/с; G - масса АВП, кг; L - длина воздушной подушки, м; ρ - плотность воды, кг·с 2 /м 4 (при температуре морской воды +4°С равна 104, речной - 102);

С х - коэффициент аэродинамического сопротивления, зависящий от формы аппарата; определяется продувкой моделей АВП в аэродинамических трубах. Приближенно можно принять C x =0,3÷0,5;

S - площадь поперечного сечения АВП - его проекции на плоскость, перпендикулярную направлению движения, м 2 ;

Е - коэффициент волнового сопротивления, зависящий от скорости АВП (числа Фруда Fr=V:√ g·L) и соотношения размерений воздушной подушки L:B (рис. 12).

В качестве примера в табл. 2 приведен расчет сопротивления в зависимости от скорости движения для аппарата длиной L=2,83 м и В=1,41 м.


Зная сопротивление движению аппарата, можно вычислить мощность двигателя, необходимую для обеспечения его движения с заданной скоростью (в данном примере 120 км/ч), принимая КПД воздушного винта η р равным 0,6, а КПД передачи от двигателя на винт η п =0,9:
В качестве воздушного движителя для любительских АВП чаще всего применяется двухлопастной винт (рис. 13) .

Заготовка для такого винта может быть склеена из фанерных, ясеневых или сосновых пластин. Кромка, а также концы лопастей, которые подвергаются механическому воздействию твердых частиц или песка, всасываемых вместе с потоком воздуха, защищаются оковкой из листовой латуни.

Используются также и четырехлопастные винты. Количество лопастей зависит от условий эксплуатации и назначения винта - для развития.большой скорости или создания значительной силы тяги в момент старта. Достаточную силу тяги может обеспечить и двухлопастной винт с широкими лопастями. Сила тяги, как правило, повышается, если воздушный винт работает в профилированном кольце-насадке.

Готовый винт перед креплением на валу двигателя должен быть отбалансирован, главным образом - статически. В противном случае при его вращении возникают вибрации, которые могут привести к повреждению всего аппарата. Балансировка с точностью до 1 г для любителей вполне достаточна. Кроме балансировки винта проверяют его биение относительно оси вращения.

Общая компоновка

Одной из основных задач конструктора является соединение всех агрегатов в одно функциональное целое. Проектируя аппарат, конструктор обязан в пределах корпуса предусмотреть место для экипажа, размещения агрегатов подъемной и движительной систем. Важно при этом использовать в качестве прототипа конструкции уже известных АВП. На рис. 14 и 15 представлены конструктивные схемы двух типовых АВП любительской постройки.

В большинстве АВП корпус представляет собой несущий элемент, единую конструкцию. На нем находятся агрегаты главной энергетической установки, воздушные каналы, приборы управления и кабина водителя. Кабины водителей размешаются в носовой или центральной части аппарата в зависимости от того, где находится нагнетатель - за кабиной или перед нею. Если АВП - многоместный, кабина находится обычно в средней части аппарата, что позволяет эксплуатировать его с разным количеством людей на борту без изменения центровки.

В небольших любительских АВП место водителя чаще всего открытое, защищенное спереди ветровым стеклом. В аппаратах более сложной конструкции (туристского типа) кабины закрыты куполом из прозрачного пластика. Для размещения необходимого снаряжения и запасов используются объемы, имеющиеся по бортам кабины и под креслами.

При воздушных двигателях управление АВП осуществляется с помощью либо рулей, размещенных в потоке воздуха за винтом, либо направляющих устройств, укрепленных в потоке воздуха, истекающего из воздушно-реактивного движителя. Управление аппаратом с места водителя может быть авиационного типа - с помощью рукояток или рычагов руля управления, либо как в автомобиле - рулевым колесом и педалями.

В любительских АВП применяются два основных вида топливных систем; с подачей топлива самотеком и с бензонасосом автомобильного или авиационного типа. Детали топливной системы, такие, как клапаны, фильтры, масляная система вместе с бачками (если применяется четырехтактный двигатель), маслорадиаторы, фильтры, система водяного охлаждения (если это двигатель с водяным охлаждением), - подбираются обычно из существующих авиационных или автомобильных детален.

Выхлопные газы от двигателя всегда выводятся в кормовую часть аппарата и никогда - в подушку. Чтобы уменьшить шум, возникающий при эксплуатации АВП, особенно вблизи населенных пунктов, используются глушители автомобильного типа.

В простейших конструкциях нижняя часть корпуса служит в качестве шасси. Роль шасси могут выполнять деревянные полозья (или полоз), принимающие на себя нагрузку при соприкосновении с поверхностью. В туристских АВП, отличающихся большей массой, чем спортивные, монтируются колесные шасси, которые облегчают перемещение АВП во время стоянок. Обычно используются два колеса, установленных по бортам либо вдоль продольной оси АВП. Колеса имеют контакт с поверхностью лишь после прекращения работы подъемной системы, когда АВП касается поверхности.

Материалы и технология изготовления

Для изготовления АВП деревянной конструкции применяют высококачественные сосновые пиломатериалы, подобные используемым в авиастроении, а также березовую фанеру, ясеневую, буковую и липовую древесину. Для склеивания дерева применяют водостойкий клей с высокими физико-механическими качествами.

Для гибких ограждений преимущественно используют технические ткани; они должны быть исключительно прочными, устойчивыми к атмосферному влиянию и влажности, а также к трению, В Польше чаще всего используют огнестойкую ткань, покрытую пластиковидным полихлорвинилом.

Важно выполнить правильно раскрой и, обеспечить тщательное соединение полотнищ между собой, а также крепление их к аппарату. Для крепления оболочки гибкого ограждения к корпусу применяют металлические планки, которые посредством болтов равномерно прижимают ткань к корпусу аппарата.

Конструируя форму гибкого ограждения воздушной подушки, не следует забывать о законе Паскаля, который гласит: давление воздуха распространяется во всех направлениях с одинаковой силой. Поэтому оболочка гибкого ограждения в надутом состоянии должна иметь форму цилиндра или сферы либо их сочетания.

Конструкция и прочность корпуса

На корпус АВП передаются силы от груза, перевозимого аппаратом, вес механизмов силовой установки и т. д., а также действуют нагрузки от внешних сил, ударов днища о волну и от давления в воздушной подушке. Несущая конструкция корпуса любительского АВП чаще всего представляет собой плоский понтон, который поддерживается давлением в воздушной подушке, а в режиме плавания обеспечивает плавучесть корпуса. На корпус действуют сосредоточенные силы, изгибающие и крутящие моменты от двигателей (рис. 16), а также гироскопические моменты от вращающихся частей механизмов, возникающие при маневрировании АВП.

Наибольшее распространение получили два конструктивных типа корпусов любительских АВП (или их комбинации):

  • ферменной конструкции, когда общая прочность корпуса обеспечивается с помощью плоских или пространственных ферм, а обшивка предназначается только для удержания воздуха в воздушном тракте и создания объемов плавучести;
  • с несущей обшивкой, когда общая прочность корпуса обеспечивается наружной обшивкой, работающей совместно с продольным и поперечным набором.
Примером АВП с комбинированной схемой конструкции корпуса является спортивный аппарат "Калибан-3" (рис. 17), построенный любителями Англии и Канады. Центральный понтон, состоящий из продольного и поперечного набора с несущей обшивкой, обеспечивает общую прочность корпуса и плавучесть, а бортовые части образуют воздуховоды (бортовые ресиверы), которые выполнены с легкой обшивкой, закрепленной на поперечном наборе.

Конструкция кабины и ее остекления должна обеспечивать возможность быстрого выхода водителя и пассажиров из кабины, особенно в случае аварии или пожара. Расположение стекол должно обеспечивать водителю хороший обзор: линия наблюдения должна находиться в границах от 15° вниз до 45° вверх от горизонтальной линии; боковой обзор должен быть не менее 90° на каждый борт.

Передача мощности на винт и нагнетатель

Наиболее просты для любительского изготовления клиноременная и цепная передачи. Однако цепная передача используется только для привода воздушных винтов или нагнетателей, оси вращения которых расположены горизонтально, да и то лишь в том случае, если есть возможность подобрать соответствующие мотоциклетные звездочки, так как их изготовление довольно сложно.

В случае клиноременной передачи для обеспечения долговечности ремней диаметры шкивов следует выбирать максимальными, однако при этом окружная скорость ремней не должна превышать 25 м/с .

Конструкция подъемного комплекса и гибкого ограждения

Подъемный комплекс состоит из нагнетательного агрегата, воздушных каналов, ресивера и гибкого ограждения воздушной подушки (в сопловых схемах). Каналы, по которым воздух подается от нагнетателя в гибкое ограждение, должны быть спроектированы с учетом требований аэродинамики и обеспечивать минимальные потери давления.

Гибкие ограждения любительских АВП обычно имеют упрощенную форму и конструкцию. На рис. 18 показаны примеры конструктивных схем гибких ограждений и способ проверки формы гибкого ограждения после его монтажа на корпусе аппарата. Ограждения этого типа обладают хорошей эластичностью, а благодаря закругленной форме не цепляются за неровности опорной поверхности.

Расчет нагнетателей, как осевых, так и центробежных, довольно сложен и может быть выполнен только при использовании специальной литературы.

Рулевое устройство, как правило, состоит из рулевого колеса или педалей, системы рычагов (или тросиковой проводки), соединенных с вертикальным рулем направления, а иногда и с горизонтальным рулем - рулем высоты.

Орган управления может быть сделан в виде автомобильного или мотоциклетного руля. Учитывая, однако, специфику конструкции и эксплуатации АВП как летательного аппарата, чаще используют авиационную конструкцию органов управления в виде рычага или педалей. В простейшем виде (рис. 19) при наклонении рукоятки вбок движение передается посредством закрепленного на трубе рычага к элементам штуртросовой проводки и далее на руль направления. Движения рукоятки вперед и назад, возможные благодаря ее шарнирному закреплению, передаются через толкатель, проходящий внутри трубы, к проводке руля высоты.

При педальном управлении независимо от его схемы необходимо предусматривать возможность перемещения либо сиденья, либо педалей для регулировки в соответствии с индивидуальными особенностями водителя. Рычаги изготовляют чаще всего из дюралюминия, трубы передачи крепятся к корпусу с помощью кронштейнов. Движение рычагов ограничивается проемами вырезов в направляющих, укрепленных на бортах аппарата.

Пример конструкции руля направления в случае размещения его в потоке воздуха, отбрасываемого движителем, показан на рис. 20.

Рули направления могут быть либо полностью поворотными, либо состоять из двух частей - неповоротной (стабилизатора) и поворотной (пера руля) при различных процентных соотношениях хорд этих частей. Профили сечения руля любых типов должны быть симметричными. Стабилизатор руля обычно неподвижно закрепляют на корпусе; главным несущим элементом стабилизатора является лонжерон, к которому подвешивается на шарнирах перо руля. Рули высоты, очень редко встречающиеся в любительских АВП, конструируются по тем же принципам и иногда даже бывают в точности такими же, как и рули направления.

Конструктивные элементы, передающие движение от органов управления к рулям и дроссельным заслонкам двигателей, обычно состоят из рычагов, стержней, тросиков и т. п. С помощью стержней, как правило, передаются усилия в обоих направлениях, тогда как тросики работают только на тягу. Чаще всего на любительских АВП используют комбинированные системы - с тросиками и толкателями.

От редакции

Все более пристальным вниманием любителей водно-моторного спорта и туризма пользуются суда на воздушной подушке. При сравнительно небольших затратах мощности они позволяют достичь высоких скоростей; для них доступны мелеющие и труднопроходимые реки; судно на воздушной подушке может парить и над землей, и надо льдом.

Впервые с вопросами проектирования малых СВП мы знакомили читателей еще в 4 выпуске (1965 г.), поместив статью Ю. А. Будницкого «Парящие суда». В был опубликован краткий очерк развития зарубежных СВП, включающий и описание ряда спортивно-прогулочных современных 1- и 2-местных СВП. С опытом самостоятельной постройки такого аппарата рижанином О. О. Петерсонсом редакция знакомила в . Публикация об этой любительской конструкции вызвала особенно большой интерес у наших читателей. Многие из них захотели построить такую же амфибию и просили указать необходимую литературу.

В этом году издательство «Судостроение» выпускает книгу польского инженера Ежи Беня «Модели и любительские суда на воздушной подушке». В ней вы найдете изложение основ теории образования воздушной подушки и механики движения на ней. Автор приводит расчетные соотношения, которые необходимы при самостоятельном проектировании простейших СВП, знакомит с тенденциями и перспективами развития данного типа судов. В книге приведено много примеров конструкций любительских аппаратов на воздушной подушке (АВП), построенных в Великобритании, Канаде, США, Франции, Польше. Книга адресована широкому кругу любителей самостоятельной постройки судов, судомоделистам, водномоторникам. Текст ее богато иллюстрирован чертежами, рисунками и фотографиями.

В журнале публикуется сокращенный перевод главы из этой книги.

Четыре наиболее популярных зарубежных СВП

Американское СВП «Эйрскэт-240»

Двухместное спортивное СВП с поперечным симметричным расположением мест. Механическая установка - автомоб. дв. «Фольксваген» мощностью 38 кВт, приводящий во вращение осевой четырехлопастной нагнетатель и двухлопастной воздушный винт в кольце. Управление СВП по курсу осуществляется с помощью рычага, связанного с системой рулей, размещенных в потоке за воздушным винтом. Электрооборудование 12 В. Пуск двигателя - электростартерный. Размеры аппарата 4,4x1,98х1,42 м. Площадь воздушной подушки - 7,8 м 2 ; диаметр воздушного винта 1,16 м, полная масса - 463 кг, максимальная скорость на воде 64 км/ч.

Американское СВП фирмы «Скиммерс инкорпорейтед»

Своеобразное одноместное СВП-мотороллер. Конструкция корпуса основана на идее использования автомобильной камеры. Мотор двухцилиндровый мотоциклетный мощностью 4,4 кВт. Размеры аппарата 2,9х1,8х0,9 м. Площадь воздушной подушки - 4,0 м 2 ; полная масса - 181 кг. Максимальная скорость - 29 км/ч.

Английское СВП «Эйр Райдер»

Этот двухместный спортивный аппарат - одни из наиболее популярных У судостронтелей-любителей. Осевой нагнетатель приводится во вращение мотоцикл, дв. рабочим объемом 250 см 3 . Воздушный винт - двухлопастной, деревянный; работает от отдельного мотора мощностью 24 кВт. Электрооборудование напряжением 12 В с авиационным аккумулятором. Пуск двигателей - электростартерный. Аппарат имеет размеры 3,81х1,98х2,23 м; клиренс 0,03 м; подъем 0,077 м; площадь подушки 6,5 м 2 ; масса порожнем 181 кг. Развивает на воде скорость 57 км/ч, на суше - 80 км/ч; преодолевает уклоны до 15°.

В таблице 1. приведены данные одноместной модификации аппарата.

Английское СВП «Ховеркэт»

Легкое туристское судно на пять-шесть человек. Существуют две модификации: «МК-1» и «МК-2». Центробежный нагнетатель диаметром 1,1 м приводится во вращение от автомоб. дв. «Фольксваген» рабочим объемом 1584 см 3 и потребляет мощность 34 кВт при 3600 об/мин.

В модификации «МК-1» движение осуществляется при помощи воздушного винта диаметром 1,98 м, приводимого во вращение вторым таким же двигателем.

В модификации «МК-2» для горизонтальной тяги использован автомоб. дв. «Порше 912» объемом 1582 см 3 и мощностью 67 кВт. Управление аппаратом осуществляется с помощью аэродинамических рулей, помещенных в потоке за воздушным винтом. Электрооборудование напряжением 12 В. Размеры аппарата 8,28х3,93х2,23 м. Площадь воздушной подушки 32 м 2 , полная масса аппарата 2040 кг, скорость передвижения модификации «МК-1» - 47 км/ч, «МК-2» - 55 км/ч.

Примечания

1. Упрощенная методика подбора воздушного винта по известному значению сопротивления, частоте вращения и скорости поступательного движения приведена в .

2. Расчеты клиноременных и цепных передач можно выполнить, пользуясь общепринятыми в отечественном машиностроении нормами.

Прототипом представляемой амфибийной машины стал аппарат на воздушной подушке (АВП) под названием «Аэроджип», публикация о котором была в журнале . Как и предшествующий аппарат, новая машина – одномоторная, одновинтовая с распределённым воздушным потоком. Эта модель тоже трёхместная, с расположением пилота и пассажиров по Т-образной схеме: пилот впереди посередине, а пассажиры – по бокам, сзади. Хотя ничто не мешает и четвёртому пассажиру расположиться за спиной водителя – длины сиденья и мощности винтомоторной установки вполне хватает.

Новая машина, кроме улучшенных технических характеристик, имеет ряд конструктивных особенностей и даже нововведений, повышающих её надёжность в эксплуатации и живучесть – всё-таки амфибия – «птица» водоплавающая. А «птицей» её называю потому, что и над водой, и над землёй передвигается она всё же по воздуху.

Конструктивно новая машина состоит из четырёх основных частей: стеклопластикового корпуса, пневмобаллона, гибкого ограждения (юбки) и винтомоторной установки.

Ведя рассказ о новой машине, неизбежно придётся повторяться – ведь конструкции во многом схожи.

Корпус амфибии идентичен прототипу как по размерам, так и по конструкции – стеклопластиковый, двойной, объёмный, состоит из внутренней и наружной оболочек. Здесь же стоит отметить, что отверстия во внутренней оболочке в новом аппарате расположены теперь не у верхней кромки бортов, а примерно посередине между ней и днищевой кромкой, что обеспечивает более быстрое и стабильное создание воздушной подушки. Сами отверстия теперь не продолговатые, а круглые, диаметром 90 мм. Их около 40 штук и расположены они равномерно по бортам и спереди.

Каждая оболочка выклеивалась в своей матрице (использованы от предыдущей конструкции) из двух-трёх слоёв стеклоткани (а днище – из четырёх слоёв) на полиэфирном связующем. Конечно, эти смолы уступают винил-эфирным и эпоксидным по адгезии, уровню фильтрации, усадке, а также выделению вредных веществ при высыхании, но имеют неоспоримое преимущество в цене – они значительно дешевле, что немаловажно. Для тех, кто намеревается использовать такие смолы, напомню, что помещение, где проводятся работы, должно иметь хорошую вентиляцию и температуру не менее +22°С.

1 – сегмент (комплект 60 шт.); 2 – баллон; 3 – швартовная утка (3 шт.); 4 – ветровой козырёк; 5 – поручень (2 шт.); 6 – сетчатое ограждение воздушного винта; 7 – наружная часть кольцевого канала; 8 – руль направления (2 шт.); 9 – рычаг управления рулями; 10 – лючок в тоннеле для доступа к топливному баку и аккумулятору; 11 – сиденье пилота; 12 – пассажирский диван; 13 – кожух двигателя; 14 – весло (2 шт.); 15 – глушитель; 16 – наполнитель (пенопласт); 17 – внутренняя часть кольцевого канала; 18 – фонарь ходового огня; 19 – воздушный винт; 20 – втулка воздушного винта; 21 – приводной зубчатый ремень; 22 – узел крепления баллона к корпусу; 23 – узел крепления сегмента к корпусу; 24 – двигатель на мотораме; 25 – внутренняя оболочка корпуса; 26 – наполнитель (пенопласт); 27 – наружная оболочка корпуса; 28 – разделительная панель нагнетаемого воздушного потока

Матрицы изготавливались заранее по мастер-модели из таких же стекломатов на той же полиэфирной смоле, только толщина их стенок была побольше и составляла 7 -8 мм (у оболочек корпуса – около 4 мм). Перед выкпейкой элементов с рабочей поверхности матрицы были тщательно убраны все шероховатости и задиры, и она трижды покрывалась разбавленным в скипидаре воском и полировалась. После этого на поверхность распылителем (или валиком) был нанесён тонкий слой (до 0,5 мм) гелькоута (цветного лака) красного цвета.

После его высыхания начался процесс выклейки оболочки по следующей технологии. Вначале с помощью валика восковая поверхность матрицы и одна сторона стекпомата (с более мелкими порами) промазываются смолой, и затем мат укладывается на матрицу и прикатывается до полного удаления воздуха из-под слоя (при необходимости можно сделать и небольшую прорезь в мате). Таким же образом укладываются и последующие слои стекломатов до требуемой толщины (3-4 мм), с установкой, где необходимо, закладных деталей (металлических и деревянных). Излишние лоскуты по краям обрезались при вы-клейке «по-мокрому».

а – внешняя оболочка;

б – внутренняя оболочка;

1 – лыжа(дерево);

2 – подмоторная плита (дерево)

После изготовления по отдельности наружной и внутренней оболочек они состыковывались, скреплялись струбцинами и саморезами, а затем склеивались по периметру полосками промазанного полиэфирной смолой того же стекломата шириной 40 -50 мм, из которого были изготовлены сами оболочки. После присоединения оболочек к кромке лепестковыми заклёпками прикреплялась по периметру вертикальная бортовая планка из 2-мм дюралюминиевой полосы шириной не менее 35 мм.

Дополнительно кусочками пропитанной смолой стеклоткани следует аккуратно проклеить все углы и места вворачивания крепёжных деталей. Наружная оболочка сверху покрыта гелькоутом – полиэфирной смолой с акриловыми добавками и воском, придающими блеск и водостойкость.

Стоит отметить, что по такой же технологии (по ней изготавливались наружная и внутренняя оболочки) выклеивались и более мелкие элементы: внутренняя и наружная оболочки диффузора, рули поворота, кожух двигателя, ветроотбойник, тоннель и сиденье водителя. Бензобак (промышленный из Италии) на 12,5 л вставляется внутрь корпуса, в консоль, перед скреплением нижней и верхней части корпусов.

внутренний оболочка корпуса с выпускными воздушными отверстиями для создания воздушной подушки; выше отверстий – ряд тросовых клипс для зацепления концов платка сегмента юбки; к днищу приклеены две деревянные лыжи

Тем, кто только начинает работать со стеклопластиком, рекомендую начинать изготовление катера именно с этих мелких элементов. Полная масса стеклопластикового корпуса вместе с лыжами и полосой из алюминиевого сплава, диффузором и рулями направления – от 80 до 95 кг.

Пространство между оболочками служит воздуховодом по периметру аппарата от кормы по обоим бортам к носу. Верхняя и нижняя части этого пространства заполнены строительным пенопластом, который обеспечивает оптимальное сечение воздушных каналов и дополнительную плавучесть (а соответственно и живучесть) аппарату. Куски пенопласта склеивались между собой всё тем же полиэфирным связующим, а к оболочкам приклеивались полосами стеклоткани, тоже пропитанной смолой. Далее из воздушных каналов воздух выходит наружу через равномерно расположенные отверстия диаметром 90 мм в наружной оболочке, «упирается» в сегменты юбки и создаёт под аппаратом воздушную подушку.

К днищу наружной оболочки корпуса для защиты от повреждений приклеены снаружи пара продольных лыж из деревянных брусков, а в кормовой части кокпита (то есть изнутри) – под-моторная деревянная плита.

Баллон . Новая модель катера на воздушной подушке имеет чуть ли не вдвое большее водоизмещение (350 – 370 кг), чем прежняя. Этого удалось добиться за счёт установки надувного баллона между корпусом и сегментами гибкого ограждения (юбкой). Баллон выклеен из плёночного на лавсановой основе ПХВ материала Уіпуріап финского производства плотностью 750 г/м 2 по форме корпуса в плане. Материал прошёл испытания на больших промышленных судах на воздушной подушке, таких как «Хиус», «Пегас», «Марс». Для повышения живучести баллон может состоять из нескольких отсеков (в данном случае – из трёх, каждый имеет свой клапан наполнения). Отсеки в свою очередь могут разделяться и вдоль пополам продольными перегородками (но такой их вариант исполнения пока ещё только в проекте). При такой конструкции пробитый отсек (или даже два) позволит продолжить движение по маршруту, а тем более добраться до берега для ремонта. Для экономного раскроя материала баллон разделён на четыре секции: носовая, две боркормовая. Каждая секция, в свою очередь, склеивается из двух частей (половинок) оболочки: нижней и верхней – их выкройки зеркально отображённые. В данном варианте баллона отсеки и секции не совпадают.

а – внешняя оболочка; б – внутренняя оболочка;
1 – носовая секция; 2 – бортовая секция (2 шт.); 3 – кормовая секция; 4 – перегородка (3 шт.); 5 – клапаны (3 шт.); 6 – ликтрос; 7 – фартук

По верху баллона приклеен «ликтрос» – полоса из сложенного вдвое материала Vinyplan 6545 «Арктик», с вложенным по сгибу плетёным капроновым шнуром, пропитанным клеем «900И». «Ликтрос» прикладывается к бортовой планке, и с помощью пластмассовых болтов баллон крепится к алюминиевой полосе, закреплённой на корпусе. Такая же полоса (только без вложенного шнура) приклеена к баллону и снизу-спереди («на полвосьмого»), так называемый «фартук» – к которому привязываются верхние части сегментов (язычки) гибкого ограждения. Позднее к передней части баллона был приклеен резиновый бампер-отбойник.


Мягкое эластичное ограждение
«Аэроджипа» (юбка) состоит из отдельных, но одинаковых элементов -сегментов, выкроенных и сшитых из плотной лёгкой ткани или плёночного материала. Желательно, чтобы ткань была водоотталкивающей, не твердела на морозе и не пропускала воздух.

Я использовал опять же материал Vinyplan 4126, только плотностью поменьше (240 г/м 2), но вполне подойдёт отечественная ткань типа перкаль.

Сегменты имеют несколько меньший размер, чем на «безбаллонной» модели. Выкройка сегмента несложная, и сшить его можно самому даже вручную, либо сварить токами высокой частоты (ТВС).

Сегменты привязываются язычком крышки к ликпазу баллона (два – одним концом, при этом узелки находятся внутри под юбкой) по всему периметру «Аэроамфибии». Два же нижних угла сегмента с помощью капроновых строительных хомутиков подвешиваются свободно к стальному тросику диаметром 2 – 2,5 мм, обхватывающим нижнюю часть внутренней оболочки корпуса. Всего в юбке размещается до 60 сегментов. Стальной трос диаметром 2,5 мм крепится к корпусу посредством клипс, которые в свою очередь притягиваются к внутренней оболочке лепестковыми заклёпками.

1 – платок (материал «Виниплан 4126»); 2 – язычок (материал «Виниплан 4126»); 3 – накладка (ткань «Арктик»)

Такое крепление сегментов юбки не намного превышает время замены вышедшего из строя элемента гибкого ограждения, по сравнению с предыдущей конструкцией, когда каждый крепился по отдельности. Но как показала практика, юбка оказывается работоспособной даже при выходе из строя до 10% сегментов и частой замены их и не требуется.

1 – наружная оболочка корпуса; 2 – внутренняя оболочка корпуса; 3- накладка (стеклопластик) 4 - планка (дюралюминий, полоса 30х2); 5 – шуруп-саморез; 6 – ликтрос баллона; 7 – пластмассовый болт; 8 – баллон; 9 – фартук баллона; 10 – сегмент; 11 – шнуровка; 12 – клипса; 13-хомут(пластмассовый); 14-трос d2,5; 15-вытяжнаязаклёпка; 16-люверс

Винтомоторная установка состоит из двигателя, шестилопастного воздушного винта (вентилятора) и трансмиссии.

Двигатель – РМЗ-500 (аналог «Ротакс 503») от снегохода «Тайга». Выпускается ОАО «Русская механика» по лицензии австрийской фирмы Rotax. Мотор двухтактный, с лепестковым впускным клапаном и принудительным воздушным охлаждением. Зарекомендовал себя как надёжный, достаточно мощный (около 50 л.с.) и не тяжёлый (около 37 кг), а главное -сравнительно недорогой агрегат. Топливо – бензин марки АИ-92 в смеси с маслом для двухтактных двигателей (например, отечественное МГД-14М). Средний расход топлива – 9 – 10 л/ч. Смонтирован двигатель в кормовой части аппарата, на мотораме, прикреплённой к днищу корпуса (а точнее -к подмоторной деревянной плите). Моторама стала выше. Это сделано для удобства очистки кормовой части кокпита от снега и льда, которые попадают туда через борта и скапливаются там, и замерзают при остановке.

1 – выходной вал двигателя; 2 – ведущий зубчатый шкив (32 зуба); 3 – зубчатый ремень; 4 – ведомый зубчатый шкив; 5 – гайка М20 крепления оси; 6 – дистанционные втулки (3 шт.); 7 – подшипник (2 шт.); 8 – ось; 9 – втулка винта; 10 – задняя подкосная опора; 11 – передняя надмоторная опора; 12 - передняя подкосная опора-двунога (на чертеже не показана, см. фото); 13 – наружная щёчка; 14 – внутренняя щёчка

Воздушный винт – шестилопастный, фиксированного шага, диаметром 900 мм. (Была попытка установить два пятилопастных соосных винта, но она оказалась неудачной). Втулка винта -дюралюминиевая, литая. Лопасти – стеклопластиковые, с напылением гелькоутом. Ось втулки винта была удлинена, хотя на ней остались прежние подшипники 6304. Смонтирована ось на стойке над двигателем и закреплена здесь двумя распорками: двухлучевой – спереди и трёхлучевой – сзади. Перед винтом расположена сетчатая решётка ограждения, а сзади – перья воздушного руля.

Передача крутящего момента (вращения) с выходного вала двигателя на втулку воздушного винта осуществляется через зубчатый ремень с передаточным отношением 1:2,25 (ведущий шкив имеет 32 зуба, а ведомый – 72).

Воздушный поток от винта распределён перегородкой в кольцевом канале на две неравные части (примерно 1:3). Меньшая его часть идёт под днище корпуса на создание воздушной подушки, а большая – на образование пропульсивной силы (тяги) для передвижения. Несколько слов об особенностях вождения амфибии, конкретно – о начале движения. При работе двигателя на холостом ходу аппарат остаётся неподвижным. При увеличении числа его оборотов, амфибия сначала приподнимается над опорной поверхностью, а затем начинает движение вперёд при оборотах от 3200 – 3500 в минуту. В этот момент важно, особенно при трогании с грунта, чтобы пилот сначала приподнял заднюю часть аппарата: тогда кормовые сегменты ни за что не зацепятся, а передние проскользят по неровностям и препятствиям.

1 – основание (стальной лист s6, 2 шт.); 2 – портальная стойка (стальной лист s4,2 шт.); 3 – перемычка (стальной лист s10, 2 шт.)

Управление «Аэроджипом» (изменение направления движения) осуществляется аэродинамическими рулями направления, закреплёнными шарнирно за кольцевым каналом. Отклонение руля производится посредством двухплечего рычага (руля мотоциклетного типа) через итальянский боуденовский трос, идущий к одной из плоскостей аэродинамического руля. Другая плоскость соединена с первой жёсткой тягой. На левой рукоятке рычага закреплена манетка управления дроссельной заслонкой карбюратора или «курок» от снегохода «Тайга».

1 – руль; 2 – боуденовский трос; 3 – узел крепления оплётки к корпусу (2 шт.); 4 – боуденовская оплётка троса; 5 – рулевая панель; 6 – рычаг; 7 – тяга (качалка условно не показана); 8 – подшипник (4 шт.)

Торможение осуществляется «сбросом газа». При этом пропадает воздушная подушка и аппарат корпусом ложится на воду (или лыжами – на снег или грунт) и останавливается за счёт трения.

Электрооборудование и приборы . Аппарат снабжён аккумуляторной батареей, тахометром со счётчиком моточасов, вольтметром, индикатором температуры головки двигателя, галогенными фарами, кнопкой и чекой выключения зажигания на руле и др. Двигатель запускается электростартёром. Возможна установка любых других приборов.

Амфибийный катер получил название «Рыбак-360». Он прошёл ходовые испытания на Волге: в 2010 г. на слёте компании «Велход» в посёлке Эммаус под Тверью, в Нижнем Новгороде. Участвовал по просьбе Москомспорта в показательных выступлениях на празднике, посвящённом дню ВМФ в Москве на Гребном канале.

Технические данные «Аэроамфибии»:

Габаритные размеры, мм:
длина……………………………………………………………………..3950
ширина…………………………………………………………………..2400
высота…………………………………………………………………….1380
Мощность двигателя, л.с……………………………………………….52
Масса, кг…………………………………………………………………….150
Грузоподъёмность, кг………………………………………………….370
Запас топлива, л…………………………………………………………….12
Расход топлива, л/ч………………………………………………..9 - 10
Преодолеваемые препятствия:
подъём, град……………………………………………………………….20
волна, м……………………………………………………………………0,5
Крейсерская скорость, км/ч:
по воде……………………………………………………………………….50
по грунту……………………………………………………………………54
по льду……………………………………………………………………….60

М. ЯГУБОВ Почётный изобретатель г. Москвы

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.