Солнечная система по астрономии. Что такое солнечная система? Все планеты по порядку

Планеты солнечной системы — немного истории

Ранее, планетой считалось любое тело, которое обращается вокруг звезды, светится отраженным от нее светом и имеет размер больше, чем у астероидов.

Еще в Древней Греции упоминали о семи светящихся телах, которые движутся по небу на фоне неподвижных звезд. Этими космическими телами были: Солнце, Меркурий, Венера, Луна, Марс, Юпитер и Сатурн. Земля в этот перечень не входила, так как древние греки считали именно Землю центром всего сущего.

И только в XVI веке Николай Коперник в своей научной работе под названием «Об обращении небесных сфер» пришел к выводу, что не Земля, а именно Солнце должно быть в центре системы планет. Поэтому из списка убрали Солнце и Луну, и внесли в него Землю. А после появления телескопов добавили Уран и Нептун, в 1781 и 1846 годах соответственно.
Последней открытой планетой Солнечной системы с 1930 года до недавних пор считался Плутон.

И вот, спустя почти 400 лет с момента создания Галилео Галилеем первого в мире телескопа для наблюдения за звездами, ученые-астрономы пришли к следующему определению планеты.

Планета – это небесное тело, которое должно удовлетворять четырем условиям:
тело должно обращаться вокруг звезды (например, вокруг Солнца);
тело должно обладать достаточной гравитацией, чтобы иметь сферическую или близкую к ней форму;
тело не должно иметь вблизи своей орбиты других крупных тел;
тело не должно быть звездой.

В свою очередь полярная звезда– это космическое тело, которое излучает свет и является мощным источником энергии. Это объясняется, во-первых, происходящими в нем термоядерными реакциями, а во-вторых, процессами гравитационного сжатия, в результате которых выделяется огромное количество энергии.

Планеты Солнечной системы сегодня

Солнечная система – это планетная система, которая состоит из центральной звезды – Солнца – и всех естественных космических объектов, обращающихся вокруг нее.

Итак, на сегодняшний день Солнечная система состоит из восьми планет : четырех внутренних, так называемых планет земной группы, и четырех внешних планет, называемых газовыми гигантами.
К планетам земной группы относятся Земля, Меркурий, Венера и Марс. Все они состоят в основном из силикатов и металлов.

Внешние планеты – это Юпитер, Сатурн, Уран и Нептун. В состав газовых гигантов входят главным образом водород и гелий.

Размеры планет Солнечной системы различаются как внутри групп, так и между группами. Так, газовые гиганты намного крупнее и массивнее, чем планеты земной группы.
Ближе всех к Солнцу находится Меркурий, затем по мере удаления: Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.

Было бы неверно рассматривать характеристики планет Солнечной системы, не уделив внимания ее главному компоненту: самому Солнцу. Поэтому, с него мы и начнем.

Солнце планета – это звезда, которая дала начало всему живому в Солнечной системе. Вокруг него обращаются планеты, карликовые планеты и их спутники, астероиды, кометы, метеориты и космическая пыль.

Солнце возникло около 5 млрд. лет назад, представляет собой сферический, раскаленный плазменный шар и имеет массу, которая более чем в 300 тыс. раз превышает массу Земли. Температура на поверхности составляет более 5000 градусов Кельвина, а температура ядра – более 13 млн. К.

Солнце является одной из самых больших и самых ярких звезд в нашей галактике, которая носит название галактика Млечного Пути. Солнце находится на расстоянии около 26 тыс. световых лет от центра Галактики и делает полный оборот вокруг него примерно за 230-250 млн. лет! Для сравнения, Земля делает полный оборот вокруг Солнца за 1 год.

Меркурий планета

Меркурий – это самая маленькая планета системы, которая находится ближе других к Солнцу. У Меркурия нет спутников.

Поверхность планеты покрыта кратерами, возникшими около 3,5 млрд. лет назад вследствие массированных бомбардировок метеоритами. Диаметр кратеров может составлять от нескольких метров до более, чем 1000 км.

Атмосфера Меркурия сильно разряжена, состоит в основном из гелия и раздувается солнечным ветром. Так как планета расположена очень близко к Солнцу и не имеет атмосферы, которая бы сохраняла тепло по ночам, температура на поверхности колеблется от -180 до +440 градусов Цельсия.

По земным меркам, полный оборот вокруг Солнца Меркурий совершает за 88 суток. Зато меркурианские сутки равняются 176 земным.

Венера планета

Венера – вторая по близости к Солнцу планета солнечной системы. Своими размерами Венера лишь немного уступает Земле, поэтому ее иногда называют «сестрой Земли». Спутников не имеет.

Атмосфера состоит из углекислого газа с примесями азота и кислорода. Давление воздуха на планете составляет более 90 атмосфер, что в 35 раз больше земного.

Углекислый газ и, как следствие, парниковый эффект, уплотненная атмосфера, а также близость к Солнцу позволяют Венере носить титул «самой горячей планеты». Температура на ее поверхности может достигать 460°С.

Венера – один из самых ярких объектов на земном небе после Солнца и Луны.

Планета Земля

Земля – это единственная известная на сегодня планета во Вселенной, на которой есть жизнь. Земля обладает наибольшими размерами, массой и плотностью среди так называемых внутренних планет Солнечной системы.

Возраст Земли составляет около 4,5 млрд. лет, а жизнь появилась на планете около 3,5 млрд. лет назад. Луна – естественный спутник, самый большой из спутников планет земной группы.

Атмосфера Земли кардинально отличается от атмосфер остальных планет благодаря присутствию жизни. Большая часть атмосферы состоит из азота, также в ее состав входят кислород, аргон, углекислый газ и водяной пар. Озоновый слой и магнитное поле Земли, в свою очередь, ослабляют опасное для жизни влияние солнечной и космической радиации.

Из-за углекислого газа, содержащегося в атмосфере, на Земле также имеет место парниковый эффект. Он проявляется не так сильно, как на Венере, но без него температура воздуха была бы приблизительно на 40°С ниже. Без атмосферы и колебания температуры были бы очень существенными: по подсчетам ученых, от -100°С по ночам до +160°С днем.

Около 71% поверхности Земли занимает мировой океан, остальные 29% — это континенты и острова.

Марс планета

Марс – седьмая по размеру планета в Солнечной системе. «Красная планета», как его еще называют благодаря наличию большого количества оксида железа в грунте. У Марса есть два спутника: Деймос и Фобос.
Атмосфера Марса сильно разряжена, а расстояние до Солнца почти в полтора раза больше, чем у Земли. Поэтому среднегодовая температура на планете равняется -60°С, а перепады температур в некоторых местах достигают 40 градусов в течение суток.

Отличительными чертами поверхности Марса являются ударные кратеры и вулканы, долины и пустыни, ледяные полярные шапки наподобие земных. На Марсе расположена самая высокая гора в Солнечной системе: потухший вулкан Олимп, высота которого — 27 км! А также самый крупный каньон: Долина Маринера, глубина которого достигает 11 км, а протяженность – 4500 км

Юпитер планета

Юпитер – это самая большая планета Солнечной системы. Она в 318 раз тяжелее Земли, и почти в 2,5 раза массивнее, чем все планеты нашей системы вместе взятые. По своему составу Юпитер напоминает Солнце – он состоит преимущественно из гелия и водорода – и излучает огромное количество тепла, равное 4*1017 Вт. Однако для того, чтобы стать звездой наподобие Солнца, Юпитер должен быть еще в 70-80 раз тяжелее.

У Юпитера целых 63 спутника, перечислить из которых имеет смысл лишь самые большие – Каллисто, Ганимед, Ио и Европа. Ганимед является самым крупным спутником в Солнечной системе, он превосходит в размерах даже Меркурий.

Вследствие определенных процессов во внутренней атмосфере Юпитера, в его внешней атмосфере возникает множество вихревых структур, например, полосы облаков коричнево-красных оттенков, а также Большое красное пятно – гигантский шторм, известный с XVII века.

Сатурн планета

Сатурн – вторая по размеру планета Солнечной системы. Визитная карточка Сатурна – это, конечно же, его система колец, которая состоит в основном из ледяных частиц разного размера (от десятых долей миллиметра до нескольких метров), а также горных пород и пыли.

У Сатурна 62 спутника, крупнейшие из которых – Титан и Энцелад.
По своему составу Сатурн напоминает Юпитер, однако по плотности он уступает даже обыкновенной воде.
Внешняя атмосфера планеты выглядит спокойной и однородной, что объясняется очень плотным слоем тумана. Однако скорость ветра местами может достигать 1800 км/ч.

Уран планета

Уран – это первая планета, обнаруженная с помощью телескопа, а также единственная планета в Солнечной системе, которая оборачивается вокруг Солнца, «лежа на боку».
У Урана 27 спутников, которые названы в честь шекспировских героев. Наибольшие из них – Оберон, Титания и Умбриель.

Состав планеты отличается от газовых гигантов наличием большого количества высокотемпературных модификаций льда. Поэтому, наряду с Нептуном, ученые определили Уран в категорию «ледяных гигантов». И если Венера обладает титулом «самой горячей планеты» Солнечной системы, то Уран – это самая холодная планета с минимальной температурой около -224°С.

Нептун планета

Нептун – самая удаленная от центра планета Солнечной системы. Интересна история его открытия: прежде чем наблюдать планету в телескоп, ученые с помощью математических расчетов вычислили ее положение на небе. Произошло это после обнаружения необъяснимых изменений при движении Урана по собственной орбите.

На сегодня науке известны 13 спутников Нептуна. Самый крупный из них – Тритон – единственный спутник, который движется в направлении, обратном вращению планеты. Против вращения планеты дуют также самые быстрые ветра в Солнечной системе: их скорость достигает 2200 км/ч.

По составу Нептун очень похож на Уран, поэтому является вторым «ледяным гигантом». Однако, подобно Юпитеру и Сатурну, Нептун обладает внутренним источником тепла и излучает в 2,5 раза больше энергии, чем получает от Солнца.
Синий цвет планете придают следы метана во внешних слоях атмосферы.

Заключение
Плутон, к сожалению, не успел попасть в наш парад планет Солнечной системы. Но переживать по этому поводу абсолютно не стоит, потому что все планеты остаются на своих местах, несмотря на изменения в научных взглядах и концепциях.

Итак, мы ответили на вопрос сколько всего планет в солнечной системе. Их всего8 .

СОЛНЕЧНАЯ СИСТЕМА
Солнце и обращающиеся вокруг него небесные тела - 9 планет, более 63 спутников, четыре системы колец у планет-гигантов, десятки тысяч астероидов, несметное количество метеороидов размером от валунов до пылинок, а также миллионы комет. В пространстве между ними движутся частицы солнечного ветра - электроны и протоны. Исследована еще не вся Солнечная система: например, большинство планет и их спутников лишь бегло осмотрены с пролетных траекторий, сфотографировано только одно полушарие Меркурия, а к Плутону пока не было экспедиций. Но все же с помощью телескопов и космических зондов собрано уже много важных данных.
Почти вся масса Солнечной системы (99,87%) сосредоточена в Солнце. Размером Солнце также значительно превосходит любую планету ее системы: даже Юпитер, который в 11 раз больше Земли, имеет радиус в 10 раз меньше солнечного. Солнце - обычная звезда, которая светит самостоятельно за счет высокой температуры поверхности. Планеты же светят отраженным солнечным светом (альбедо), поскольку сами довольно холодны. Они расположены в следующем порядке от Солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Расстояния в Солнечной системе принято измерять в единицах среднего расстояния Земли от Солнца, называемого астрономической единицей (1 а.е. = 149,6 млн. км). Например, среднее расстояние Плутона от Солнца 39 а.е., но иногда он удаляется на 49 а.е. Известны кометы, улетающие на 50 000 а.е. Расстояние от Земли до ближайшей звезды a Кентавра 272 000 а.е., или 4,3 световых года (т. е. свет, движущийся со скоростью 299 793 км/с, проходит это расстояние за 4,3 года). Для сравнения, от Солнца до Земли свет доходит за 8 мин, а до Плутона - за 6 ч.

Планеты обращаются вокруг Солнца по почти круговым орбитам, лежащим приблизительно в одной плоскости, в направлении против часовой стрелки, если смотреть со стороны северного полюса Земли. Плоскость орбиты Земли (плоскость эклиптики) лежит близко к средней плоскости орбит планет. Поэтому видимые пути планет, Солнца и Луны на небе проходят вблизи линии эклиптики, а сами они всегда видны на фоне созвездий Зодиака. Наклоны орбит отсчитываются от плоскости эклиптики. Углы наклона менее 90° соответствуют прямому орбитальному движению (против часовой стрелки), а углы более 90° - обратному движению. Все планеты Солнечной системы движутся в прямом направлении; наибольший наклон орбиты у Плутона (17°). Многие кометы движутся в обратной направлении, например, наклон орбиты кометы Галлея 162°. Орбиты всех тел Солнечной системы очень близки к эллипсам. Размер и форма эллиптической орбиты характеризуются большой полуосью эллипса (средним расстоянием планеты от Солнца) и эксцентриситетом, изменяющимся от е = 0 у круговых орбит до е = 1 у предельно вытянутых. Ближайшую к Солнцу точку орбиты называют перигелием, а самую удаленную - афелием.
См. также ОРБИТА ; КОНИЧЕСКИЕ СЕЧЕНИЯ . С точки зрения земного наблюдателя планеты Солнечной системы делят на две группы. Меркурий и Венеру, которые ближе к Солнцу, чем Земля, называют нижними (внутренними) планетами, а более далекие (от Марса до Плутона) - верхними (внешними). У нижних планет существует предельный угол удаления от Солнца: 28° у Меркурия и 47° у Венеры. Когда такая планета максимально удалена к западу (востоку) от Солнца, говорят, что она находится в наибольшей западной (восточной) элонгации. Когда нижняя планета видна прямо перед Солнцем, говорят, что она находится в нижнем соединении; когда прямо за Солнцем - в верхнем соединении. Подобно Луне, эти планеты проходят через все фазы освещения Солнцем в течение синодического периода Ps - времени, за которое планета возвращается к исходному положению относительно Солнца с точки зрения земного наблюдателя. Истинный орбитальный период планеты (P) называют сидерическим. Для нижних планет эти периоды связаны соотношением:
1/Ps = 1/P - 1/Po где Po - орбитальный период Земли. Для верхних планет подобное соотношение имеет другой вид: 1/Ps = 1/Po - 1/P Для верхних планет характерен ограниченный диапазон фаз. Максимальный фазовый угол (Солнце-планета-Земля) у Марса 47°, у Юпитера 12°, у Сатурна 6°. Когда верхняя планета видна за Солнцем, она находится в соединении, а когда в противоположном Солнцу направлении - в противостоянии. Планета, наблюдаемая на угловом расстоянии 90° от Солнца, находится в квадратуре (восточной или западной). Пояс астероидов, проходящий между орбитами Марса и Юпитера, делит планетную систему Солнца на две группы. Внутри него располагаются планеты земной группы (Меркурий, Венера, Земля и Марс), схожие тем, что это небольшие, каменистые и довольно плотные тела: их средние плотности от 3,9 до 5,5 г/см3. Они сравнительно медленно вращаются вокруг осей, лишены колец и имеют мало естественных спутников: земную Луну и марсианские Фобос и Деймос. Вне пояса астероидов находятся планеты-гиганты: Юпитер, Сатурн, Уран и Нептун. Для них характерны большие радиусы, низкая плотность (0,7-1,8 г/см3) и глубокие атмосферы, богатые водородом и гелием. Юпитер, Сатурн и, возможно, другие гиганты лишены твердой поверхности. Все они быстро вращаются, имеют много спутников и окружены кольцами. Далекий маленький Плутон и крупные спутники планет-гигантов во многом схожи с планетами земной группы. Древние люди знали планеты, видимые невооруженным глазом, т.е. все внутренние и внешние вплоть до Сатурна. В.Гершель открыл в 1781 Уран. Первый астероид обнаружил Дж.Пиацци в 1801. Анализируя отклонения в движении Урана, У.Леверье и Дж.Адамс теоретически открыли Нептун; на вычисленном месте его обнаружил И.Галле в 1846. Самую далекую планету - Плутон - открыл в 1930 К.Томбо в результате длительных поисков занептуновой планеты, организованных П.Ловеллом. Четыре больших спутника Юпитера обнаружил Галилей в 1610. С тех пор при помощи телескопов и космических зондов у всех внешних планет найдены многочисленные спутники. Х.Гюйгенс в 1656 установил, что Сатурн окружен кольцом. Темные кольца Урана были открыты с Земли в 1977 при наблюдении покрытия звезды. Прозрачные каменные кольца Юпитера обнаружил в 1979 межпланетный зонд "Вояджер-1". С 1983 в моменты покрытия звезд отмечались признаки неоднородных колец у Нептуна; в 1989 изображение этих колец было передано "Вояджером-2".
См. также
АСТРОНОМИЯ И АСТРОФИЗИКА ;
ЗОДИАК ;
КОСМИЧЕСКИЙ ЗОНД ;
НЕБЕСНАЯ СФЕРА .
СОЛНЦЕ
В центре Солнечной системы расположено Солнце - типичная одиночная звезда радиусом около 700 000 км и массой 2*10 30 кг. Температура видимой поверхности Солнца - фотосферы - ок. 5800 К. Плотность газа в фотосфере в тысячи раз меньше плотности воздуха у поверхности Земли. Внутри Солнца температура, плотность и давление увеличиваются с глубиной, достигая в центре соответственно 16 млн. К, 160 г/см3 и 3,5*10 11 бар (давление воздуха в комнате ок. 1 бар). Под влиянием высокой температуры в ядре Солнца водород превращается в гелий с выделением большого количества тепла; это удерживает Солнце от сжатия под действием собственной силой тяжести. Выделяющаяся в ядре энергия покидает Солнце в основном в виде излучения фотосферы с мощностью 3,86*10 26 Вт. С такой интенсивностью Солнце излучает уже 4,6 млрд. лет, переработав за это время 4% своего водорода в гелий; при этом 0,03% массы Солнца превратилось в энергию. Модели эволюции звезд указывают, что Солнце сейчас находится в середине своей жизни (см. также ЯДЕРНЫЙ СИНТЕЗ). Чтобы определить содержание различных химических элементов на Солнце, астрономы изучают линии поглощения и излучения в спектре солнечного света. Линии поглощения - это темные промежутки в спектре, указывающие на отсутствие в нем фотонов данной частоты, поглощенных определенным химическим элементом. Линии излучения, или эмиссионные линии, - это более яркие участки спектра, указывающие на избыток фотонов, излучаемых каким-либо химическим элементом. Частота (длина волны) спектральной линии указывает, какой атом или молекула ответственны за ее возникновение; контраст линии свидетельствует о количестве излучающего или поглощающего свет вещества; ширина линии позволяет судить о его температуре и давлении. Изучение тонкой (500 км) фотосферы Солнца позволяет оценить химический состав его недр, поскольку наружные области Солнца хорошо перемешаны конвекцией, спектры Солнца имеют высокое качество, а ответственные за них физические процессы вполне понятны. Однако нужно отметить, что до сих пор идентифицирована лишь половина линий в солнечном спектре. В составе Солнца преобладает водород. На втором месте - гелий, название которого ("гелиос" по-гречески "Солнце") напоминает, что он был открыт спектроскопически на Солнце раньше (1899), чем на Земле. Поскольку гелий - инертный газ, он крайне неохотно вступает в реакции с другими атомами и также неохотно проявляет себя в оптическом спектре Солнца - всего одной линией, хотя многие менее обильные элементы представлены в спектре Солнца многочисленными линиями. Вот состав "солнечного" вещества: на 1 млн. атомов водорода приходится 98 000 атомов гелия, 851 кислорода, 398 углерода, 123 неона, 100 азота, 47 железа, 38 магния, 35 кремния, 16 серы, 4 аргона, 3 алюминия, по 2 атома никеля, натрия и кальция, а также чуть-чуть всех прочих элементов. Таким образом, по массе Солнце примерно на 71% состоит из водорода и на 28% из гелия; на долю остальных элементов приходится чуть более 1%. С точки зрения планетологии примечательно, что некоторые объекты Солнечной системы имеют практически такой же состав, как Солнце (см. ниже раздел о метеоритах). Подобно тому, как погодные явления изменяют внешний вид планетных атмосфер, вид солнечной поверхности тоже меняется с характерным временем от часов до десятилетий. Однако имеется важное различие между атмосферами планет и Солнца, которое состоит в том, что движение газов на Солнце контролирует его мощное магнитное поле. Солнечные пятна - это те области поверхности светила, где вертикальное магнитное поле настолько велико (200-3000 Гс), что препятствует горизонтальному движению газа и тем самым подавляет конвекцию. В результате температура в этой области опускается примерно на 1000 К, и возникает темная центральная часть пятна - "тень", окруженная более горячей переходной областью - "полутенью". Размер типичного солнечного пятна чуть больше диаметра Земли; существует такое пятно несколько недель. Количество пятен на Солнце то увеличивается, то уменьшается с продолжительностью цикла от 7 до 17 лет, в среднем 11,1 года. Обычно чем больше пятен появляется в цикле, тем короче сам цикл. Направление магнитной полярности пятен меняется на противоположное от цикла к циклу, поэтому истинный цикл пятнообразовательной активности Солнца составляет 22,2 года. В начале каждого цикла первые пятна появляются на высоких широтах, ок. 40°, и постепенно зона их рождения смещается к экватору до широты ок. 5°. См. также ЗВЕЗДЫ ; СОЛНЦЕ . Колебания активности Солнца почти не отражаются на полной мощности его излучения (если бы она изменилась всего на 1%, это привело бы к серьезным переменам климата на Земле). Было немало попыток найти связь между циклами солнечных пятен и климатом Земли. Самое замечательное в этом смысле событие - "минимум Маундера": с 1645 в течение 70 лет на Солнце почти не было пятен, и в это же время Земля пережила Малый ледниковый период. До сих пор не ясно, был ли этот удивительный факт простым совпадением или он указывает на причинную связь.
См. также
КЛИМАТ ;
МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ . В Солнечной системе 5 огромных вращающихся водородо-гелиевых шаров: Солнце, Юпитер, Сатурн, Уран и Нептун. В недрах этих гигантских небесных тел, недоступных для прямого исследования, сосредоточено почти все вещество Солнечной системы. Земные недра также недоступны для нас, но, измеряя время распространения сейсмических волн (длинноволновых звуковых колебаний), возбуждаемых в теле планеты землетрясениями, сейсмологи составили детальную карту земных недр: узнали размеры и плотности ядра Земли и ее мантии, а также методом сейсмической томографии получили трехмерные изображения перемещающихся плит ее коры. Подобные методы можно применить и к Солнцу, поскольку на его поверхности существует волны с периодом ок. 5 мин, вызванные множеством сейсмических колебаний, распространяющихся в его недрах. Эти процессы изучает гелиосейсмология. В отличие от землетрясений, которые рождают короткие всплески волн, энергичная конвекция в недрах Солнца создает постоянный сейсмический шум. Гелиосейсмологи обнаружили, что под конвективной зоной, занимающей внешние 14% радиуса Солнца, вещество вращается синхронно с периодом 27 сут (о вращении солнечного ядра пока ничего не известно). Выше, в самой конвективной зоне вращение происходит синхронно только вдоль конусов равной широты и чем дальше от экватора, тем медленнее: экваториальные области вращаются с периодом 25 сут (опережают среднее вращение Солнца), а полярные - с периодом 36 сут (отстают от среднего вращения). Недавние попытки применить методы сейсмологии к газовым планетам-гигантам не принесли результатов, поскольку приборы пока не в состоянии зафиксировать возникающие колебания. Над фотосферой Солнца располагается тонкий горячий слой атмосферы, который можно увидеть только в редкие моменты солнечных затмений. Это хромосфера толщиной в несколько тысяч километров, названная так за свой красный цвет, обязанный линии излучения водорода Ha. Температура почти удваивается от фотосферы до верхних слоев хромосферы, из которых по не совсем понятной причине покидающая Солнце энергия выделяется в виде тепла. Над хромосферой газ нагрет до 1 млн. К. Эта область, названная короной, простирается примерно на 1 радиус Солнца. Плотность газа в короне очень низка, но температура настолько велика, что корона является мощным источником рентгеновских лучей. Иногда в атмосфере Солнца возникают гигантские образования - эруптивные протуберанцы. Они похожи на арки, вздымающиеся из фотосферы на высоту до половины солнечного радиуса. Наблюдения ясно указывают, что форма протуберанцев определяется силовыми линиями магнитного поля. Еще одно интересное и чрезвычайно активное явление - это солнечные вспышки, мощные выбросы энергии и частиц продолжительностью до двух часов. Порожденный такой солнечной вспышкой поток фотонов достигает Земли со скоростью света за 8 мин, а поток электронов и протонов - за несколько суток. Солнечные вспышки происходят в местах резкого изменения направления магнитного поля, вызванного движением вещества в солнечных пятнах. Максимум вспышечной активности Солнца обычно наступает за год до максимума пятнообразовательного цикла. Такая предсказуемость очень важна, ибо шквал заряженных частиц, рожденных мощной солнечной вспышкой, может повредить даже наземные средства связи и энергетические сети, не говоря уже о космонавтах и космической технике.


СОЛНЕЧНЫЕ ПРОТУБЕРАНЦЫ, наблюдавшейся в линии излучения гелия (длина волны 304) с борта космической станции "Скайлэб".


Из плазменной короны Солнца происходит постоянный отток заряженных частиц, называемый солнечным ветром. О его существовании догадывались еще до начала космических полетов, поскольку заметно было, как что-то "сдувает" кометные хвосты. В солнечном ветре выделяют три составляющие: высокоскоростной поток (более 600 км/с), низкоскоростной поток и нестационарные потоки от солнечных вспышек. Рентгеновские изображения Солнца показали, что в короне регулярно образуются огромные "дыры" - области пониженной плотности. Эти корональные дыры служат главным источником высокоскоростного солнечного ветра. В районе орбиты Земли типичная скорость солнечного ветра около 500 км/с, а плотность - около 10 частиц (электронов и протонов) в 1 см3. Поток солнечного ветра взаимодействует с магнитосферами планет и хвостами комет, заметно влияя на их форму и происходящие в них процессы.
См. также
ГЕОМАГНЕТИЗМ ;
;
КОМЕТА . Под напором солнечного ветра в межзвездной среде вокруг Солнца образовалась гигантская каверна - гелиосфера. На ее границе - гелиопаузе - должна существовать ударная волна, в которой солнечный ветер и межзвездный газ сталкиваются и уплотняются, оказывая друг на друга равное давление. Четыре космических зонда приближаются сейчас к гелиопаузе: "Пионер-10 и -11", "Вояджер-1 и -2". Ни один из них не встретил ее на расстоянии 75 а.е. от Солнца. Это весьма драматическая гонка со временем: "Пионер-10" прекратил работу в 1998, а остальные пытаются достичь гелиопаузы раньше, чем иссякнет запас энергии в их батареях. Судя по расчетам, "Вояджер-1" летит как раз в том направлении, откуда дует межзвездный ветер, и поэтому первым достигнет гелиопаузы.
ПЛАНЕТЫ: ОПИСАНИЕ
Меркурий. С Земли наблюдать Меркурий в телескоп сложно: он не удаляется от Солнца на угол более 28°. Его изучали при помощи радиолокации с Земли, а межпланетный зонд "Маринер-10" сфотографировал половину его поверхности. Вокруг Солнца Меркурий обращается за 88 земных суток по довольно вытянутой орбите с расстоянием от Солнца в перигелии 0,31 а.е. и в афелии 0,47 а.е. Вокруг оси он вращается с периодом 58,6 сут, в точности равным 2/3 орбитального периода, поэтому каждая точка его поверхности поворачивается к Солнцу лишь один раз за 2 меркурианских года, т.е. солнечные сутки там длятся 2 года! Из больших планет меньше Меркурия лишь Плутон. Но по средней плотности Меркурий находится на втором месте после Земли. Вероятно, у него большое металлическое ядро, составляющее 75% радиуса планеты (у Земли оно занимает 50% радиуса). Поверхность Меркурия подобна лунной: темная, абсолютно сухая и покрытая кратерами. Средний коэффициент отражения света (альбедо) поверхности Меркурия около 10%, примерно как у Луны. Вероятно, его поверхность тоже покрыта реголитом - спекшимся раздробленным материалом. Крупнейшее ударное образование на Меркурии - бассейн Калорис размером 2000 км, напоминающий лунные моря. Однако в отличие от Луны на Меркурии есть своеобразные структуры - протянувшиеся на сотни километров уступы высотой в несколько километров. Возможно, они образовались в результате сжатия планеты при остывании ее большого металлического ядра или под действием мощных солнечных приливов. Температура поверхности планеты днем около 700 К, а ночью около 100 К. По данным радиолокации, на дне полярных кратеров в условиях вечной темноты и холода, возможно, лежит лед. У Меркурия практически нет атмосферы - лишь крайне разреженная гелиевая оболочка с плотностью земной атмосферы на высоте 200 км. Вероятно, гелий образуется при распаде радиоактивных элементов в недрах планеты. У Меркурия есть слабое магнитное поле и нет спутников.
Венера. Это вторая от Солнца и ближайшая к Земле планета - самая яркая "звезда" на нашем небе; порой она видна даже днем. Венера во многом похожа на Землю: ее размер и плотность лишь на 5% меньше, чем у Земли; вероятно, и недра Венеры похожи на земные. Поверхность Венеры всегда закрыта толстым слоем желтовато-белых облаков, но с помощью радаров она исследована довольно подробно. Вокруг оси Венера вращается в обратном направлении (по часовой стрелке, если смотреть с северного полюса) с периодом 243 земных суток. Ее орбитальный период 225 сут; поэтому венерианские сутки (от восхода до следующего восхода Солнца) длятся 116 земных суток.
См. также РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ .


ВЕНЕРА. Изображение в ультрафиолетовых лучах, полученное с борта межпланетной станции "Пионер-Венера", демонстрирует атмосферу планеты, плотно заполненную облаками, более светлыми в полярных областях (вверху и внизу снимка).


Атмосфера Венеры состоит в основном из углекислого газа (CO2), а также небольшого количества азота (N2) и паров воды (H2O). В виде малых примесей обнаружены соляная кислота (HCl) и плавиковая кислота (HF). Давление у поверхности 90 бар (как в земных морях на глубине 900 м); температура около 750 К по всей поверхности и днем, и ночью. Причина столь высокой температуры у поверхности Венеры в том, что не совсем точно называют "парниковым эффектом": солнечные лучи сравнительно легко проходят сквозь облака ее атмосферы и нагревают поверхность планеты, но тепловое инфракрасное излучение самой поверхности выходит сквозь атмосферу обратно в космос с большим трудом. Облака Венеры состоят из микроскопических капелек концентрированной серной кислоты (H2SO4). Верхний слой облаков удален от поверхности на 90 км, температура там ок. 200 К; нижний слой - на 30 км, температура ок. 430 К. Еще ниже так жарко, что облаков нет. Разумеется, на поверхности Венеры нет жидкой воды. Атмосфера Венеры на уровне верхнего облачного слоя вращается в том же направлении, что и поверхность планеты, но значительно быстрее, совершая оборот за 4 сут; это явление называют суперротацией, и объяснения ему пока не найдено. Автоматические станции опускались на дневной и ночной сторонах Венеры. Днем поверхность планеты освещена рассеянным солнечным светом примерно с такой интенсивностью, как в пасмурный день на Земле. Ночью на Венере замечено много молний. Станции "Венера" передали изображения небольших участков в местах посадки, на которых виден скалистый грунт. В целом топография Венеры изучена по радиолокационным изображениям, переданным орбитальными аппаратами "Пионер-Венера" (1979), "Венера-15 и -16" (1983) и "Магеллан" (1990). Мельчайшие детали на лучших из них имеют размер около 100 м. В отличие от Земли на Венере нет четко выраженных континентальных плит, но отмечается несколько глобальных возвышенностей, например земля Иштар размером с Австралию. На поверхности Венеры множество метеоритных кратеров и вулканических куполов. Очевидно, кора Венеры тонка, так что расплавленная лава подходит близко к поверхности и легко изливается на нее после падения метеоритов. Поскольку дождей и сильных ветров у поверхности Венеры не бывает, эрозия поверхности происходит очень медленно, и геологические структуры остаются доступными для наблюдения из космоса сотни миллионов лет. О внутреннем строении Венеры известно мало. Вероятно, у нее есть металлическое ядро, занимающее 50% радиуса. Но магнитного поля у планеты нет вследствие ее очень медленного вращения. Нет у Венеры и спутников.
Земля. Наша планета - единственная, у которой большая часть поверхности (75%) покрыта жидкой водой. Земля - активная планета и, возможно, единственная, у которой обновление поверхности обязано процессам тектоники плит, проявляющим себя срединно-океаническими хребтами, островными дугами и складчатыми горными поясами. Распределение высот твердой поверхности Земли бимодальное: средний уровень океанического дна на 3900 м ниже уровня моря, а континенты в среднем возвышаются над ним на 860 м (см. также ЗЕМЛЯ). Сейсмические данные указывают на следующее строение земных недр: кора (30 км), мантия (до глубины 2900 км), металлическое ядро. Часть ядра расплавлена; там генерируется земное магнитное поле, которое улавливает заряженные частицы солнечного ветра (протоны и электроны) и формирует вокруг Земли две заполненные ими тороидальные области - радиационные пояса (пояса Ван-Аллена), локализованные на высотах 4000 и 17 000 км от поверхности Земли.
См. также ГЕОЛОГИЯ ; ГЕОМАГНЕТИЗМ .
Атмосфера Земли состоит на 78% из азота и на 21% из кислорода; это результат длительной эволюции под влиянием геологических, химических и биологических процессов. Возможно, первичная атмосфера Земли была богата водородом, который затем улетучился. Дегазация недр наполнила атмосферу углекислым газом и водяным паром. Но пар сконденсировался в океанах, а двуокись углерода оказалась связанной в карбонатных породах. (Любопытно, что если бы весь CO2 заполнил атмосферу в виде газа, то давление стало бы 90 бар, как на Венере. А если бы вся вода испарилась, то давление было бы 257 бар!). Таким образом, в атмосфере остался азот, а кислород появился постепенно в результате жизнедеятельности биосферы. Еще 600 млн. лет назад содержание кислорода в воздухе было раз в 100 ниже нынешнего (см. также АТМОСФЕРА ; ОКЕАН). Существуют указания, что климат Земли изменяется в короткой (10 000 лет) и длинной (100 млн. лет) шкалах. Причиной этого могут быть изменения орбитального движения Земли, наклона оси вращения, частоты вулканических извержений. Не исключены и колебания интенсивности солнечного излучения. В нашу эпоху на климат влияет и деятельность человека: выбросы газов и пыли в атмосферу.
См. также
КИСЛОТНЫЕ ОСАДКИ ;
ЗАГРЯЗНЕНИЕ ВОЗДУХА ;
ЗАГРЯЗНЕНИЕ ВОДЫ ;
ОКРУЖАЮЩЕЙ СРЕДЫ ДЕГРАДАЦИЯ .
У Земли есть спутник - Луна, происхождение которой до сих пор не разгадано.


ЗЕМЛЯ И ЛУНА с борта космического зонда "Лунар орбитер".


Луна. Один из крупнейших спутников, Луна находится на втором месте после Харона (спутника Плутона) по отношению масс спутника и планеты. Ее радиус в 3,7, а масса в 81 раз меньше, чем у Земли. Средняя плотность Луны 3,34 г/см3, что указывает на отсутствие у нее значительного металлического ядра. Сила тяжести на лунной поверхности в 6 раз меньше земной. Луна обращается вокруг Земли по орбите с эксцентриситетом 0,055. Наклон плоскости ее орбиты к плоскости земного экватора изменяется от 18,3° до 28,6°, а по отношению к эклиптике - от 4°59ў до 5°19ў. Суточное вращение и орбитальное обращение Луны синхронизованы, поэтому мы всегда видим только одно ее полушарие. Правда, небольшие покачивания (либрации) Луны позволяют в течение месяца увидеть около 60% ее поверхности. Основная причина либраций в том, что суточное вращение Луны происходит с постоянной скоростью, а орбитальное обращение - с переменной (вследствие эксцентричности орбиты). Участки лунной поверхности издавна условно делят на "морские" и "материковые". Поверхность морей выглядит темнее, лежит ниже и значительно реже покрыта метеоритными кратерами, чем материковая поверхность. Моря залиты базальтовыми лавами, а материки сложены анортозитовыми породами, богатыми полевыми шпатами. Судя по большому количеству кратеров, материковые поверхности значительно старше морских. Интенсивная метеоритная бомбардировка сделала верхний слой лунной коры мелко раздробленным, а наружные несколько метров превратила в порошок, называемый реголитом. Астронавты и автоматические зонды доставили с Луны образцы скального грунта и реголита. Анализ показал, что возраст морской поверхности около 4 млрд. лет. Следовательно, период интенсивной метеоритной бомбардировки приходится на первые 0,5 млрд. лет после образования Луны 4,6 млрд. лет назад. Затем частота падения метеоритов и образования кратеров практически не изменялась и составляет до сих пор один кратер диаметром 1 км за 105 лет.
См. также КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ .
Лунные породы бедны летучими элементами (H2O, Na, K, и т.п.) и железом, но богаты тугоплавкими элементами (Ti, Ca и т.п.). Лишь на дне лунных полярных кратеров могут быть залежи льда, такие, как на Меркурии. Атмосферы у Луны практически нет и нет свидетельств, что лунный грунт когда-либо подвергался воздействию жидкой воды. Нет в нем и органических веществ - лишь следы углистых хондритов, попавшие с метеоритами. Отсутствие воды и воздуха, а также сильные колебания температуры поверхности (390 К днем и 120 К ночью) делают Луну непригодной для жизни. Доставленные на Луну сейсмометры позволили узнать кое-что о лунных недрах. Там часто происходят слабые "лунотрясения", вероятно, связанные с приливным влиянием Земли. Луна довольно однородна, имеет маленькое плотное ядро и кору толщиной около 65 км из более легких материалов, причем верхние 10 км коры раздроблены метеоритами еще 4 млрд. лет назад. Крупные ударные бассейны распределены по лунной поверхности равномерно, но толщина коры на видимой стороне Луны меньше, поэтому именно на ней сосредоточено 70% морской поверхности. История лунной поверхности в целом известна: после окончания 4 млрд. лет назад этапа интенсивной метеоритной бомбардировки еще около 1 млрд. лет недра были достаточно горячими и базальтовая лава изливалась в моря. Затем лишь редкое падение метеоритов меняло лик нашего спутника. А вот о происхождении Луны до сих пор спорят. Она могла сформироваться самостоятельно и затем быть захваченной Землей; могла сформироваться вместе с Землей как ее спутник; наконец, могла отделиться от Земли в период формирования. Вторая возможность еще недавно была популярна, но в последние годы серьезно рассматривается гипотеза образования Луны из вещества, выброшенного прото-Землей при столкновении с крупным небесным телом. Несмотря на неясность происхождения системы Земля - Луна, дальнейшая их эволюция прослеживается довольно надежно. Приливное взаимодействие существенно влияет на движение небесных тел: суточное вращение Луны практически уже прекратилось (его период уравнялся с орбитальным), а вращение Земли замедляется, передавая свой момент импульса орбитальному движению Луны, которая в результате удаляется от Земли примерно на 3 см в год. Это прекратится, когда вращение Земли выровняется с движением Луны. Тогда Земля и Луна будут постоянно повернуты друг к другу одной стороной (как Плутон и Харон), а их сутки и месяц станут равны 47 нынешним суткам; при этом Луна удалится от нас в 1,4 раза. Правда, и эта ситуация не сохранится навсегда, ибо не прекратят действовать на вращение Земли солнечные приливы. См. также
ЛУНА ;
ЛУНЫ ПРОИСХОЖДЕНИЕ И ИСТОРИЯ ;
ПРИЛИВЫ И ОТЛИВЫ .
Марс. Марс похож на Землю, но почти вдвое меньше ее и имеют несколько меньшую среднюю плотность. Период суточного вращения (24 ч 37 мин) и наклон оси (24°) почти не отличаются от земных. Земному наблюдателю Марс кажется красноватой звездочкой, блеск которой заметно меняется; он максимален в периоды противостояний, повторяющиеся через два с небольшим года (например, в апреле 1999 и в июне 2001). Особенно близок и ярок Марс в периоды великих противостояний, происходящих, если он в момент противостояния проходит вблизи перигелия; это случается через каждые 15-17 лет (ближайшее в августе 2003). В телескоп на Марсе видны яркие оранжевые области и более темные районы, тон которых меняется в зависимости от сезона. На полюсах лежат ярко-белые снежные шапки. Красноватый цвет планеты связан с большим количеством окислов железа (ржавчины) в ее грунте. Состав темных областей, вероятно, напоминает земные базальты, а светлые сложены мелкодисперсным материалом.


ПОВЕРХНОСТЬ МАРСА вблизи посадочного блока "Викинг-1". Крупные обломки камня имеют размер около 30 см.


В основном наши знания о Марсе получены автоматическими станциями. Самыми результативными оказались два орбитальных и два посадочных аппарата экспедиции "Викинг", которые опустились на Марс 20 июля и 3 сентября 1976 в областях Хриса (22° с.ш., 48° з.д.) и Утопия (48° с.ш., 226° з.д.), причем "Викинг-1" работал до ноября 1982. Оба они сели в классических светлых областях и оказались в красноватой песчаной пустыне, усыпанной темными камнями. 4 июля 1997 зонд "Марс пасфайндер" (США) в долину Ареса (19° с.ш., 34° з.д.) первый автоматический самоходный аппарат, обнаруживший смешанные породы и, возможно, обточенную водой и перемешанную с песком и глиной гальку, что указывает на сильные изменения марсианского климата и наличие в прошлом большого количества воды. Разреженная атмосфера Марса состоит на 95% из углекислого газа и на 3% из азота. В малом количестве присутствуют водяной пар, кислород и аргон. Среднее давление у поверхности 6 мбар (т. е. 0,6% земного). При таком низком давлении не может быть жидкой воды. Средняя дневная температура 240 К, а максимальная летом на экваторе достигает 290 К. Суточные колебания температуры около 100 К. Таким образом, климат Марса - это климат холодной, обезвоженной высокогорной пустыни. В высоких широтах Марса зимой температура опускается ниже 150 К и атмосферный углекислый газ (CO2) замерзает и выпадает на поверхность белым снегом, образуя полярную шапку. Периодическая конденсация и сублимация полярных шапок вызывает сезонные колебания давления атмосферы на 30%. К концу зимы граница полярной шапки опускается до 45°-50° широты, а летом от нее остается небольшая область (300 км диаметром у южного полюса и 1000 км у северного), вероятно, состоящая из водяного льда, толщина которого может достигать 1-2 км. Иногда на Марсе дуют сильные ветры, поднимающие в воздух тучи мелкого песка. Особенно мощные пылевые бури бывают в конце весны в южном полушарии, когда Марс проходит через перигелий орбиты и солнечное тепло особенно велико. На недели и даже месяцы атмосфера становится непрозрачной от желтой пыли. Орбитальные аппараты "Викингов" передали изображения мощных песчаных дюн на дне крупных кратеров. Отложения пыли так сильно меняют вид марсианской поверхности от сезона к сезону, что это заметно даже с Земли при наблюдении в телескоп. В прошлом эти сезонные изменения цвета поверхности некоторые астрономы считали признаком растительности на Марсе. Геология Марса весьма разнообразна. Большие пространства южного полушария покрыты старыми кратерами, оставшимися от эпохи древней метеоритной бомбардировки (4 млрд. лет назад). Значительная часть северного полушария покрыта более молодыми лавовыми потоками. Особенно интересна возвышенность Фарсида (10° с.ш., 110° з.д.), на которой расположены несколько гигантских вулканических гор. Высочайшая среди них - гора Олимп - имеет поперечник у основания 600 км и высоту 25 км. Хотя признаков вулканической активности сейчас нет, возраст лавовых потоков не превышает 100 млн. лет, что немного по сравнению с возрастом планеты 4,6 млрд. лет.



Хотя древние вулканы указывают на некогда мощную активность марсианских недр, признаков тектоники плит нет: отсутствуют складчатые горные пояса и другие указатели сжатия коры. Однако есть мощные рифтовые разломы, крупнейший из которых - долины Маринера - тянется от Фарсиды к востоку на 4000 км при максимальной ширине 700 км и глубине 6 км. Одним из интереснейших геологических открытий, сделанных по снимкам с космических аппаратов, стали разветвленные извилистые долины длиной в сотни километров, напоминающие высохшие русла земных рек. Это наводит на мысль о более благоприятном климате в прошлом, когда температура и давление могли быть выше и по поверхности Марса текли реки. Правда, расположение долин в южных, сильно кратерированных районах Марса указывает на то, что реки на Марсе были очень давно, вероятно, в первые 0,5 млрд. лет его эволюции. Теперь вода лежит на поверхности в виде льда полярных шапок и, возможно, под поверхностью в виде слоя вечной мерзлоты. Внутреннее строение Марса изучено слабо. Его низкая средняя плотность свидетельствует об отсутствии значительного металлического ядра; во всяком случае оно не расплавлено, что следует из отсутствия у Марса магнитного поля. Сейсмометр на посадочном блоке аппарата "Викинг-2" не зафиксировал сейсмической активности планеты за 2 года работы (на "Викинге-1" сейсмометр не действовал). Марс имеет два маленьких спутника - Фобос и Деймос. Оба они неправильной формы, покрыты метеоритными кратерами и, вероятно, являются астероидами, захваченными планетой в далеком прошлом. Фобос обращается вокруг планеты по очень низкой орбите и продолжает приближаться к Марсу под действием приливов; позже он будет разрушен притяжением планеты.
Юпитер. Крупнейшая планета Солнечной системы, Юпитер, в 11 раз больше Земли и в 318 раз массивнее ее. Его низкая средняя плотность (1,3 г/см3) указывает на состав, близкий к солнечному: в основном это водород и гелий. Быстрое вращение Юпитера вокруг оси вызывает его полярное сжатие на 6,4%. В телескоп на Юпитере видны облачные полосы, параллельные экватору; светлые зоны в них перемежаются красноватыми поясами. Вероятно, светлые зоны - это области восходящих потоков, где видны верхушки аммиачных облаков; красноватые пояса связаны с нисходящими потоками, яркий цвет которых определяют гидросульфат аммония, а также соединения красного фосфора, серы и органические полимеры. Кроме водорода и гелия в атмосфере Юпитера спектроскопически обнаружены CH4, NH3, H2O, C2H2, C2H6, HCN, CO, CO2, PH3 и GeH4. Температура на уровне верхушек аммиачных облаков 125 К, но с глубиной она увеличивается на 2,5 К/км. На глубине 60 км должен быть слой водяных облаков. Скорости движения облаков в зонах и соседних поясах существенно различаются: так, в экваториальном поясе облака движутся к востоку на 100 м/с быстрее, чем в соседних зонах. Разница скоростей вызывает сильную турбулентность на границах зон и поясов, что делает их форму весьма замысловатой. Одним из проявлений этого служат овальные вращающиеся пятна, крупнейшее из которых - Большое Красное Пятно - было открыто более 300 лет назад Кассини. Это пятно (25 000ґ15 000 км) больше диска Земли; оно имеет спиральную циклоническую структуру и совершает один оборот вокруг оси за 6 сут. Остальные пятна меньшего размера и почему-то все белые.



У Юпитера нет твердой поверхности. Верхний слой планеты протяженностью 25% радиуса состоит из жидкого водорода и гелия. Ниже, где давление превышает 3 млн. бар, а температура 10 000 К, водород переходит в металлическое состояние. Возможно, вблизи центра планеты есть жидкое ядро из более тяжелых элементов с общей массой порядка 10 масс Земли. В центре давление около 100 млн. бар и температура 20-30 тыс. К. Жидкие металлические недра и быстрое вращение планеты стали причиной ее мощного магнитного поля, которое в 15 раз сильнее земного. Огромная магнитосфера Юпитера с мощными радиационными поясами простирается за орбиты его четырех крупных спутников. Температура в центре Юпитера всегда была ниже, чем необходимо для протекания термоядерных реакций. Но внутренние запасы тепла у Юпитера, оставшиеся с эпохи формирования, велики. Даже сейчас, спустя 4,6 млрд. лет, он выделяет примерно столько же тепла, сколько получает от Солнца; в первый миллион лет эволюции мощность излучения Юпитера была в 104 раз выше. Поскольку это была эпоха формирования крупных спутников планеты, не удивительно, что их состав зависит от расстояния до Юпитера: два ближайших к нему - Ио и Европа - имеют довольно высокую плотность (3,5 и 3,0 г/см3), а более далекие - Ганимед и Каллисто - содержат много водяного льда и поэтому менее плотны (1,9 и 1,8 г/см3).
Спутники. У Юпитера не менее 16 спутников и слабое кольцо: оно удалено на 53 тыс. км от верхнего слоя облаков, имеет ширину 6000 км и состоит, по-видимому, из мелких и очень темных твердых частиц. Четыре крупнейших спутника Юпитера называют галилеевыми, поскольку их открыл Галилей в 1610; независимо от него в том же году их обнаружил немецкий астроном Марий, давший им нынешние имена - Ио, Европа, Ганимед и Каллисто. Наименьший из спутников - Европа - чуть меньше Луны, а Ганимед больше Меркурия. Все они видны в бинокль.



На поверхности Ио "Вояджеры" обнаружили несколько действующих вулканов, выбрасывающих вещество на сотни километров вверх. Поверхность Ио покрыта рыжеватыми отложениями серы и светлыми пятнами двуокиси серы - продуктами вулканических извержений. В виде газа двуокись серы образует крайне разреженную атмосферу Ио. Энергия вулканической деятельности черпается из приливного влияния планеты на спутник. Орбита Ио проходит в радиационных поясах Юпитера, и давно уже установлено, что спутник сильно взаимодействует с магнитосферой, вызывая в ней радиовсплески. В 1973 вдоль орбиты Ио обнаружен тор из светящихся атомов натрия; позже там были найдены ионы серы, калия и кислорода. Эти вещества выбиваются энергичными протонами радиационных поясов либо прямо из поверхности Ио, либо из газовых "плюмажей" вулканов. Хотя приливное влияние Юпитера на Европу слабее, чем на Ио, его недра тоже могут быть частично расплавлены. Спектральные исследования показывают, что на поверхности Европы лежит водяной лед, а его красноватый оттенок, вероятно, связан с загрязнением серой от Ио. Почти полное отсутствие ударных кратеров указывает на геологическую молодость поверхности. Складки и разломы ледяной поверхности Европы напоминают ледяные поля земных полярных морей; вероятно, на Европе под слоем льда находится жидкая вода. Ганимед - крупнейший спутник в Солнечной системе. Его плотность невелика; вероятно, он состоит наполовину из каменных пород и наполовину из льда. Его поверхность выглядит странно и хранит следы расширения коры, возможно, сопровождавшего процесс дифференциации недр. Участки древней кратерированной поверхности разделены более молодыми желобами, длиной в сотни километров и шириной 1-2 км, лежащими на расстоянии 10-20 км друг от друга. Вероятно, это более молодой лед, образовавшийся при излиянии воды сквозь трещины сразу после дифференциации около 4 млрд. лет назад. Каллисто похож на Ганимед, но на его поверхности нет следов разломов; вся она очень старая и сильно кратерированная. Поверхность обоих спутников покрыта льдом вперемежку с горными породами типа реголита. Но если на Ганимеде лед составляет около 50%, то на Каллисто - менее 20%. Состав горных пород Ганимеда и Каллисто, вероятно, похож на состав углеродистых метеоритов. Спутники Юпитера лишены атмосферы, если не считать разреженного вулканического газа SO2 на Ио. Из дюжины малых спутников Юпитера четыре расположены ближе галилеевых к планете; крупнейший из них Амальтея - кратерированный объект неправильной формы (размеры 270*166*150 км). Его темная поверхность - очень красная - возможно, покрыта серой с Ио. Внешние малые спутники Юпитера делятся на две группы в соответствии с их орбитами: 4 более близких к планете обращаются в прямом (относительно вращения планеты) направлении, а 4 более далеких - в обратном. Все они маленькие и темные; вероятно, они захвачены Юпитером из числа астероидов группы Троянцев (см. АСТЕРОИД).
Сатурн. Вторая по размеру планета-гигант. Это водородно-гелиевая планета, однако относительное содержание гелия у Сатурна меньше, чем у Юпитера; ниже и его средняя плотность. Быстрое вращение Сатурна приводит к его большой сплюснутости (11%).


САТУРН и его спутники, сфотографированные при пролете космического зонда "Вояджер".


В телескоп диск Сатурна выглядит не так эффектно, как Юпитер: он имеет коричневато-оранжевую окраску и слабо выраженные пояса и зоны. Причина в том, что верхние области его атмосферы заполнены рассеивающим свет аммиачным (NH3) туманом. Сатурн дальше от Солнца, поэтому температура его верхней атмосферы (90 К) на 35 К ниже, чем у Юпитера, и аммиак находится в сконденсированном состоянии. С глубиной температура атмосферы возрастает на 1,2 К/км, поэтому облачная структура напоминает юпитерианскую: под слоем облаков из гидросульфата аммония находится слой водяных облаков. Кроме водорода и гелия в атмосфере Сатурна спектроскопически обнаружены CH4, NH3, C2H2, C2H6, C3H4, C3H8 и PH3. По внутреннему строению Сатурн также напоминает Юпитер, хотя из-за меньшей массы имеет меньшее давление и температуру в центре (75 млн. бар и 10 500 К). Магнитное поле Сатурна сравнимо с земным. Как и Юпитер, Сатурн выделяет внутреннее тепло, причем вдвое больше, чем получает от Солнца. Правда, это отношение больше, чем у Юпитера, потому, что расположенный вдвое дальше Сатурн получает от Солнца вчетверо меньше тепла.
Кольца Сатурна. Сатурн опоясан уникально мощной системой колец до расстояния 2,3 радиуса планеты. Они легко различимы при наблюдении в телескоп, а при изучении с близкого расстояния демонстрируют исключительное разнообразие: от массивного кольца B до узкого кольца F, от спиральных волн плотности до совершенно неожиданных радиально вытянутых "спиц", открытых "Вояджерами". Частицы, заполняющие кольца Сатурна, значительно лучше отражают свет, чем вещество темных колец Урана и Нептуна; их исследование в разных спектральных диапазонах показывает, что это "грязные снежки" с размерами порядка метра. Три классических кольца Сатурна по порядку от внешнего к внутреннему обозначают буквами A, B и C. Кольцо B довольно плотное: радиосигналы от "Вояджера" проходили через него с трудом. Промежуток в 4000 км между кольцами A и B, называемый делением (или щелью) Кассини, в действительности не пуст, а по плотности сравним с бледным кольцом C, которое раньше называли креповым кольцом. Вблизи внешнего края кольца A есть менее заметная щель Энке. В 1859 Максвелл заключил, что кольца Сатурна должны состоять из отдельных частиц, обращающихся по орбитам вокруг планеты. В конце 19 в. это было подтверждено спектральными наблюдениями, показавшими, что внутренние части колец обращаются быстрее внешних. Поскольку кольца лежат в плоскости экватора планеты, а значит, наклонены к орбитальной плоскости на 27°, Земля дважды за 29,5 лет попадает в плоскость колец, и мы наблюдаем их с ребра. В этот момент кольца "пропадают", что доказывает их очень малую толщину - не более нескольких километров. Детальные изображения колец, полученные "Пионером-11" (1979) и "Вояджерами" (1980 и 1981), показали значительно более сложную их структуру, чем ожидалось. Кольца разделены на сотни отдельных колечек с типичной шириной в несколько сотен километров. Даже в щели Кассини оказалось не менее пяти колечек. Детальный анализ показал, что кольца неоднородны как по размеру, так, возможно, и по составу частиц. Сложная структура колец, вероятно, обязана гравитационному влиянию маленьких близких к ним спутников, о которых прежде и не подозревали. Вероятно, самым необычным является тончайшее кольцо F, открытое в 1979 "Пионером" на расстоянии 4000 км от внешнего края кольца A. "Вояджер-1" обнаружил, что кольцо F перекручено и заплетено, как коса, но пролетавший 9 мес. спустя "Вояджер-2" нашел строение кольца F значительно более простым: "пряди" вещества уже не переплетались между собой. Такая структура и ее быстрая эволюция частично объясняются влиянием двух маленьких спутников (Прометей и Пандора), движущихся у внешнего и внутреннего краев этого кольца; их называют "сторожевыми псами". Не исключено, однако, присутствие еще более мелких тел или временных скоплений вещества внутри самого кольца F.
Спутники. У Сатурна не менее 18 спутников. Большинство их них, вероятно, ледяные. У некоторых очень интересные орбиты. Например, у Януса и Эпиметея почти одинаковые радиусы орбит. По орбите Дионы на 60° впереди нее (это положение называют лидирующей точкой Лагранжа) движется меньший спутник Елена. Тефию сопровождают два маленьких спутника - Телесто и Калипсо - в лидирующей и отстающей точках Лагранжа ее орбиты. С хорошей точностью измерены радиусы и массы семи спутников Сатурна (Мимас, Энцелад, Тефия, Диона, Рея, Титан и Япет). Все они в основном ледяные. Те, что поменьше, имеют плотности 1-1,4 г/см3, что близко к плотности водяного льда с большей или меньшей примесью горных пород. Содержат ли они метановый и аммиачный лед, пока не ясно. Более высокая плотность Титана (1,9 г/см3) есть результат его большой массы, вызывающей сжатие недр. По диаметру и плотности Титан очень похож на Ганимеда; вероятно, и внутренняя структура у них схожая. Титан второй по размеру спутник в Солнечной системе, а уникален он тем, что имеет постоянную мощную атмосферу, состоящую в основном из азота и небольшого количества метана. Давление у его поверхности 1,6 бар, температура 90 К. При таких условиях на поверхности Титана может быть жидкий метан. Верхние слои атмосферы до высот 240 км заполнены оранжевыми облаками, вероятно, состоящими из частиц органических полимеров, синтезирующихся под влиянием ультрафиолетовых лучей Солнца. Остальные спутники Сатурна слишком малы, чтобы иметь атмосферу. Их поверхности покрыты льдом и сильно кратерированы. Лишь на поверхности Энцелада значительно меньше кратеров. Вероятно, приливное влияние Сатурна поддерживает его недра в расплавленном состоянии, а удары метеоритов приводят к излиянию воды и заполнению кратеров. Некоторые астрономы считают, что частицы с поверхности Энцелада образовали широкое кольцо E, протянувшееся вдоль его орбиты. Очень интересен спутник Япет, у которого заднее (относительно направления орбитального движения) полушарие покрыто льдом и отражает 50% падающего света, а переднее полушарие такое темное, что отражает только 5% света; оно покрыто чем-то вроде вещества углистых метеоритов. Возможно, на переднее полушарие Япета попадает вещество, выброшенное под действием метеоритных ударов с поверхности внешнего спутника Сатурна Фебы. В принципе это возможно, поскольку Феба движется по орбите в обратном направлении. К тому же поверхность Фебы довольно темная, но точных данных о ней пока нет.
Уран. Уран имеет цвет морской волны и выглядит невыразительно, поскольку верхние слои его атмосферы заполнены туманом, сквозь который пролетавшему вблизи него в 1986 зонду "Вояджер-2" с трудом удалось увидеть несколько облаков. Ось планеты наклонена к орбитальной оси на 98,5°, т.е. лежит почти в плоскости орбиты. Поэтому каждый из полюсов некоторое время обращен прямо на Солнце, а затем на полгода (42 земных года) уходит в тень. Атмосфера Урана содержит в основном водород, 12-15% гелия и немного других газов. Температура атмосферы около 50 К, хотя в верхних разреженных слоях она поднимается до 750 К днем и 100 К ночью. Магнитное поле Урана по напряженности у поверхности немного слабее земного, а его ось наклонена к оси вращения планеты на 55°. О внутренней структуре планеты известно мало. Вероятно, облачный слой простирается до глубины 11 000 км, затем следует горячий водяной океан глубиной 8000 км, а под ним расплавленное каменное ядро радиусом 7000 км.
Кольца. В 1976 были открыты уникальные кольца Урана, состоящие из отдельных тонких колечек, самая широкая из которых имеет толщину 100 км. Кольца расположены в диапазоне расстояний от 1,5 до 2,0 радиусов планеты от ее центра. В отличие от колец Сатурна кольца Урана состоят из крупных темных камней. Полагают, что в каждом кольце движется маленький спутник или даже два спутника, как в кольце F Сатурна.
Спутники. Открыто 20 спутников Урана. Крупнейшие - Титания и Оберон - диаметром по 1500 км. Есть еще 3 крупных, размером более 500 км, остальные очень маленькие. Спектры поверхности пяти крупных спутников указывают на большое количество водяного льда. Поверхности всех спутников покрыты метеоритными кратерами.
Нептун. Внешне Нептун похож на Уран; в его спектре также доминируют полосы метана и водорода. Поток тепла от Нептуна заметно превышает мощность падающего на него солнечного тепла, что указывает на существование внутреннего источника энергии. Возможно, значительная часть внутреннего тепла выделяется в результате приливов, вызванных массивным спутником Тритоном, который обращается в обратном направлении на расстоянии 14,5 радиуса планеты. "Вояджер-2", пролетев в 1989 на расстоянии 5000 км от облачного слоя, обнаружил у Нептуна еще 6 спутников и 5 колец. В атмосфере были открыты Большое Темное Пятно и сложная система вихревых потоков. На розоватой поверхности Тритона обнаружились удивительные геологические детали, включая мощные гейзеры. Открытый "Вояджером" спутник Протей оказался больше Нереиды, обнаруженной с Земли еще в 1949.
Плутон. У Плутона сильно вытянутая и наклоненная орбита; в перигелии он приближается к Солнцу на 29,6 а.е. и удаляется в афелии на 49,3 а.е. В 1989 Плутон прошел перигелий; с 1979 по 1999 он был ближе к Солнцу, чем Нептун. Однако из-за большого наклона орбиты Плутона его путь никогда не пересекается с Нептуном. Средняя температура поверхности Плутона 50 К, она изменяется от афелия к перигелию на 15 К, что весьма заметно при таких низких температурах. В частности, это приводит к появлению разреженной метановой атмосферы в период прохождения планетой перигелия, но ее давление в 100 000 раз меньше давления земной атмосферы. Плутон не может долго удерживать атмосферу - ведь он меньше Луны. Спутник Плутона Харон обращается за 6,4 сут близко от планеты. Его орбита очень сильно наклонена к эклиптике, так что затмения происходят лишь в редкие эпохи прохождения Земли через плоскость орбиты Харона. Яркость Плутона регулярно меняется с периодом 6,4 сут. Следовательно, Плутон вращается синхронно с Хароном и на поверхности у него есть крупные пятна. По отношению к размеру планеты Харон очень велик. Часто пару Плутон - Харон называют "двойной планетой". Одно время Плутон считали "сбежавшим" спутником Нептуна, но после открытия Харона это выглядит маловероятным.
ПЛАНЕТЫ: СРАВНИТЕЛЬНЫЙ АНАЛИЗ
Внутреннее строение. Объекты Солнечной системы с точки зрения их внутреннего строения можно разделить на 4 категории: 1) кометы, 2) малые тела, 3) планеты земного типа, 4) газовые гиганты. Кометы - простые ледяные тела с особым составом и историей. К категории малых тел относят все прочие небесные объекты с радиусами менее 200 км: межпланетные пылинки, частицы планетных колец, малые спутники и большинство астероидов. За время эволюции Солнечной системы все они потеряли тепло, выделившееся в ходе первичной аккреции, и остыли, не имея достаточного размера, чтобы нагреться из-за происходящего в них радиоактивного распада. Планеты земного типа весьма разнообразны: от "железного" Меркурия до загадочной ледяной системы Плутон - Харон. К категории газовых гигантов помимо крупнейших планет по формальным признакам иногда относят и Солнце. Важнейшим параметром, определяющим состав планеты, служит средняя плотность (полная масса, деленная на полный объем). Ее значение сразу указывает, какова планета - "каменная" (силикаты, металлы), "ледяная" (вода, аммиак, метан) или "газовая" (водород, гелий). Хотя поверхности Меркурия и Луны поразительно похожи, их внутренний состав совершенно различен, поскольку средняя плотность Меркурия в 1,6 раза выше, чем у Луны. При этом масса Меркурия невелика, а значит, его высокая плотность в основном обязана не сжатию вещества под действием силы тяжести, а особому химическому составу: Меркурий содержит по массе 60-70% металлов и 30-40% силикатов. Содержание металлов на единицу массы у Меркурия значительно выше, чем у любой другой планеты. Венера вращается настолько медленно, что ее экваториальное вздутие измеряется лишь долями метра (у Земли - 21 км) и совершенно не может сообщить что-либо о внутренней структуре планеты. Ее гравитационное поле коррелирует с топографией поверхности, в отличие от Земли, где континенты "плавают". Возможно, континенты Венеры фиксируются жесткостью мантии, но не исключено, что рельеф Венеры динамически поддерживается энергичной конвекцией в ее мантии. Поверхность Земли существенно моложе поверхностей других тел Солнечной системы. Причиной этого в основном служит интенсивная переработка вещества коры в результате тектоники плит. Заметно влияет и эрозия под действием жидкой воды. На поверхностях большинства планет и спутников доминируют кольцевые структуры, связанные с ударными кратерами или вулканами; на Земле тектоника плит привела к тому, что ее крупнейшие возвышенности и низменности носят линейный характер. Примером служат горные хребты, вырастающие в местах столкновения двух плит; океанические желоба, отмечающие места, где одна плита уходит под другую (зоны субдукции); а также срединно-океанические хребты в тех местах, где две плиты расходятся под действием всплывающей из мантии молодой коры (зоны спрединга). Таким образом, рельеф земной поверхности отражает динамику ее недр. Небольшие образцы верхней мантии Земли становятся доступны для лабораторного изучения, когда они поднимаются к поверхности в составе магматических пород. Известны ультраосновные включения (ультрабазиты, бедные силикатами и богатые Mg и Fe), содержащие минералы, которые формируются только при высоком давлении (например, алмаз), а также парные минералы, способные сосуществовать только в том случае, если они сформировались при высоком давлении. Эти включения позволили с достаточной точностью оценить состав верхней мантии до глубины ок. 200 км. Минералогический состав глубинной мантии известен не так хорошо, поскольку пока нет точных данных о распределении температуры с глубиной и не воспроизведены в лаборатории основные фазы глубинных минералов. Ядро Земли подразделяют на внешнее и внутренее. Внешнее ядро не пропускает поперечные сейсмические волны, следовательно, оно жидкое. Однако на глубине 5200 км вещество ядра вновь начинает проводить поперечные волны, но с низкой скоростью; это означает, что внутреннее ядро частично "заморожено". Плотность ядра ниже, чем была бы у чистой железо-никелевой жидкости, вероятно, из-за примеси серы. Четверть марсианской поверхности занимает возвышенность Фарсида, поднявшаяся на 7 км относительно среднего радиуса планеты. Именно на ней расположено большинство вулканов, при формировании которых лава растекалась на большое расстояние, что характерно для расплавленных пород, богатых железом. Одна из причин огромного размера марсианских вулканов (крупнейших в Солнечной системе) состоит в том, что, в отличие от Земли, у Марса нет плит, движущихся относительно горячих очагов в мантии, поэтому вулканы долго растут на одном месте. У Марса нет магнитного поля и не обнаружена сейсмическая активность. В его грунте оказалось много окислов железа, что указывает на слабую дифференциацию недр.
Внутреннее тепло. Многие планеты излучают больше тепла, чем получают от Солнца. Количество тепла, выработанное и сохранившееся в недрах планеты, зависит от ее истории. Для формирующейся планеты главным источником тепла служит метеоритная бомбардировка; затем тепло выделяется в ходе дифференциации недр, когда наиболее плотные компоненты, такие, как железо и никель, оседают к центру и формируют ядро. Юпитер, Сатурн и Нептун (но, по некоторым причинам, - не Уран) все еще излучают тепло, запасенное ими в период формирования 4,6 млрд. лет назад. У планет земного типа важным источником нагрева в нынешнюю эпоху служит распад радиоактивных элементов - урана, тория и калия, - входивших в небольшом количестве в исходный хондритный (солнечный) состав. Рассеяние энергии движения в приливных деформациях - так называемая "приливная диссипация" - служит главным источником нагрева Ио и играет заметную роль в эволюции некоторых планет, вращение которых (например, Меркурия) замедлили приливы.
Конвекция в мантии. Если подогревать жидкость достаточно сильно, в ней развивается конвекция, поскольку теплопроводность и излучение не справляются с подводимым локально потоком тепла. Может показаться странным утверждение, что недра планет земного типа охвачены конвекцией, как жидкость. Разве мы не знаем, что по данным сейсмологии в земной мантии распространяются поперечные волны и, следовательно, мантия состоит не из жидкости, а из твердых пород? Но возьмем обычную стекольную замазку: при медленном нажиме она ведет себя как вязкая жидкость, при резком нажиме - как эластичное тело, а при ударе - как камень. Значит, чтобы понять, как ведет себя вещество, мы должны принимать во внимание, в какой шкале времени происходят процессы. Поперечные сейсмические волны проходят сквозь земные недра за минуты. В геологической шкале времени, измеряемой миллионами лет, породы деформируются пластически, если к ним постоянно приложено значительное напряжение. Поразительно, что земная кора все еще выпрямляется, возвращаясь к прежней форме, которую она имела до последнего оледенения, закончившегося 10 000 лет назад. Изучив возраст поднявшихся берегов Скандинавии, Н.Хаскель вычислил в 1935, что вязкость земной мантии в 1023 раз больше вязкости жидкой воды. Но и при этом математический анализ показывает, что земная мантия находится в состоянии интенсивной конвекции (такое движение земных недр можно было бы увидеть в ускоренном кинофильме, где за секунду проходит миллион лет). Аналогичные вычисления показывают, что конвективными мантиями, вероятно, обладают также Венера, Марс и, в меньшей степени, Меркурий и Луна. Природу конвекции в газовых планетах-гигантах мы только начинаем разгадывать. Известно, что на конвективные движения сильно влияет быстрое вращение, которое существует у планет-гигантов, но экспериментально изучить конвекцию во вращающейся сфере с центральным притяжением очень нелегко. До сих пор наиболее точные эксперименты такого рода проводили в условиях микрогравитации на околоземной орбите. Эти опыты вместе с теоретическими расчетами и численными моделями показали, что конвекция происходит в трубках, вытянутых вдоль оси вращения планеты и изогнутых в соответствии с ее сферичностью. Такие конвективные ячейки за их форму прозвали "бананами". Давление у газовых планет-гигантов изменяется от 1 бар на уровне верхушек облаков до примерно 50 Мбар в центре. Поэтому их основной компонент - водород - пребывает на разных уровнях в разных фазах. При давлении выше 3 Мбар обычный молекулярный водород становится жидким металлом, подобным литию. Вычисления показывают, что Юпитер в основном состоит из металлического водорода. А Уран и Нептун, по-видимому, имеют протяженную мантию из жидкой воды, также являющейся неплохим проводником.
Магнитное поле. Внешнее магнитное поле планеты несет важную информацию о движении ее недр. Именно магнитное поле задает систему отсчета, в которой измеряют скорость ветра в облачной атмосфере планеты-гиганта; именно оно указывает, что в жидком металлическом ядре Земли существуют мощные потоки, а в водяных мантиях Урана и Нептуна происходит активное перемешивание. Напротив, отсутствие сильного магнитного поля у Венеры и Марса накладывает ограничения на их внутреннюю динамику. Среди планет земной группы магнитное поле Земли имеет выдающуюся интенсивность, указывая на активный динамо-эффект. Отсутствие сильного магнитного поля у Венеры не означает, что ее ядро затвердело: скорее всего, медленное вращение планеты препятствует динамо-эффекту. Уран и Нептун имеют одинаковые магнитные диполи с большим наклоном к осям планет и смещением относительно их центров; это указывает, что их магнетизм рождается в мантиях, а не в ядрах. Собственные магнитные поля имеют спутники Юпитера - Ио, Европа и Ганимед, а у Каллисто его нет. Остаточный магнетизм обнаружен у Луны.
Атмосфера. Атмосферу имеют Солнце, восемь из девяти планет и три из шестидесяти трех спутников. Каждая атмосфера имеет свой особый химический состав и тип поведения, называемый "погодой". Атмосферы делят на две группы: у планет земного типа плотная поверхность материков или океана определяет условия на нижней границе атмосферы, а у газовых гигантов атмосфера практически бездонная. У планет земного типа тонкий (0,1 км) слой атмосферы вблизи поверхности постоянно испытывает от нее нагрев или охлаждение, а при движении - трение и турбулентность (из-за неровностей рельефа); этот слой называют приземным или пограничным. У самой поверхности молекулярная вязкость как бы "приклеивает" атмосферу к земле, поэтому даже легкий ветерок создает сильный вертикальный градиент скорости, который может вызывать турбулентность. Изменение температуры воздуха с высотой контролируется конвективной неустойчивостью, поскольку снизу воздух нагревается от теплой поверхности, становится легче и всплывает; поднимаясь в области низкого давления, он расширяется и излучает тепло в космос, отчего охлаждается, становится плотнее и тонет. В результате конвекции в нижних слоях атмосферы устанавливается адиабатический вертикальный градиент температуры: например, в атмосфере Земли температура воздуха уменьшается с высотой на 6,5 К/км. Такая ситуация существует вплоть до тропопаузы (греч. "тропо" - поворот, "паузис" - прекращение), ограничивающей нижний слой атмосферы, называемый тропосферой. Именно здесь происходят те изменения, которые мы называем погодой. У Земли тропопауза проходит на высотах 8-18 км; у экватора она на 10 км выше, чем у полюсов. По причине экспоненциального уменьшения плотности с высотой 80% массы атмосферы Земли заключено в тропосфере. В ней же находится почти весь водяной пар, а значит, и облака, создающие погоду. На Венере двуокись углерода и водяной пар вместе с серной кислотой и двуокисью серы поглощают почти все инфракрасное излучение, испускаемое поверхностью. Это вызывает сильный парниковый эффект, т.е. приводит к тому, что температура поверхности Венеры на 500 К выше той, которую она имела бы при прозрачной для инфракрасного излучения атмосфере. Главными "парниковыми" газами на Земле служат водяной пар и двуокись углерода, повышающие температуру на 30 К. На Марсе двуокись углерода и атмосферная пыль вызывают слабый парниковый эффект всего в 5 К. Горячая поверхность Венеры препятствует выходу серы из состава атмосферы путем ее связывания в поверхностных породах. Двуокисью серы обогащена нижняя атмосфера Венеры, поэтому в ней на высотах от 50 до 80 км присутствует плотный слой сернокислотных облаков. Незначительное количество серосодержащих веществ обнаруживается и в земной атмосфере, в особенности после мощных вулканических извержений. В атмосфере Марса сера не зарегистрирована, следовательно, его вулканы в нынешнюю эпоху неактивны. На Земле стабильное понижение температуры с высотой в тропосфере cменяется выше тропопаузы на рост температуры с высотой. Поэтому там существует чрезвычайно устойчивый слой, названный стратосферой (лат. stratum - слой, настил). Существование постоянных тонких аэрозольных слоев и длительное пребывание там радиоактивных элементов от ядерных взрывов служат прямым доказательством отсутствия перемешивания в стратосфере. В земной стратосфере температура продолжает расти с высотой вплоть до стратопаузы, проходящей на высоте ок. 50 км. Источником тепла в стратосфере служат фотохимические реакции озона, концентрация которого максимальна на высоте ок. 25 км. Озон поглощает ультрафиолетовое излучение, поэтому ниже 75 км почти все оно преобразуется в тепло. Химия стратосферы сложна. Озон в основном образуется над экваториальными областями, но его наибольшая концентрация обнаруживается над полюсами; это указывает, что на содержание озона влияет не только химия, но и динамика атмосферы. У Марса концентрация озона также выше над полюсами, в особенности над зимним полюсом. В сухой атмосфере Марса относительно мало гидроксильных радикалов (OH), разрушающих озон. Температурные профили атмосфер планет-гигантов определены по наземным наблюдениям покрытий планетами звезд и по данным зондов, в частности, по ослаблению радиосигналов при заходе зонда за планету. У каждой из планет обнаружились тропопауза и стратосфера, выше которых лежат термосфера, экзосфера и ионосфера. Температура термосфер Юпитера, Сатурна и Урана соответственно составляет ок. 1000, 420 и 800 К. Высокая температура и относительно низкая сила тяжести на Уране позволяют атмосфере простираться до колец. Это вызывает торможение и быстрое падение пылевых частиц. Поскольку в кольцах Урана все же наблюдаются пылевые полосы, там должен быть источник пыли. Хотя температурная структура тропосферы и стратосферы в атмосферах разных планет имеет много общего, их химический состав сильно различается. Атмосферы Венеры и Марса в основном состоят из углекислого газа, но представляют два крайних примера эволюции атмосферы: у Венеры атмосфера плотная и горячая, а у Марса - холодная и разреженная. Важно понять, придет ли в конце-концов земная атмосфера к одному из этих двух типов, и всегда ли эти три атмосферы были такими разными. Судьбу исходной воды на планете можно выяснить, измеряя содержание дейтерия по отношению к легкому изотопу водорода: отношение D/H налагает ограничение на количество водорода, покидающего планету. Масса воды в атмосфере Венеры сейчас составляет 10-5 от массы земных океанов. Но отношение D/H у Венеры раз в 100 выше, чем на Земле. Если вначале это отношение было на Земле и Венере одинаковым и запасы воды на Венере за время ее эволюции не пополнялись, то стократный рост отношения D/H на Венере означает, что когда-то на ней было раз в сто больше воды, чем сейчас. Объяснение этому обычно ищут в рамках теории "парникового улетучивания", которая утверждает, что Венера никогда не была достаточно холодной для конденсации воды на ее поверхности. Если вода всегда заполняла атмосферу в виде пара, то фотодиссоциация молекул воды приводила к выделению водорода, легкий изотоп которого улетучивался из атмосферы в космос, а оставшаяся вода обогащалась дейтерием. Большой интерес вызывает сильное различие атмосфер Земли и Венеры. Считается, что современные атмосферы планет земного типа образовались в результате дегазации недр; при этом в основном выделялись пары воды и углекислый газ. На Земле вода сосредоточилась в океане, а двуокись углерода оказалась связанной в осадочных породах. Но Венера ближе к Солнцу, там жарко и нет жизни; поэтому углекислый газ остался в атмосфере. Пары воды под действием солнечного света диссоциировали на водород и кислород; водород улетучился в космос (земная атмосфера тоже быстро теряет водород), а кислород оказался связанным в горных породах. Правда, различие этих двух атмосфер может оказаться и более глубоким: до сих пор нет объяснения тому факту, что в атмосфере Венеры значительно больше аргона, чем в атмосфере Земли. Поверхность Марса представляет сейчас холодную и сухую пустыню. В самое теплое время суток температура может слегка превышать нормальную точку замерзания воды, но низкое атмосферное давление не позволяет воде на поверхности Марса быть в жидком состоянии: лед сразу превращается в пар. Тем не менее, на Марсе есть несколько каньонов, напоминающих русла высохших рек. Некоторые из них, по-видимому, прорыты кратковременными, но катастрофически мощными потоками воды, тогда как другие демонстрируют глубокие овраги и разветвленную сеть долин, что указывает на вероятное длительное существование равнинных рек в ранние периоды истории Марса. Имеются также морфологические указания, что старые кратеры Марса разрушены эрозией значительно сильнее, чем молодые, а это возможно лишь в случае, если атмосфера Марса была гораздо плотнее, чем сейчас. В начале 1960-х годов считалось, что полярные шапки Марса состоят из водяного льда. Но в 1966 Р.Лейтон и Б.Мюррей рассмотрели тепловой баланс планеты и показали, что двуокись углерода должна в большом количестве конденсироваться на полюсах, а между полярными шапками и атмосферой должен поддерживаться баланс твердой и газообразной углекислоты. Любопытно, что сезонный рост и сокращение полярных шапок приводят к колебаниям давления в марсианской атмосфере на 20% (к примеру, в салонах старых реактивных лайнеров перепады давления при взлете и посадке также составляли около 20%). На космических фотографиях полярных шапок Марса видны удивительные спиральные узоры и ступенчатые террасы, которые должен был исследовать зонд "Марс полар лэндер" (1999), но его постигла неудача при посадке. Точно не известно, почему давление марсианской атмосферы так сильно понизилось, вероятно, от нескольких бар в первый миллиард лет до 7 мбар сейчас. Не исключено, что выветривание поверхностных пород извлекло двуокись углерода из атмосферы, связав углерод в карбонатных породах, как это произошло на Земле. При температуре поверхности 273 К этот процесс мог уничтожить углекислотную атмосферу Марса с давлением в несколько бар всего за 50 млн. лет; очевидно, оказалось весьма трудно поддерживать теплый и влажный климат на Марсе в течение всей истории Солнечной системы. Подобный процесс также влияет на содержание углерода в земной атмосфере. Около 60 бар углерода связано сейчас в карбонатных породах Земли. Очевидно, в прошлом земная атмосфера содержала значительно больше углекислого газа, чем сейчас, и температура атмосферы была выше. Основное различие эволюции атмосферы Земли и Марса в том, что на Земле тектоника плит поддерживает круговорот углерода, тогда как на Марсе он "заперт" в породах и полярных шапках.
Околопланетные кольца. Любопытно, что системы колец есть у каждой из планет-гигантов, но нет ни у одной планеты земного типа. Те, кто впервые смотрит на Сатурн в телескоп, часто восклицают: "Ну, прямо как на картинке!", видя его изумительно яркие и четкие кольца. Однако кольца остальных планет почти не видны в телескоп. Бледное кольцо Юпитера испытывает загадочное взаимодействие с его магнитным полем. Уран и Нептун окружены несколькими тонкими кольцами каждый; структура этих колец отражает их резонансное взаимодействие с близкими спутниками. Особенно интригуют исследователей три кольцевые дуги Нептуна, поскольку они четко ограничены как в радиальном, так и в азимутальном направлениях. Большой неожиданностью было открытие узких колец Урана во время наблюдения покрытия им звезды в 1977. Дело в том, что существует немало явлений, которые всего за несколько десятилетий могли бы заметно расширить узкие кольца: это взаимные столкновения частиц, эффект Пойнтинга - Робертсона (радиационное торможение) и плазменное торможение. С практической точки зрения узкие кольца, положение которых можно измерить с высокой точностью, оказались весьма удобным индикатором орбитального движения частиц. Прецессия колец Урана позволила выяснить распределение массы внутри планеты. Те, кому приходилось вести автомобиль с запыленным ветровым стеклом в сторону восходящего или заходящего Солнца, знают, что пылинки сильно рассеивают свет в направлении его падения. Именно поэтому трудно обнаружить пыль в планетных кольцах, наблюдая их с Земли, т.е. со стороны Солнца. Но каждый раз, когда космический зонд пролетал мимо внешней планеты и "оглядывался" назад, мы получали изображения колец в проходящем свете. На таких изображениях Урана и Нептуна как раз и были открыты неизвестные до этого пылевые кольца, которые значительно шире давно известных узких колец. Важнейшей темой современной астрофизики являются вращающиеся диски. Многие динамические теории, развитые для объяснения структуры галактик, можно использовать и для изучения планетных колец. Так, кольца Сатурна стали объектом для проверки теории самогравитирующих дисков. На свойство самогравитации этих колец указывает наличие в них как спиральных волн плотности, так и спиральных изгибных волн, которые видны на детальных изображениях. Волновой пакет, обнаруженный в кольцах Сатурна, был приписан сильному горизонтальному резонансу планеты со спутником Япетом, который возбуждает спиральные волны плотности во внешней части деления Кассини. Высказывалось немало догадок о происхождении колец. Важно, что они лежат внутри зоны Роша, т.е. на таком расстоянии от планеты, где взаимное притяжение частиц меньше, чем разница сил притяжения их планетой. Внутри зоны Роша из рассеянных частиц не может сформироваться спутник планеты. Возможно, вещество колец осталось "невостребованным" с момента формирования самой планеты. Но, может быть, это следы недавней катастрофы - столкновения двух спутников или разрушения спутника приливными силами планеты. Если собрать все вещество колец Сатурна, то получится тело радиусом ок. 200 км. В кольцах остальных планет вещества значительно меньше.
МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ
Астероиды. Множество малых планет - астероидов - обращается вокруг Солнца в основном между орбитами Марса и Юпитера. Название "астероид" астрономы приняли потому, что в телескоп они выглядят как слабые звездочки (aster по-гречески "звезда"). Сначала думали, что это осколки некогда существовавшей большой планеты, но затем стало ясно, что астероиды никогда не составляли единого тела; скорее всего, это вещество не смогло объединиться в планету из-за влияния Юпитера. По оценкам, суммарная масса всех астероидов составляет в нашу эпоху всего 6% массы Луны; половина этой массы заключена в трех крупнейших - 1 Церере, 2 Палладе и 4 Весте. Номер в обозначении астероида указывает порядок его открытия. Астероидам с точно известными орбитами присваивают не только порядковые номера, но и имена: 3 Юнона, 44 Ниса, 1566 Икар. Известны точные элементы орбит более 8000 астероидов из 33 000 открытых на сегодня. Существует не менее двухсот астероидов радиусом более 50 км и около тысячи - более 15 км. По оценкам, около миллиона астероидов имеет радиус более 0,5 км. Крупнейший из них - Церера, довольно темный и сложный для наблюдения объект. Требуются особые методы адаптивной оптики, чтобы при помощи наземных телескопов различить детали поверхности даже крупных астероидов. Радиусы орбит большинства астероидов заключены между 2,2 и 3,3 а.е., эту область называют "поясом астероидов". Но он не весь заполнен орбитами астероидов: на расстояниях 2,50, 2,82 и 2,96 а.е. их нет; эти "окна" образовались под влиянием возмущений со стороны Юпитера. Все астероиды обращаются в прямом направлении, но орбиты многих из них заметно вытянуты и наклонены. Некоторые астероиды имеют весьма любопытные орбиты. Так, группа Троянцев движется по орбите Юпитера; большинство из этих астероидов очень темные и красные. У астероидов группы Амура орбиты подходят или пересекают орбиту Марса; в их числе 433 Эрос. Астероиды группы Аполлона пересекают орбиту Земли; среди них 1533 Икар, ближе всех подходящий к Солнцу. Очевидно, рано или поздно эти астероиды испытывают опасное сближение с планетами, которое заканчивается столкновением или серьезным изменением орбиты. Наконец, недавно в особый класс выделены астероиды группы Атона, орбиты которых почти целиком лежат внутри орбиты Земли. Все они очень маленького размера. Яркость многих астероидов периодически меняется, что естественно для вращающихся неправильных тел. Периоды их вращения лежат в интервале от 2,3 до 80 ч и в среднем близки к 9 ч. Своей неправильной формой астероиды обязаны многочисленным взаимным столкновениям. Примеры экзотической формы дают 433 Эрос и 643 Гектор, у которых отношение длин осей достигает 2,5. В прошлом вся внутренняя часть Солнечной системы, вероятно, была похожа на главный пояс астероидов. Находящийся вблизи этого пояса Юпитер своим притяжением сильно возмущает движение астероидов, увеличивая их скорости и приводя к сталкиванию, а это чаще разрушает, чем объединяет их. Подобно недостроенной планете, пояс астероидов дает нам уникальную возможность увидеть части конструкции перед тем, как они скроются внутри готового тела планеты. Изучая свет, отраженный астероидами, удается немало узнать о составе их поверхности. Большинство астероидов на основе их коэффициента отражения и цвета отнесены к трем группам, аналогичным группам метеоритов: астероиды типа C имеют темную поверхность, как углистые хондриты (см. ниже Метеориты), тип S ярче и краснее, а тип M похож на железо-никелевые метеориты. Например, 1 Церера похожа на углистые хондриты, а 4 Веста - на базальтовые эвкриты. Это указывает, что происхождение метеоритов связано с поясом астероидов. Поверхность астероидов покрыта мелко раздробленной породой - реголитом. Довольно странно, что он удерживается на поверхности после удара метеоритов - ведь у 20-км астероида сила тяжести 10-3 g, а скорость покидания поверхности всего 10 м/с. Кроме цвета сейчас известно множество характерных инфракрасных и ультрафиолетовых спектральных линий, используемых для классификации астероидов. По этим данным выделяют 5 основных классов: A, C, D, S и T. Астероиды 4 Веста, 349 Дембовска и 1862 Аполлон не вписались в эту классификацию: каждый их них занимал особое положение и стал прототипом новых классов, соответственно V, R и Q, в которых теперь присутствуют и другие астероиды. Из многочисленной группы С-астероидов в дальнейшем выделились классы B, F и G. Современная классификация насчитывает 14 типов астероидов, обозначенных (в порядке уменьшения количества членов) буквами S, C, M, D, F, P, G, E, B, T, A, V, Q, R. Поскольку альбедо у С-астероидов ниже, чем у S-астероидов, происходит наблюдательная селекция: темные С-астероиды сложнее обнаружить. С учетом этого самым многочисленным типом оказываются именно С-астероиды. Из сравнения спектров астероидов различного типа со спектрами образцов чистых минералов сформировались три большие группы: примитивная (C, D, P, Q), метаморфическая (F, G, B, T) и магматическая (S, M, E, A, V, R). Поверхность примитивных астероидов богата углеродом и водой; метаморфические содержат меньше воды и летучих, чем примитивные; магматические покрыты сложными минералами, вероятно, сформировавшимися из расплава. Внутренняя область главного пояса астероидов богато населена магматическими астероидами, в средней части пояса преобладают метаморфические, а на периферии - примитивные астероиды. Это указывает, что в период формирования Солнечной системы в поясе астероидов существовал резкий градиент температуры. Классификация астероидов, основанная на их спектрах, группирует тела по составу поверхности. Но если рассматривать элементы их орбит (большую полуось, эксцентриситет, наклон), то выделяются динамические семейства астероидов, впервые описанные К.Хираямой в 1918. Самые населенные из них - это семейства Фемиды, Эос и Корониды. Вероятно, каждое семейство представляет собой рой осколков сравнительно недавнего столкновения. Систематическое изучение Солнечной системы приводит нас к пониманию, что крупные столкновения являются скорее правилом, чем исключением, и что Земля также не застрахована от них.
Метеориты. Метеороид - это небольшое тело, обращающееся вокруг Солнца. Метеор - это метеороид, влетевший в атмосферу планеты и раскалившийся до блеска. А если его остаток упал на поверхность планеты, его называют метеоритом. Метеорит считают "упавшим", если есть очевидцы, наблюдавшие его полет в атмосфере; в противном случае его называют "найденным". "Найденных" метеоритов значительно больше, чем "упавших". Часто их находят туристы или крестьяне, работающие в поле. Поскольку метеориты имеют темный цвет и легко различимы на снегу, прекрасным местом для их поиска служат ледяные поля Антарктики, где уже найдены тысячи метеоритов. Впервые метеорит в Антарктике обнаружила в 1969 группа японских геологов, изучавших ледники. Они нашли 9 фрагментов, лежавших рядом, но относящихся к четырем разным типам метеоритов. Оказалось, что метеориты, упавшие на лед в разных местах, собираются там, где движущиеся со скоростью несколько метров в год ледниковые поля останавливаются, упираясь в горные хребты. Ветер разрушает и высушивает верхние слои льда (происходит его сухая возгонка - абляция), и метеориты концентрируются на поверхности ледника. Такие льды имеют голубоватый цвет и легко различимы с воздуха, чем и пользуются ученые при изучении мест, перспективных для сбора метеоритов. Важное падение метеорита произошло в 1969 в Чиуауа (Мексика). Первый из множества крупных осколков был найден вблизи дома в деревеньке Пуэблито де Альенде, и, следуя традиции, все найденные фрагменты этого метеорита были объединены под именем Альенде. Падение метеорита Альенде совпало с началом лунной программы "Аполлон" и дало ученым возможность отработать методы анализа внеземных образцов. В последние годы установлено, что некоторые метеориты, содержащие белые обломки, внедренные в более темную материнскую породу, являются лунными фрагментами. Метеорит Альенде относится к хондритам - важной подгруппе каменных метеоритов. Их называют так, потому что они содержат хондры (от греч. chondros, зернышко) - древнейшие сферические частицы, сконденсировавшиеся в протопланетной туманности и затем вошедшие в состав более поздних пород. Подобные метеориты позволяют оценивать возраст Солнечной системы и ее исходный состав. Богатые кальцием и алюминием включения метеорита Альенде, первыми сконденсировавшиеся из-за своей высокой температуры кипения, имеют измеренный по радиоактивному распаду возраст 4,559 ± 0,004 млрд. лет. Это наиболее точная оценка возраста Солнечной системы. К тому же все метеориты несут в себе "исторические записи", вызванные длительным влиянием на них галактических космических лучей, солнечного излучения и солнечного ветра. Изучив повреждения, нанесенные космическими лучами, можно сказать, как долго метеорит пребывал на орбите до того, как попал под защиту земной атмосферы. Прямая связь между метеоритами и Солнцем следует из того факта, что элементный состав наиболее старых метеоритов - хондритов - точно повторяет состав солнечной фотосферы. Единственные элементы, содержание которых различается, - это летучие, такие, как водород и гелий, обильно испарявшиеся из метеоритов в ходе их остывания, а также литий, частично "сгоревший" на Солнце в ядерных реакциях. Понятия "солнечный состав" и "хондритный состав" используют как равнозначные при описании упомянутого выше "рецепта солнечного вещества". Каменные метеориты, состав которых отличается от солнечного, называют ахондритами.
Мелкие осколки. Околосолнечное пространство заполнено мелкими частицами, источниками которых служат разрушающиеся ядра комет и столкновения тел, в основном, в поясе астероидов. Самые мелкие частицы постепенно приближаются к Солнцу в результате эффекта Пойнтинга - Робертсона (он заключается в том, что давление солнечного света на движущуюся частицу направлено не точно по линии Солнце - частица, а в результате аберрации света отклонено назад и поэтому тормозит движение частицы). Падение мелких частиц на Солнце компенсируется их постоянным воспроизводством, так что в плоскости эклиптики всегда существует скопление пыли, рассеивающее солнечные лучи. В самые темные ночи оно заметно в виде зодиакального света, тянущегося широкой полосой вдоль эклиптики на западе после захода Солнца и на востоке перед его восходом. Вблизи Солнца зодиакальный свет переходит в ложную корону (F-корона, от false - ложный), которая видна только при полном затмении. С ростом углового расстояния от Солнца яркость зодиакального света быстро падает, но в антисолнечной точке эклиптики она вновь усиливается, образуя противосияние; это вызвано тем, что мелкие пылевые частицы интенсивно отражают свет назад. Время от времени метеороиды попадают в атмосферу Земли. Скорость их движения так велика (в среднем 40 км/с), что почти все они, кроме самых мелких и самых крупных, сгорают на высоте около 110 км, оставляя длинные светящиеся хвосты - метеоры, или падающие звезды. Многие метеороиды связаны с орбитами отдельных комет, поэтому метеоры наблюдаются чаще, когда Земля в определенное время года проходит вблизи таких орбит. Например, ежегодно в районе 12 августа наблюдается множество метеоров, поскольку Земля пересекает поток Персеиды, связанный с частицами, потерянными кометой 1862 III. Другой поток - Ориониды - в районе 20 октября связан с пылью от кометы Галлея.
См. также МЕТЕОР . Частицы размером менее 30 мкм могут затормозиться в атмосфере и упасть на землю, не сгорев; такие микрометеориты собирают для лабораторного анализа. Если частицы размером в несколько сантиметров и более состоят из достаточно плотного вещества, то они также не сгорают целиком и выпадают на поверхность Земли в виде метеоритов. Более 90% из них каменные; отличить их от земных пород может только специалист. Оставшиеся 10% метеоритов железные (в действительности они состоят из сплава железа и никеля). Метеориты считаются осколками астероидов. Железные метеориты были когда-то в составе ядер этих тел, разрушенных соударениями. Возможно, некоторые рыхлые и богатые летучими веществами метеориты произошли от комет, но это маловероятно; скорее всего, крупные частицы комет сгорают в атмосфере, а сохраняются лишь мелкие. Учитывая, как трудно достигнуть Земли кометам и астероидам, ясно, сколь полезным является изучение метеоритов, самостоятельно "прибывших" на нашу планету из глубин Солнечной системы.
См. также МЕТЕОРИТ .
Кометы. Обычно кометы прилетают с далекой периферии Солнечной системы и на короткое время становятся чрезвычайно эффектными светилами; в это время они привлекают всеобщее внимание, но многое в их природе до сих пор остается неясным. Новая комета обычно появляется неожиданно, и поэтому практически невозможно подготовить для встречи с ней космический зонд. Разумеется, можно не спеша подготовить и отправить зонд для встречи с одной из сотни периодических комет, орбиты которых хорошо известны; но все эти кометы, многократно сближавшиеся с Солнцем, уже постарели, почти полностью потеряли летучие вещества и стали бледными и неактивными. Лишь одна периодическая комета еще сохранила активность - это комета Галлея. Ее 30 появлений регулярно фиксировали с 240 до н.э. и назвали комету в честь астронома Э.Галлея, который предсказал ее появление в 1758. У кометы Галлея орбитальный период 76 лет, расстояние перигелия 0,59 а.е. и афелия 35 а.е. Когда в марте 1986 она пересекала плоскость эклиптики, на встречу с ней устремилась армада космических аппаратов с полусотней научных приборов. Особенно важные результаты получили два советских зонда "Вега" и европейский "Джотто", впервые передавшие изображения кометного ядра. На них видна очень неровная поверхность, покрытая кратерами, и две газовые струи, фонтанирующие на солнечной стороне ядра. Объем ядра кометы Галлея оказался больше, чем ожидалось; его поверхность, отражающая всего 4% падающего света, - одна из самых темных в Солнечной системе.



В год наблюдается порядка десяти комет, из которых только треть была открыта ранее. Их часто классифицируют по продолжительности орбитального периода: короткопериодические (3 ДРУГИЕ ПЛАНЕТНЫЕ СИСТЕМЫ
Из современных взглядов на формирование звезд следует, что рождение звезды солнечного типа должно сопровождаться образованием планетной системы. Даже если это касается только звезд, полностью подобных Солнцу (т.е. одиночных звезд спектрального класса G), то и в этом случае не менее 1% звезд Галактики (а это ок. 1 млрд. звезд) должны иметь планетные системы. Более детальный анализ показывает, что планеты могут быть у всех звезд холоднее спектрального класса F, причем даже входящих в двойные системы.



Действительно, в последние годы появились сообщения об открытии планет у других звезд. При этом сами планеты не видны: их присутствие обнаруживают по небольшому перемещению звезды, вызванному ее притяжением к планете. Орбитальное движение планеты вызывает "покачивания" звезды и периодическое изменение ее лучевой скорости, которое удается измерить по положению линий в спектре звезды (эффект Доплера). К концу 1999 сообщалось об открытии планет типа Юпитера у 30 звезд, среди которых 51 Peg, 70 Vir, 47 UMa, 55 Cnc, t Boo, u And, 16 Cyg и др. Все это близкие к Солнцу звезды, причем расстояние до ближайшей из них (Gliese 876) всего 15 св. лет. У двух радиопульсаров (PSR 1257+12 и PSR B1628-26) также обнаружены системы планет с массами порядка массы Земли. Заметить столь легкие планеты у нормальных звезд с помощью оптической техники пока не удается. Вокруг каждой звезды можно указать экосферу, в которой температура поверхности планеты позволяет существовать жидкой воде. Экосфера Солнца простирается от 0,8 до 1,1 а.е. В ней находится Земля, но не попадают Венера (0,72 а.е.) и Марс (1,52 а.е.). Вероятно, в любой планетной системе в экосферу попадает не более 1-2 планет, на которых условия благоприятствуют жизни.
ДИНАМИКА ОРБИТАЛЬНОГО ДВИЖЕНИЯ
Движение планет с высокой точностью подчиняется трем законам И. Кеплера (1571-1630), выведенными им из наблюдений: 1) Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце. 2) Радиус-вектор, соединяющий Солнце и планету, за равные промежутки времени движения планеты по орбите заметает равные площади. 3) Квадрат орбитального периода пропорционален кубу большой полуоси эллиптической орбиты. Второй закон Кеплера прямо следует из закона сохранения момента импульса и является наиболее общим из трех. Ньютон установил, что первый закон Кеплера справедлив, если сила притяжения между двумя телами обратно пропорциональна квадрату расстояния между ними, а третий закон - если эта сила к тому же пропорциональна массам тел. В 1873 Дж.Бертран доказал, что вообще только в двух случаях тела не будут двигаться одно вокруг другого по спирали: если они притягиваются по закону обратных квадратов Ньютона или по закону прямой пропорциональности Гука (описывающему упругость пружин). Замечательное свойство Солнечной системы состоит в том, что масса центральной звезды гораздо больше массы любой из планет, поэтому движение каждого члена планетной системы можно с высокой точностью рассчитать в рамках задачи о движении двух взаимно тяготеющих тел - Солнца и единственной планеты рядом с ним. Ее математическое решение известно: если скорость планеты не слишком велика, то она движется по замкнутой периодической орбите, которую можно точно вычислить. Задача о движении более чем двух тел, в общем случае называемая "проблемой N тел", гораздо сложнее из-за их хаотического движения по незамкнутым орбитам. Эта хаотичность орбит принципиально важна и позволяет понять, например, как метеориты попадают из пояса астероидов на Землю.
См. также
КЕПЛЕРА ЗАКОНЫ ;
НЕБЕСНАЯ МЕХАНИКА ;
ОРБИТА . В 1867 Д. Кирквуд первым отметил, что пустые места ("люки") в поясе астероидов расположены на таких расстояниях от Солнца, где среднее движение находится в соизмеримости (в целочисленном отношении) с движением Юпитера. Иными словами, астероиды избегают орбит, на которых период их обращения вокруг Солнца был бы кратен периоду обращения Юпитера. Два крупнейших люка Кирквуда приходятся на соизмеримости 3:1 и 2:1. Однако вблизи соизмеримости 3:2 наблюдается избыток астероидов, объединенных по этому признаку в группу Гильды. Существует также избыток астероидов группы Троянцев у соизмеримости 1:1, движущихся по орбите Юпитера на 60° впереди и 60° позади него. Ситуация с Троянцами понятна - они захвачены вблизи устойчивых точек Лагранжа (L4 и L5) на орбите Юпитера, но как объяснить люки Кирквуда и группу Гильды? Если бы на соизмеримостях были только люки, то можно было бы принять простое объяснение, предложенное самим Кирквудом, что астероиды выброшены из резонансных областей периодическим влиянием Юпитера. Но сейчас такая картина представляется слишком простой. Численные расчеты показали, что хаотические орбиты пронизывают области пространства вблизи резонанса 3:1 и что попавшие в эту область фрагменты астероидов изменяют свои орбиты с круговых на вытянутые эллиптические, регулярно приводящие их в центральную часть Солнечной системы. На таких пересекающих планетные пути орбитах метеороиды живут недолго (лишь несколько миллионов лет) перед тем, как врезаться в Марс или Землю, а при небольшом промахе - оказаться выброшенными на периферию Солнечной системы. Итак, главным источником падающих на Землю метеоритов служат люки Кирквуда, через которые проходят хаотические орбиты фрагментов астероидов. Разумеется, в Солнечной системе есть много примеров высокоупорядоченных резонансных движений. Именно так движутся близкие к планетам спутники, например Луна, всегда обращенная одним и тем же полушарием к Земле, поскольку ее орбитальный период совпадает с осевым. Пример еще более высокой синхронизации дает система Плутон - Харон, в которой не только на спутнике, но и на планете "день равен месяцу". Промежуточный характер имеет движение Меркурия, осевое вращение и орбитальное обращение которого находятся в резонансном соотношении 3:2. Однако не все тела ведут себя так просто: например, у несферического Гипериона под действием притяжения Сатурна ось вращения хаотически переворачивается. Эволюция орбит спутников происходит под влиянием нескольких факторов. Поскольку планеты и спутники - не точечные массы, а протяженные объекты, и, кроме того, сила тяготения зависит от расстояния, различные части тела спутника, удаленные от планеты на разное расстояние, притягиваются к ней по-разному; это же справедливо и для притяжения, действующего со стороны спутника на планету. Такое различие сил вызывает морские приливы и отливы, а синхронно вращающимся спутникам придает немного сплющенную форму. Спутник и планета вызывают друг у друга приливные деформации, а это влияет на их орбитальное движение. Резонанс средних движений 4:2:1 у спутников Юпитера Ио, Европы и Ганимеда, впервые подробно изученный Лапласом в его Небесной механике (т. 4, 1805), называют резонансом Лапласа. Всего за несколько дней до подлета "Вояджера-1" к Юпитеру, 2 марта 1979, астрономы Пеале, Кассен и Рейнольдс опубликовали работу "Плавление Ио под действием приливной диссипации", в которой предсказали активный вулканизм на этом спутнике из-за его ведущей роли в поддержании резонанса 4:2:1. "Вояджер-1" действительно обнаружил на Ио активные вулканы, настолько мощные, что на снимках поверхности спутника не видно ни одного метеоритного кратера: так быстро покрывается его поверхность продуктами извержений.
ФОРМИРОВАНИЕ СОЛНЕЧНОЙ СИСТЕМЫ
Вопрос о том, как образовалась Солнечная система, пожалуй, наиболее трудный в планетологии. Для ответа на него у нас пока мало данных, которые помогли бы восстановить протекавшие в ту далекую эпоху сложные физические и химические процессы. Теория формирования Солнечной системы должна объяснить множество фактов, включая ее механическое состояние, химический состав и данные изотопной хронологии. При этом желательно опираться на реальные явления, наблюдаемые вблизи формирующихся и молодых звезд.
Механическое состояние. Планеты обращаются вокруг Солнца в одном направлении, по почти круговым орбитам, лежащим почти в одной плоскости. Большинство из них вращается вокруг своей оси в том же направлении, что и Солнце. Все это указывает, что предшественником Солнечной системы был вращающийся диск, который естественно образуется при сжатии самогравитирующей системы с сохранением момента импульса и следующим из этого увеличением угловой скорости. (Момент импульса, или угловой момент планеты, - это произведение ее массы на расстояние от Солнца и на орбитальную скорость. Момент Солнца определяется его осевым вращением и приблизительно равен произведению массы на радиус и на скорость вращения; осевые моменты планет пренебрежимо малы.) Солнце содержит в себе 99% массы Солнечной системы, но только ок. 1% ее момента импульса. Теория должна объяснить, почему большая часть массы системы сосредоточена в Солнце, а подавляющая часть момента импульса - во внешних планетах. Имеющиеся теоретические модели формирования Солнечной системы указывают, что вначале Солнце вращалось значительно быстрее, чем сейчас. Затем момент импульса от молодого Солнца передался внешним частям Солнечной системы; астрономы полагают, что гравитационные и магнитные силы затормозили вращение Солнца и ускорили движение планет. Уже два века известно приблизительное правило регулярного распределения планетных расстояний от Солнца (правило Тициуса - Боде), но объяснения ему нет. В системах спутников внешних планет прослеживаются те же закономерности, что и в планетной системе в целом; вероятно, процессы их формирования имели много общего.
См. также БОДЕ ЗАКОН .
Химический состав. В Солнечной системе наблюдается сильный градиент (различие) химического состава: близкие к Солнцу планеты и спутники состоят из тугоплавких материалов, а в составе далеких тел много летучих элементов. Это означает, что в эпоху формирования Солнечной системы существовал большой градиент температуры. Современные астрофизические модели химической конденсации предполагают, что исходный состав протопланетного облака был близок к составу межзвездной среды и Солнца: по массе до 75% водорода, до 25% гелия и менее 1% всех прочих элементов. Эти модели успешно объясняют наблюдаемые вариации химического состава в Солнечной системе. О химическом составе далеких объектов можно судить на основании значения их средней плотности, а также по спектрам их поверхности и атмосферы. Значительно точнее это удалось бы сделать путем анализа образцов планетного вещества, но пока у нас есть только образцы с Луны и метеориты. Исследуя метеориты, мы начинаем понимать химические процессы в первичной туманности. Однако процесс агломерации крупных планет из мелких частиц пока остается неясным.
Изотопные данные. Изотопный состав метеоритов указывает, что формирование Солнечной системы происходило 4,6 ± 0,1 млрд. лет назад и длилось не более 100 млн. лет. Аномалии изотопов неона, кислорода, магния, алюминия и др. элементов свидетельствуют, что в процессе коллапса межзвездного облака, породившего Солнечную систему, в него попали продукты взрыва близкой сверхновой звезды.
См. также ИЗОТОПЫ ; СВЕРХНОВАЯ ЗВЕЗДА .
Формирование звезд. Звезды рождаются в процессе коллапса (сжатия) межзвездных газо-пылевых облаков. Детально этот процесс пока не исследован. Имеются наблюдательные факты в пользу того, что ударные волны от взрывов сверхновых звезд могут сжимать межзвездное вещество и стимулировать коллапс облаков в звезды.
См. также ГРАВИТАЦИОННЫЙ КОЛЛАПС . Перед тем как молодая звезда достигнет стабильного состояния, она проходит стадию гравитационного сжатия из протозвездной туманности. Основные сведения об этом этапе эволюции звезд получают, изучая молодые звезды типа Т Тельца. По-видимому, эти звезды еще находятся в состоянии сжатия и их возраст не превышает 1 млн. лет. Обычно их массы от 0,2 до 2 масс Солнца. У них видны признаки сильной магнитной активности. В спектрах некоторых звезд типа Т Тельца присутствуют запрещенные линии, которые возникают только в газе низкой плотности; вероятно, это остатки протозвездной туманности, окружающие звезду. Для звезд типа Т Тельца характерны быстрые флуктуации ультрафиолетового и рентгеновского излучения. У многих из них наблюдаются мощное инфракрасное излучение и спектральные линии кремния - это указывает, что звезды окружены пылевыми облаками. Наконец, звезды типа Т Тельца обладают мощным звездным ветром. Считается, что в ранний период своей эволюции Солнце также проходило через стадию Т Тельца, и что именно в этот период летучие элементы были вытеснены из внутренних областей Солнечной системы. Некоторые формирующиеся звезды умеренной массы демонстрируют сильный рост светимости и сброс оболочки за время менее года. Такие явления называют вспышками типа FU Ориона. По крайней мере однажды такую вспышку испытала звезда типа Т Тельца. Считается, что большинство молодых звезд проходит через стадию вспышек типа FU Ориона. Причину вспышки многие видят в том, что время от времени возрастает темп аккреции на молодую звезду вещества из окружающего ее газо-пылевого диска. Если в ранний период эволюции Солнце также испытало одну или несколько вспышек типа FU Ориона, это должно было сильно повлиять на летучие вещества в центральной части Солнечной системы. Наблюдения и расчеты показывают, что в окрестности формирующейся звезды всегда есть остатки протозвездного вещества. Из него может сформироваться звезда-компаньон или планетная система. Действительно, многие звезды образуют двойные и кратные системы. Но если масса компаньона не превосходит 1% массы Солнца (10 масс Юпитера), то температура в его ядре никогда не достигнет значения, необходимого для протекания термоядерных реакций. Такое небесное тело называют планетой.
Теории формирования. Научные теории формирования Солнечной системы можно разделить на три категории: приливные, аккреционные и небулярные. Последние привлекают сейчас наибольший интерес. Приливная теория, по-видимому, впервые предложенная Бюффоном (1707-1788), непосредственно не связывает между собой формирование звезды и планет. Предполагается, что пролетевшая мимо Солнца другая звезда путем приливного взаимодействия вытянула из него (или из себя) струю вещества, из которого сформировались планеты. Эта идея сталкивается с множеством физических проблем; например, выброшенное звездой горячее вещество должно распыляться, а не конденсироваться. Сейчас приливная теория непопулярна, поскольку не может объяснить механические особенности Солнечной системы и представляет ее рождение как случайное и крайне редкое событие. Аккреционная теория предполагает, что молодое Солнце захватило вещество будущей планетной системы, пролетая сквозь плотное межзвездное облако. Действительно, молодые звезды обычно встречаются вблизи крупных межзвездных облаков. Однако в рамках аккреционной теории трудно объяснить градиент химического состава в планетной системе. Наиболее разработана и общепринята сейчас небулярная гипотеза, предложенная Кантом в конце 18 в. Ее основная идея состоит в том, что Солнце и планеты формировались одновременно из единого вращающегося облака. Сжимаясь, оно превратилось в диск, в центре которого образовалось Солнце, а на периферии - планеты. Отметим, что эта идея отличается от гипотезы Лапласа, согласно которой сначала из облака сформировалось Солнце, а затем по мере его сжатия центробежная сила отрывала с экватора газовые кольца, сконденсировавшиеся позже в планеты. Гипотеза Лапласа сталкивается с трудностями физического характера, которые не удается преодолеть уже 200 лет. Наиболее удачный современный вариант небулярной теории создал А. Камерон с коллегами. В их модели протопланетная туманность была примерно вдвое массивнее нынешней планетной системы. В течение первых 100 млн. лет формировавшееся Солнце активно выбрасывало из нее вещество. Такое поведение характерно для молодых звезд, которые по имени прототипа называют звездами типа Т Тельца. Распределение давления и температуры вещества туманности в модели Камерона хорошо согласуется с градиентом химического состава Солнечной системы. Таким образом, наиболее вероятно, что Солнце и планеты сформировались из единого сжимающегося облака. В центральной его части, где плотность и температура были выше, сохранились только тугоплавкие вещества, а на периферии сохранились и летучие; этим объясняется градиент химического состава. В соответствии с этой моделью формирование планетной системы должно сопровождать раннюю эволюцию всех звезд типа Солнца.
Рост планет. Существует множество сценариев роста планет. Возможно, планеты сформировались в результате случайных столкновений и слипаний небольших тел, названных планетезималями. Но, может быть, мелкие тела объединялись в более крупные сразу большими группами в результате гравитационной неустойчивости. Не ясно, происходила ли аккумуляция планет в газовой или безгазовой среде. В газовой туманности перепады температуры сглаживаются, но когда часть газа конденсируется в пылинки, а остатки газа выметает звездный ветер, прозрачность туманности резко возрастает, и в системе возникает сильный градиент температуры. До сих пор не вполне ясно, каковы характерные времена конденсации газа в пылинки, аккумуляции пылинок в планетезимали и аккреции планетезималей в планеты и их спутники.
ЖИЗНЬ В СОЛНЕЧНОЙ СИСТЕМЕ
Высказывались предположения, что жизнь в Солнечной системе когда-то существовала за пределом Земли, а может быть, существует и сейчас. Появление космической техники позволило приступить к прямой проверке этой гипотезы. Меркурий оказался слишком горяч и лишенным атмосферы и воды. На Венере тоже очень жарко - на ее поверхности плавится свинец. Возможность жизни в верхнем слое облаков Венеры, где условия гораздо мягче, пока не более чем фантазия. Луна и астероиды выглядят совершенно стерильными. Большие надежды возлагались на Марс. Замеченные в телескоп 100 лет назад системы тонких прямых линий - "каналов" - дали тогда повод говорить об искусственных ирригационных сооружениях на поверхности Марса. Но теперь мы знаем, что условия на Марсе неблагоприятны для жизни: холодно, сухо, очень разреженный воздух и, как следствие, сильное ультрафиолетовое излучение Солнца, стерилизующее поверхность планеты. Приборы посадочных блоков "Викингов" не обнаружили органического вещества в грунте Марса. Правда, есть признаки того, что климат Марса существенно менялся и, возможно, когда-то был более благоприятным для жизни. Известно, что в далеком прошлом на поверхности Марса была вода, поскольку на детальных изображениях планеты видны следы водной эрозии, напоминающие овраги и сухие русла рек. Долговременные вариации марсианского климата могут быть связаны с изменением наклона полярной оси. При небольшом повышении температуры планеты атмосфера может стать в 100 раз плотнее (за счет испарения льдов). Таким образом, возможно, жизнь на Марсе когда-то существовала. Ответить на этот вопрос мы сможем только после детального изучения образцов марсианского грунта. Но их доставка на Землю - сложная задача. К счастью, имеются веские доказательства, что из тысяч найденных на Земле метеоритов, по крайней мере, 12 прилетело с Марса. Их называют SNC-метеоритами, поскольку первые из них нашли вблизи населенных пунктов Shergotty (Шерготти, Индия), Nakhla (Накла, Египет) и Chassigny (Шассиньи, Франция). Найденный в Антарктиде метеорит ALH 84001 значительно старше остальных и содержит полициклические ароматические углеводороды, возможно, имеющие биологическое происхождение. Считается, что он попал на Землю с Марса, поскольку соотношение изотопов кислорода в нем не такое, как в земных породах или не-SNC-метеоритах, а такое, как в метеорите EETA 79001, содержащем стекла с включениями пузырьков, в которых состав благородных газов отличается от земного, но соответствует атмосфере Марса. Хотя в атмосферах планет-гигантов много органических молекул, трудно поверить, что при отсутствии твердой поверхности там может существовать жизнь. В этом смысле значительно интереснее спутник Сатурна Титан, у которого есть не только атмосфера с органическими компонентами, но и твердая поверхность, где могут скапливаться продукты синтеза. Правда, температура этой поверхности (90 К) скорее подходит для сжижения кислорода. Поэтому внимание биологов больше привлекает спутник Юпитера Европа, хотя и лишенная атмосферы, но, по-видимому, имеющая под своей ледяной поверхностью океан жидкой воды. Некоторые кометы почти наверняка содержат сложные органические молекулы, образовавшиеся еще в эпоху формирования Солнечной системы. Но трудно вообразить себе жизнь на комете. Итак, пока у нас нет доказательств, что жизнь в Солнечной системе существует где-либо за пределом Земли. Можно задаться вопросами: каковы возможности научных приборов в связи с поиском внеземной жизни? Может ли современный космический зонд обнаружить наличие жизни на далекой планете? Например, мог ли аппарат "Галилео" обнаружить жизнь и разум на Земле, когда он дважды пролетал мимо нее, совершая гравитационные маневры? На переданных зондом изображениях Земли не удалось заметить признаков разумной жизни, но очевидным доказательством ее наличия стали пойманные приемниками "Галилео" сигналы наших радио- и телестанций. Они совершенно непохожи на излучение природных радиостанций - полярных сияний, плазменных колебаний в земной ионосфере, солнечных вспышек - и сразу выдают присутствие на Земле технической цивилизации. А как проявляет себя неразумная жизнь? Телекамера "Галилео" получила изображения Земли в шести узких диапазонах спектра. В фильтрах 0,73 и 0,76 мкм некоторые участки суши выглядят зелеными из-за сильного поглощения красного света, что не характерно для пустынь и горных пород. Проще всего объяснить это тем, что некий носитель неминерального пигмента, поглощающего красный свет, присутствует на поверхности планеты. Мы точно знаем, что это необычное поглощение света связано с хлорофиллом, который растения используют для фотосинтеза. Ни одно другое тело Солнечной системы не имеет такой зеленой окраски. Кроме этого инфракрасный спектрометр "Галилео" зафиксировал наличие в земной атмосфере молекулярного кислорода и метана. Наличие метана и кислорода в атмосфере Земли свидетельствует о биологической активности на планете. Итак, можно заключить, что наши межпланетные зонды способны обнаружить признаки активной жизни на поверхности планет. Но если жизнь скрыта под ледяным панцирем Европы, то пролетающий мимо аппарат вряд ли ее обнаружит.
Словарь по географии

  • Наша собственная Солнечная система кажется слишком большой, простираясь более чем на 4 триллиона миль от Солнца. А ведь оно - всего лишь одна из миллиардов других звезд, составляющих нашу галактику Млечный Путь.

    Общая характеристика планет Солнечной системы

    Обычная картинка Солнечной системы следующая: 9 планет вращаются по своим овальным орбитам вокруг постоянного, всегда пылающего Солнца.

    Но характеристика планет Солнечной системы намного сложнее и интереснее. Кроме них самих, существуют множество их спутников, а также тысячи астероидов. Далеко за пределами орбиты Плутона, которая была признана карликовой планетой, находятся десятки тысяч комет и другие замороженные миры. Привязанные гравитацией к Солнцу, они вращаются вокруг него на огромных расстояниях. Солнечная система хаотична, постоянно меняется, иногда даже резко. Силы гравитации заставляют соседние планеты влиять друг на друга, со временем меняя друг другу орбиты. Жесткие столкновения с астероидами могут придать планетам новые углы наклона. Характеристика планет Солнечной системы интересна тем, что они меняют иногда климатические условия, потому что их атмосферы развиваются и видоизменяются.

    Звезда по имени Солнце

    Как ни печально это осознавать, но Солнце постепенно расходует свой запас ядерного топлива. Через миллиарды лет оно расширится до размеров гигантской красной звезды, поглотит планеты Меркурий и Венеру, на Земле же температура поднимется до таких показателей, что океаны испарятся в космос, а Земля станет сухим скалистым миром, похожим на сегодняшний Меркурий. Исчерпав весь запас ядерного синтеза, Солнце уменьшится до размеров белого карлика, а через миллионы лет, уже в качестве выгоревшей оболочки, превратится в черного карлика. А ведь 5 миллиардов лет назад Солнца и его 9 планет еще не было. Существует много различных версий появления в облаках космического газа и пыли Солнца в качестве протозвезды и его системы, но в результате миллиардов лет ядерного синтеза современный человек наблюдает его таким, как сейчас.

    Вместе с Землей и другими планетами звезда по имени Солнце родилась примерно 4.6 миллиарда лет назад из огромного облака пыли, которое вращалось в космосе. Наша звезда - это шар из пылающих газов, если бы можно было взвесить Солнце, весы показали бы 1990 000 000 000 000 000 000 000 000 000 кг вещества, состоящего из гелия и водорода.

    Сила гравитации

    Гравитация, по мнению ученых, самая таинственная загадка во вселенной. Это притяжение одной материи к другой и то, что придает планетам форму шара. Гравитация Солнца достаточно мощная для того, чтобы удерживать 9 планет, дюжину спутников и тысячи астероидов и комет. Все это удерживают вокруг Солнца невидимые нити гравитации. Но с увеличением расстояния между космическими объектами притяжение между ними быстро ослабевает. Характеристика планет Солнечной системы напрямую зависит от гравитации. Например, притяжение Плутона к Солнцу намного меньше, чем сила притяжения между Солнцем и Меркурием или Венерой. Солнце и Земля взаимно притягивают друг друга, но из-за того, что масса Солнца намного больше, то и притяжение с его стороны мощнее. Сравнительная характеристика планет солнечной системы поможет понять главные особенности каждой из планет.

    Солнечные лучи путешествуют по разным направлениям в космическом пространстве, достигая всех девяти планет, которые вращаются вокруг Солнца. Но в зависимости от того, насколько отдалена планета, к ней приходит разное количество света, отсюда и разная характеристика планет солнечной системы.

    Меркурий

    На Меркурии, самой приближенной к Солнцу планете, Солнце кажется в 3 раза большим, по сравнению с земным Солнцем. Днем может быть ослепительно яркой. Но небо темное даже днем, потому что на НЕМ нет атмосферы, чтобы отбивать и рассеивать солнечный свет. Когда Солнце бьет по каменному ландшафту Меркурия, температура может достигать до 430 С. Но тем не менее ночью все тепло возвращается свободно в космос, а температура поверхности планеты может упасть до -173 С.

    Венера

    Характеристика планет солнечной системы (5 класс изучает эту тему) приводит к рассмотрению ближайшей для землян планеты - Венеры. Венера, вторая от Солнца планета, окружена атмосферой, которая преимущественно состоит из газа - диоксида углерода. В такой атмосфере постоянно наблюдаются тучи из серной кислоты. Интересно, что несмотря на то что Венера более удалена от Солнца, чем Меркурий, ее поверхностная температура выше и достигает 480 С. Виной этому выступает диоксид углерода, который создает парниковый эффект и удерживает тепло на планете. Венера имеет подобный размер и густоту земной, но свойства ее атмосферы губительны для всего живого. Химические реакции в тучах производят кислоты, способные растворить свинец, олово и камни. Кроме того, Венера покрыта тысячами вулканов и реками из лавы, которые образовывались миллионы лет. Возле поверхности атмосфера Венеры в 50 раз гуще, чем атмосфера Земли. Поэтому все объекты, проникающие сквозь нее, взрываются еще до того, как попадают на поверхность. Ученые обнаружили на Венере около 400 плоских пятен, каждая из которых от 29 до 48 км в диаметре. Это - шрамы метеоритов, которые разорвались над поверхностью планеты.

    Земля

    Земля, где все мы обитаем, имеет идеальные атмосферные и температурные условия для жизни, ведь наша атмосфера состоит в основном из азота и кислорода. Ученые доказывают, что Земля вращается вокруг Солнца, наклонившись одной стороной. Действительно, положение планеты отклоняется от прямого угла на 23.5 градуса. Этот наклон, а также свои размеры, по версии ученых, наша планета получила после мощного столкновения с космическим телом. Именно этот наклон Земли образует времена года: зиму, весну, лето и осень.

    Марс

    После Земли идет Марс. На Марсе Солнце кажется в три раза меньшим, чем с Земли. Только треть света, по сравнению с тем, что видят земляне, получает Марс. Кроме того, на этой планете часто происходят ураганы, поднимающие красную пыль с поверхности. Но, тем не менее, в летние дни температура на Марсе может достигать 17 С, как и на Земле. Марс имеет красный оттенок, потому что минералы с окисью железа в его почве отбивают красновато - оранжевый свет Солнца, другими словами, марсианская почва имеет в своем составе много ржавого железа, поэтому Марс часто называю красной планетой. Марсианский воздух очень разрежен -1 процент от густоты земной атмосферы. Атмосфера планеты состоит из диоксида углерода. Ученые допускают, что на этой планете когда-то, примерно 2 миллиарда лет назад, были реки и вода в жидком состоянии, а атмосфера содержала кислород, ведь железо покрывается ржавчиной только при взаимодействии с кислородом. Вполне возможно, что атмосфера Марса была когда-то пригодной для возникновения на этой планете жизни.

    Что касается химических и физических параметров, ниже показана характеристика планет Солнечной системы (таблица для планет земной группы).

    Химический состав атмосферы

    Физические параметры

    Давление, атм.

    Температура, С

    От -30 до + 40

    Как можно заметить, химический состав атмосферы всех трех планет сильно отличается.

    Такова характеристика планет Солнечной системы. Таблица выше наглядно показывает соотношение различных химических веществ, а также давление, температуру и наличие воды на каждой из них, так что составить общее представление по этому поводу теперь труда не составит.

    Гиганты Солнечной системы

    За Марсом находятся планеты-гиганты, состоящие в основном из газов. Интересна физическая характеристика планет солнечной системы, таких как Юпитер, Сатурн, Уран и Нептун.

    Все гиганты покрыты толщей туч, и каждый последующий получает от Солнца все меньше света. С Юпитера Солнце выглядит как пятая часть того, что видят земляне. Юпитер - планета в Солнечной системе с самыми большими размерами. Под густыми тучами из аммиака и воды Юпитер укрыт океаном металлического жидкого водорода. Особенностью планеты является наличие гигантского красного пятна на тучах, нависающих над его экватором. Это гигантский шторм длиной почти 48 000 км, который вращается над планетой уже более чем 300 лет. Сатурн - это планета-шоу в Солнечной системе. На Сатурне солнечный свет еще слабее, но все же оно имеет достаточную мощность, чтобы осветить огромную систему колец этой планеты. Тысячи колец, которые состоят преимущественно изо льда, освещаются Солнцем, превращая их в гигантские круги света.

    Кольца Сатурна не изучены еще учеными-землянами. По некоторым версиям, они образовались в результате столкновения его спутника с кометой или астероидом и под действием огромной гравитации превратились в кольца.

    Планета Уран - холодный мир, который находится от главного светила на расстоянии 2.9 миллиарда км. Средняя температура его атмосферы составляет -177 С. Это планета и наибольшим наклоном и вращается вокруг Солнца, лежа на боку, да еще в противоположном направлении.

    Плутон

    Самая отдаленная 9 планета - ледяной Плутон - сияет отдаленным холодным светом, и находится на расстоянии 5.8 миллиардов километров и выглядит яркой звездой в темном небе.

    Эта планета настолько маленькая и так отдалена от Земли, что ученые знают о ней совсем немного. Ее поверхность состоит из азотного льда, для того чтобы сделать один оборот вокруг Солнца, ему необходимо примерно 284 земных года. Солнце на этой планете ничем не отличается от миллиардов других звезд.

    Полная характеристика планет Солнечной системы

    Таблица (5-классники изучают эту тему достаточно подробно), расположенная ниже, позволяет не только составить представление о планетах Солнечной системы, но и дает возможность сравнить их по основным параметрам.

    Планета

    Расстояние от Солнца, астр. ед.

    Период обращения, лет

    Период вращения вокруг оси

    Радиус, относительно радиусу Земли

    Масса, относительно массе Земли

    Плотность, кг/м3

    Количество спутников

    Меркурий

    23 ч. 56 мин.

    24 ч. 37 мин.

    9 ч. 50 мин.

    10 ч. 12 мин.

    17 ч. 14 мин.

    16 ч. 07 мин.

    Как можно заметить, подобной Земле планеты в нашей Галактике нет. Приведенная выше характеристика планет Солнечной системы (таблица, 5 класс) дает возможность понять это.

    Заключение

    Краткая характеристика планет Солнечной системы позволит читателям немного окунуться в мир космоса и помнить, что земляне пока являются единственными разумными существами среди огромной Вселенной и окружающий их мир необходимо постоянно оберегать, сохранять и восстанавливать.

    Вселенная (космос) — это весь окружающий нас мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает вечно движущаяся материя. Безграничность Вселенной отчасти можно представить в ясную ночь с миллиардами разной величины светящихся мерцающих точек на небе, представляющих далекие миры. Лучи света при скорости 300 000 км/с из наиболее отдаленных частей Вселенной доходят до Земли примерно за 10 млрд лет.

    По мнению ученых, образовалась Вселенная в результате «Большого Взрыва» 17 млрд лет назад.

    Она состоит из скоплений звезд, планет, космической пыли и других космических тел. Эти тела образуют системы: планеты со спутниками (например. Солнечная система), галактики, метагалактики (скопление галактик).

    Галактика (позднегреч.galaktikos - молочный, млечный, от греческогоgala - молоко) — обширная звездная система, которая состоит из множества звезд, звездных скоплений и ассоциаций, газовых и пылевых туманностей, а также отдельных атомов и частиц, рассеянных в межзвездном пространстве.

    Во Вселенной существует множество галактик различного размера и формы.

    Все звезды, видимые с Земли, входят в состав галактики Млечный Путь. Свое название она получила благодаря тому, что большинство звезд можно увидеть ясной ночью в виде Млечного Пути — белесой размытой полосы.

    Всего же Галактика Млечный Путь содержит около 100 млрд звезд.

    Наша галактика находится в постоянном вращении. Скорость ее движения во Вселенной — 1,5 млн км/ч. Если смотреть на нашу галактику со стороны ее северного полюса, то вращение происходит по часовой стрелке. Солнце и ближайшие к нему звезды совершают полный оборот вокруг центра галактики за 200 млн лет. Этот срок принято считать галактическим годом.

    По размеру и форме сходна с галактикой Млечный Путь галактика Андромеды, или Туманность Андромеды, которая находится на расстоянии примерно 2 млн световых лет от нашей галактики. Световой год — расстояние, проходимое светом за год, приблизительно равное 10 13 км (скорость света — 300 000 км/с).

    Для наглядности изучения движения и расположения звезд, планет и других небесных тел используется понятие небесной сферы.

    Рис. 1. Основные линии небесной сферы

    Небесная сфера — это воображаемая сфера сколь угодно большого радиуса, в центре которой находится наблюдатель. На небесную сферу проецируются звезды, Солнце, Луна, планеты.

    Важнейшими линиями на небесной сфере являются: отвесная линия, зенит, надир, небесный экватор, эклиптика, небесный меридиан и др. (рис. 1).

    Отвесная линия — прямая, проходящая через центр небесной сферы и совпадающая с направлением нити отвеса в месте наблюдения. Для наблюдателя, находящегося на поверхности Земли, отвесная линия проходит через центр Земли и точку наблюдения.

    Отвесная линия пересекается с поверхностью небесной сферы в двух точках - зените, над головой наблюдателя, и надире — диаметрально противоположной точке.

    Большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии, называется математическим горизонтом. Он делит поверхность небесной сферы на две половины: видимую для наблюдателя, с вершиной в зените, и невидимую, с вершиной в надире.

    Диаметр, вокруг которого происходит вращение небесной сферы, - ось мира. Она пересекается с поверхностью небесной сферы в двух точках - северном полюсе мира и южном полюсе мира. Северным полюсом называется тот, со стороны которого вращение небесной сферы происходит по часовой стрелке, если смотреть на сферу извне.

    Большой круг небесной сферы, плоскость которого перпендикулярна оси мира, носит название небесного экватора. Он делит поверхность небесной сферы на два полушария: северное, с вершиной в северном полюсе мира, и южное, с вершиной в южном полюсе мира.

    Большой круг небесной сферы, плоскость которого проходит через отвесную линию и ось мира, — небесный меридиан. Он делит поверхность небесной сферы на два полушария - восточное и западное.

    Линия пересечения плоскости небесного меридиана и плоскости математического горизонта - полуденная линия.

    Эклиптика (от греч.ekieipsis - затмение) — большой круг небесной сферы, по которому происходит видимое годичное движение Солнца, точнее — его центра.

    Плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°26"21".

    Чтобы легче запомнить местоположение звезд на небе, люди в древности придумали объединять самые яркие из них в созвездия.

    В настоящее время известны 88 созвездий, которые носят имена мифических персонажей (Геркулес, Пегас и др.), знаков зодиака (Телец, Рыбы, Рак и др.), предметов (Весы, Лира и др.) (рис. 2).

    Рис. 2. Летне-осенние созвездия

    Происхождение галактик. Солнечной системы и ее отдельных планет, до сих пор остается неразгаданной тайной природы. Существует несколько гипотез. В настоящее время считается, что наша галактика образовалась из газового облака, состоявшего из водорода. На начальной стадии эволюции галактики из межзвездной газово-пылевой среды образовались первые звезды, а 4,6 млрд лет назад — Солнечная система.

    Состав солнечной системы

    Совокупность небесных тел, движущихся вокруг Солнца как центрального тела, образует Солнечную систему. Она расположена почти на окраине галактики Млечный Путь. Солнечная система участвует во вращении вокруг центра галактики. Скорость се движения составляет около 220 км/с. Это движение происходит в направлении созвездия Лебедя.

    Состав Солнечной системы можно представить в виде упрощенной схемы, приведенной на рис. 3.

    Свыше 99,9 % массы вещества Солнечной системы приходится на Солнце и только 0,1 % — на все остальные ее элементы.

    Гипотеза И. Канта (1775 г.) — П.Лапласа (1796 г.)

    Гипотеза Д. Джинса (начало XX в.)

    Гипотеза академика О. П. Шмидта (40-е гг. XX в.)

    Ги потеза а кале мика В. Г. Фесенкова (30-е гг. XX в.)

    Планеты образовались из газово-пылевой материи (в виде раскаленной туманности). Охлаждение сопровождаюсь сжатием и увеличением скорости вращения какой-то оси. На экваторе туманности возникали кольца. Вещество колец собиралось в раскаленные тела и постепенно остывало

    Мимо Солнца когда-то прошла более крупная звезда, сс притяжение вырвало из Солнца струю раскаленного вещества (протуберанец). Образовались сгущения, из которых потом — планеты

    Газово-пылевое облако, вращающееся вокруг Солнца, должно было принять сплошную форму в результате соударения частиц и их движения. Частицы объединились в сгущения. Притяжение более мелких частиц сгущениями должно было способствовать росту окружающего вещества. Орбиты сгущений должны были стать почти круговыми и лежащими почти в одной плоскости. Сгущения явились зародышами планет, вобрав в себя почти всс вещество из промежутков между их орбитами

    Из вращающегося облака возникло само Солнце, а планеты — из вторичных сгущений в этом облаке. Далее Солнце сильно уменьшилось и охладилось до современного состояния

    Рис. 3. Состав Солнечной систем

    Солнце

    Солнце — это звезда, гигантский раскаленный шар. Его диаметр в 109 раз больше диаметра Земли, масса в 330 000 раз больше массы Земли, зато средняя плотность невелика — всего в 1,4 раза больше плотности воды. Солнце находится на расстоянии около 26 000 световых лет от центра нашей галактики и обращается вокруг него, делая один оборот примерно за 225-250 млн лет. Орбитальная скорость движения Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет.

    Рис. 4. Химический состав Солнца

    Давление на Солнце в 200 млрд раз выше, чем у поверхности Земли. Плотность солнечного вещества и давление быстро нарастают вглубь; рост давления объясняется весом всех вышележащих слоев. Температура на поверхности Солнца 6000 К, а внутри 13 500 000 К. Характерное время жизни звезды типа Солнца 10 млрд лег.

    Таблица 1. Общие сведения о Солнце

    Химический состав Солнца примерно такой же, как и у большинства других звезд: около 75 % — это водород, 25 % — гелий и менее 1 % — все другие химические элементы (углерод, кислород, азот и т. д.) (рис. 4).

    Центральная часть Солнца с радиусом примерно 150 000 км называется солнечным ядром. Это зона ядерных реакций. Плотность вещества здесь примерно в 150 раз выше плотности воды. Температура превышает 10 млн К (по шкале Кельвина, в пересчете на градусы Цельсия 1 °С = К — 273,1) (рис. 5).

    Над ядром, на расстояниях около 0,2-0,7 радиуса Солнца от его центра, находится зона переноса лучистой энергии. Перенос энергии здесь осуществляется путем поглощения и излучения фотонов отдельными слоями частиц (см. рис. 5).

    Рис. 5. Строение Солнца

    Фотон (от греч.phos - свет), элементарная частица, способная существовать, только двигаясь со скоростью света.

    Ближе к поверхности Солнца возникает вихревое перемешивание плазмы, и перенос энергии к поверхности совершается

    преимущественно движениями самого вещества. Такой способ передачи энергии называется конвекцией, а слой Солнца, где она происходит, - конвективной зоной. Мощность этого слоя составляет примерно 200 000 км.

    Выше конвективной зоны располагается солнечная атмосфера, которая постоянно колеблется. Здесь распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания происходят с периодом около пяти минут.

    Внутренний слой атмосферы Солнца называется фотосферой. Она состоит из светлых пузырьков. Это гранулы. Их размеры невелики — 1000-2000 км, а расстояние между ними — 300- 600 км. На Солнце одновременно может наблюдаться около миллиона гранул, каждая из которых существует несколько минут. Гранулы окружены темными промежутками. Если в гранулах вещество поднимается, то вокруг них — опускается. Гранулы создают общий фон, на котором можно наблюдать такие масштабные образования, как факелы, солнечные пятна, протуберанцы и др.

    Солнечные пятна — темные области на Солнце, температура которых по сравнению с окружающим пространством понижена.

    Солнечными факелами называют яркие поля, окружающие солнечные пятна.

    Протуберанцы (от лат.protubero — вздуваюсь) — плотные конденсации относительно холодного (по сравнению с окружающей температурой) вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем. К возникновению магнитного поля Солнца может приводить то, что различные слои Солнца вращаются с разной скоростью: внутренние части вращаются быстрее; особенно быстро вращается ядро.

    Протуберанцы, солнечные пятна и факелы — это не единственные примеры солнечной активности. К ней также относятся магнитные бури и взрывы, которые называют вспышками.

    Выше фотосферы располагается хромосфера — внешняя оболочка Солнца. Происхождение названия этой части солнечной атмосферы связано с ее красноватым цветом. Мощность хромосферы составляет 10-15 тыс. км, а плотность вещества в сотни тысяч раз меньше, чем в фотосфере. Температура в хромосфере быстро растет, достигая в верхних ее слоях десятков тысяч градусов. На краю хромосферы наблюдаются спикулы, представляющие собой вытянутые столбики из уплотненного светящегося газа. Температура этих струй выше, чем температура фотосферы. Спикулы сначала поднимаются из нижней хромосферы на 5000-10 000 км, а потом падают обратно, где и затухают. Все это происходит со скоростью около 20 000 м/с. Спи кула живет 5-10 мин. Количество спикул, существующих на Солнце одновременно, составляет около миллиона (рис. 6).

    Рис. 6. Строение внешних слоев Солнца

    Хромосферу окружает солнечная корона — внешний слой атмосферы Солнца.

    Полное количество энергии, излучаемой Солнцем, составляет 3,86 . 1026 Вт, и лишь одну двухмиллиардную часть этой энергии получает Земля.

    Солнечная радиация включает корпускулярное и электромагнитное излучения. Корпускулярное основное излучение — это плазменный поток, который состоит из протонов и нейтронов, или по-другому - солнечный ветер, который достигает околоземного пространства и обтекает всю магнитосферу Земли. Электромагнитная радиация — это лучистая энергия Солнца. Она в виде прямой и рассеянной радиации достигает земной поверхности и обеспечивает тепловой режим на нашей планете.

    В середине XIX в. швейцарский астроном Рудольф Вольф (1816-1893) (рис. 7) вычислил количественный показатель солнечной активности, известный во всем мире как число Вольфа. Обработав накопленные к середине прошлого века материалы наблюдений за солнечными пятнами, Вольф смог установить средний И-летний цикл солнечной активности. Фактически же интервалы времени между годами максимальных или минимальных чисел Вольфа колеблются от 7 до 17 лет. Одновременно с 11-летним циклом протекает вековой, точнее 80-90-летний, цикл солнечной активности. Несогласованно накладываясь друг на друга, они вносят заметные изменения в процессы, совершающиеся в географической оболочке Земли.

    На тесную связь многих земных явлений с солнечной активностью еще в 1936 г. указывал А. Л. Чижевский (1897-1964) (рис. 8), писавший о том, что подавляющее большинство физико-химических процессов на Земле представляет результат воздействия космических сил. Он же был и одним из основоположников такой науки, как гелиобиология (от греч.helios — солнце), изучающей влияние Солнца на живое вещество географической оболочки Земли.

    В зависимости от солнечной активности протекают такие физические явления на Земле, как: магнитные бури, частота полярных сияний, количество ультрафиолетовой радиации, интенсивность грозовой деятельности, температура воздуха, атмосферное давление, осадки, уровень озер, рек, грунтовых вод, соленость и деловитость морей и др.

    С периодической деятельностью Солнца связана жизнь растений и животных (существует корреляция между солнечной цикличностью и сроком вегетационного периода у растений, размножением и миграцией птиц, грызунов и т. д.), а также человека (заболевания).

    В настоящее время взаимосвязи между солнечными и земными процессами продолжают изучаться с помощью искусственных спутников Земли.

    Планеты земной группы

    Помимо Солнца в составе Солнечной системы выделяют планеты (рис. 9).

    По размерам, географическим показателям и химическому составу планеты подразделяются на две группы: планеты земной группы и планеты-гиганты. К планетам земной группы относятся , и . О них и пойдет речь в этом подразделе.

    Рис. 9. Планеты Солнечной системы

    Земля — третья планета от Солнца. Ей будет посвящен отдельный подраздел.

    Давайте обобщим. От местоположения планеты в Солнечной системе зависит плотность вещества планеты, а с учетом ее размеров — и масса. Чем
    ближе планета к Солнцу, тем выше у нее средняя плотность вещества. Например, у Меркурия она составляет 5,42 г/см\ Венеры — 5,25, Земли — 5,25, Марса — 3,97 г/см 3 .

    Общими характеристиками планет земной группы (Меркурий, Венера, Земля, Марс) являются прежде всего: 1) сравнительно небольшие размеры; 2) высокие температуры на поверхности и 3) высокая плотность вещества планет. Эти планеты сравнительно медленно вращаются вокруг своей оси и имеют мало спутников или не имеют их совсем. В строении планет земной группы выделяют четыре главные оболочки: 1) плотное ядро; 2) покрывающую его мантию; 3) кору; 4) легкую газо- во-водную оболочку (исключая Меркурий). На поверхности этих планет обнаружены следы тектонической деятельности.

    Планеты-гиганты

    Теперь познакомимся с планетами-гигантами, которые тоже входят в нашу Солнечную систему. Это , .

    Планеты-гиганты обладают следующими общими характеристиками: 1) большими размерами и массой; 2) быстро вращаются вокруг оси; 3) имеют кольца, много спутников; 4) атмосфера состоит, в основном, из водорода и гелия; 5) в центре имеют горячее ядро из металлов и силикатов.

    Их также отличают: 1) низкие температуры на поверхности; 2) малая плотность вещества планет.

    Наша Солнечная система состоит из Солнца, вращающихся вокруг него планет и более маленьких небесных тел. Все эти загадочны и удивительны, потому что они до сих пор не до конца изучены. Ниже будут указаны размеры планет Солнечной системы по возрастанию, и коротко рассказано о самих планетах.

    Существует всем известный список планет, в котором они перечислены в порядке их удаления от Солнца:

    На последнем месте раньше находился Плутон, но в 2006 г. он потерял статус планеты, так как дальше него были найдены более крупные небесные тела. Перечисленные планеты подразделяются на каменные (внутренние) и планеты-гиганты.

    Краткие сведения о каменных планетах

    К внутренним (каменным) планетам относят те тела, которые располагаются внутри астероидного пояса, отделяющего Марс и Юпитер. Своё название «каменные» они получили потому, что состоят из различных твёрдых пород, минералов и металлов. Их объединяет малое количество или вовсе отсутствие спутников и колец (как у Сатурна). На поверхности каменных планет имеются вулканы, впадины и кратеры, образовавшиеся в результате падения других космических тел.

    Но если сравнивать их размеры и располагать по возрастанию, то список будет выглядеть так:

    Краткие сведения о планетах-гигантах

    Планеты-гиганты находятся за астероидным поясом и поэтому их ещё называют внешними. Состоят они из очень лёгких газов – водорода и гелия. К ним относятся:

    Но если составлять список по размерам планет в Солнечной системе по возрастанию, то порядок меняется:

    Небольшая информация о планетах

    В современном научном понимании под планетой подразумевается небесное тело, которое вращается вокруг Солнца и обладает достаточной массой для собственной гравитации. Таким образом, в нашей системе 8 планет, и, что немаловажно, эти тела не похожи друг на друга: у каждого есть свои уникальные отличия, как во внешнем виде, так и в самих составляющих планеты.

    – это самая близкая к Солнцу планета и самая маленькая среди остальных. Она весит в 20 раз меньше Земли! Но, несмотря на это, у неё достаточно большая плотность, что позволяет сделать вывод о том, что в её недрах находится много металлов. Из-за сильной близости к Солнцу, Меркурий подвержен резким температурным перепадам: ночью - сильный холод, днём температура резко повышается.

    – это следующая близкая к Солнцу планета, во многом схожая с Землёй. Она обладает более мощной атмосферой, чем Земля, и считается очень жаркой планетой (температура на ней выше 500 С).

    – это уникальная планета за счёт своей гидросферы, а наличие на ней жизни привело к появлению в её атмосфере кислорода. Большая часть поверхности покрыта водой, а остальная часть занята материками. Уникальной особенностью являются и тектонические плиты, которые двигаются, хотя и очень медленно, что приводит к изменению ландшафта. У Земли есть один спутник – Луна.

    – ещё известен под именем «Красной планеты». Свой огненно-красный цвет получает из-за большого количества оксидов железа. Марс обладает очень разрежённой атмосферой и гораздо меньшим атмосферным давлением, в сравнении с земным. Спутников у Марса два – Деймос и Фобос.

    – это настоящий гигант среди планет Солнечной системы. Его вес больше в 2,5 раза веса всех вместе взятых планет. Поверхность планеты состоит из гелия и водорода и во многом схожа с солнечной. Поэтому, неудивительно, что на этой планете отсутствует жизнь – нет воды и твёрдой поверхности. Зато у Юпитера имеется большое число спутников: на данный момент известно 67.

    – эта планета знаменита наличием колец, состоящих изо льда и пыли, вращающихся вокруг планеты. Своей атмосферой он напоминает юпитерианскую, а по размерам немного меньше этой гигантской планеты. По количеству спутников Сатурн тоже немного отстаёт – их у него известно 62. Самый большой спутник – Титан, имеет большие размеры, чем Меркурий.

    – самая лёгкая планета среди внешних. Его атмосфера – самая холодная во всей системе (минус 224 градуса), имеется магнитосфера и 27 спутников. Уран состоит из водорода и гелия, также отмечено присутствие аммиачного льда и метана. Из-за того, что Уран имеет большую наклонность оси, создаётся впечатление, что планета катится, а не вращается.

    – несмотря на меньшие размеры, чем у , он тяжелее его и превосходит массу Земли. Это единственная планета, которая была найдена путём математических вычислений, а не благодаря астрономическим наблюдениям. На этой планете были зафиксированы самые сильные ветра в Солнечной системе. У Нептуна 14 спутников, один из которых – Тритон – единственный вращающийся в обратную сторону.

    Представить все масштабы Солнечной системы в пределах изученных планет очень сложно. Людям кажется, что Земля – это огромная планета, и, в сравнении с другими небесными телами, так и есть. Но если рядом с ней поставить планеты-гиганты, то Земля уже принимает крошечные размеры. Конечно, рядом с Солнцем все небесные тела кажутся маленькими, поэтому представить все планеты в их полном масштабе – трудная задача.

    Самой известной классификацией планет считается их удалённость от Солнца. Но также правильным будет перечисление, учитывающее размеры планет Солнечной системы по возрастанию. Список будет представлен следующим образом:

    Как видно, порядок не сильно изменился: на первых строчках внутренние планеты, и первое место занимает Меркурий, а на остальных позициях - внешние планеты. На самом деле, совсем не важно, в каком порядке располагаются планеты, от этого они не станут менее загадочными и красивыми.